Presented at ISCA-30, June 2003 © 2003, ACM

Temperature-Aware Microarchitecture

Kevin Skadron, Mircea Stan

Wei Huang, Sivakumar Velusamy Karthik Sankaranarayanan, David Tarjan

LAVA and HPLP Labs University of Virginia

cadron et al. ISCA-30 © 2003. ACM

Talk Outline

- Why is "temperature-aware" design a topic of specific interest, and what does architecture have to do with it?
- Temperature-aware architecture requires an architectural model of temperature
 - ◆ Dynamic compact model: equivalent circuit based on thermal R and C
 - ◆ HotSpot is now publicly available on the web
- Architecture techniques for runtime thermal control (dynamic thermal management, DTM)
 - Localized response can outperform DVS
- Where do we go from here?

Metrics

- > Power consumption: first-order design constraint
 - ◆ average active power and idle power limit battery life, etc.
 - peak power limits power delivery (dl/dt), degrades battery
 - not well correlated with temperature
 - not the same as thermal design power
 - ◆ sustained power density limits thermal design/packaging
 - approx. same as thermal design power
 - ◆ Common fallacy: instantaneous, average power ≠ temperature
- Power-density is increasing exponentially
 - power density matters because this is proportional to the rate of heating per unit area
 - heating -- and therefore cooling costs -- are rising exponentially
 - ourrently \$2-3 / W
- Need temperature-aware design!
 - Optimizing power is different than temperature

cadron et al. ISCA-30 @ 2003 ACM

What Can Architects Do About This?

- Architectural blocks are a very natural granularity for thermal management
 - ◆ Use architectural responses to lower power density
 - ♦ Heating is localized--detect and respond to hot spots
 - Heating within a block is quasi-uniform
 - Heating is correlated with program behavior
 - Architects know how to manage this!
- The OS then provides knowledge of per-task thermal behavior and performance requirements
 - ◆ Task scheduling provides a great deal of flexibility
 - OS and architecture can cooperate
 - Architects know how to manage this too!

But how do we model heat in a practical way?

kadron et al. ISCA-30 © 2003. ACM

Page 9

Talk Outline

- Why is "temperature-aware" design a topic of specific interest, and what does architecture have to do with it?
- > Temperature-aware architecture requires an architectural model of temperature
 - ◆ Equivalent circuit based on thermal R and C
 - ◆ HotSpot is now publicly available on the web
- Architecture techniques for runtime thermal control
 - Localized response can outperform DVS
- Where do we go from here?

Page 1

Skadron et al. ISCA-30 @ 2003 ACI

Thermal Modeling - Hot Spots

- Deal with "hot spots"
 - Localized heating occurs much faster than chip-wide
 - millisec. time scales
 - Chip-wide treatment is inaccurate
 - neglects hot spots
 - Power metrics are an unacceptable proxy
 - Temperature is sensitive to chip layout (floorplan)
 - ◆ Temperature is sensitive to details of thermal package

Thermal Modeling

- ➤ Want a fine-grained, dynamic model of *temperature*
 - ◆ A model that microarchitects and system architects can use
 - At a granularity that they can reason about
 - That accounts for adjacency and package
 - ◆ That is fast enough for practical use
- Averaging power dissipation is not accurate
 - Chip-wide average won't capture hot spots
 - ◆ Localized average won't capture lateral coupling
 - ◆ Does not account for block areas (ie, power density)
- → HotSpot a new model for localized temperature
 - Computationally efficient for use in power/performance simulators
 - Validated against FEM models (physical validation coming soon)
 - Publicly available

HotSpot

- ➤ Integrate HotSpot into a power/performance simulator
 - ◆ Time evolution of temperature is driven by unit activities and power dissipations averaged over 10K cycles
 - Power dissipations can come from any power simulator, act as "current sources" in RC circuit
 - ◆ Simulation overhead in Wattch: < 1%
- > Requires models of
 - ◆ Floorplan: *important for adjacency*
 - Understanding of granularity vs. accuracy
 - ◆ Package: important for spreading and time constants
 - Combination of modeling, published numbers, and "custom" numbers (to obtain interesting behavior)

Page 9

Talk Outline

- Why is "temperature-aware" design a topic of specific interest, and what does architecture have to do with it?
- Temperature-aware architecture requires an architectural model of temperature
 - Equivalent circuit based on thermal R and C
 - ◆ HotSpot is now publicly available on the web
- > Architecture techniques for runtime thermal control
 - ◆ Localized response can outperform DVS
- > Where do we go from here?

30 © 2003 ACM

Previously Published DTM Techniques

- > DVS
- ➤ Clock gating (Pentium 4, Gunther et al. 2001)
- ➤ Fetch gating or "toggling" (Brooks and Martonosi 2001)
 - ◆ Feedback-controlled fetch gating (Skadron et al. 2002)
- Fetch/decode throttling (Motorola G3, Sanchez 1997)
- > Speculation control (Manne et al. 1998)
- Dual pipeline (Lim et al. 2002)
- Low-power caches (Huang et al. 2000)
 - ◆ DEETM framework used a hierarchy of response

Page 2

DTM Techniques – Comparison

- DVS (feedback-controlled)
 PI-DVS
 - ◆ Consider both 10 µs stall and PI-DVS-i 10 µs delay with no stall
- Clock gating (feedback-controlled)
 PI-GCG
- Local toggling (feedback-controlled)
 PI-LTOG
 - ◆ Domains: fetch, integer, FP, and ld-st
- Migrating computation
 MC
 - ◆ Spare integer register file
 - one extra cycle for register-file access
 - PI-LTOG as fallback
- "Temperature-Tracking" frequency scaling
 TT-DFS
 - ◆ Scale frequency linearly with temperature
 - 18% variation over the range 0-100° (Garrett & Stan)
 - No voltage scaling

Skadron et al. ISCA-30 @ 2003 ACM

Simulation Details

- > 9 SPEC2000 benchmarks, both integer and FP
 - ◆ 4 hover near 81.8 °C, rest are above
- SimpleScalar/Wattch, modified to model pipeline and power of an Alpha 21364 as closely as possible
- Scaled to 130nm, 1.3V, 3.0 GHz
- > Die thickness: 0.5mm
- ➤ Ambient temperature (inside computer case): 45 °C
- Rconvection = 0.8 K/W
 - ♦ 0.7 K/W necessary if DTM not available
- ➤ Max allowed temperature: 85 °C
- ➤ Sensor imprecision: 2°C fixed offset, 1°C noise
- ➤ Trigger temperature/setpoint: 81.8 °C

Skadron et al. ISCA-30 @ 2003 ACM

Talk Outline

- > Why is "temperature-aware" design a topic of specific interest, and what does architecture have to do with it?
- Temperature-aware architecture requires an architectural model of temperature
 - Equivalent circuit based on thermal R and C
 - ◆ HotSpot is now publicly available on the web
- Architecture techniques for runtime thermal control
 - Localized response can outperform DVS
- Where do we go from here?

Page 2

A Few Important Research Problems

- Understand tradeoff between performance cost and packaging cost
- > Figures of merit, esp. independent of DTM
- Characterize thermal properties of different programs
 - Different application classes
 - Thermal interaction of different tasks (initial temperature effects)
- Understand how to balance DTM against real-time and other workload requirements
- Circuit architecture OS interactions & cooperation
- Understand thermal energy tradeoffs

Skadron et al. ISCA-30 @ 2003 ACM

System-Level Issues

- Temperature-aware circuits (modify threshold, etc.) under micro-architectural control
 - ← microarchitecture →
- Temperature-aware OS
 - Use current operating temperature to guide scheduling
 - Mix time slices between hot and cold applications (eg, Rohou and Smith 1999)
 - ◆ Schedule to balance thermal stress across chip, system
 - ◆ Satisfy real-time or quality-of-service requirements
 - Match DTM to task priorities
- Use system-level knowledge to guide microarchitecture response
 - ◆ Early but gentler DTM activation

◆ Integrate energy, thermal responses

many more...

Page 3

Thermal Modeling: What Next?

- Further validation
 - Direct physical measurements from a real processor & workload would be ideal
 - ◆ In the meantime, further FEM and physical measurements using test chips
- More sophisticated modeling of various packaging options and the effect of heat elsewhere in the computer case
- More accurate modeling of interconnect & clock
- More sophisticated modeling of sensor behavior
- Need to extend the processor thermal model
 - ◆ CMP, SMT, other components in system...
 - ◆ Lots of other stuff!
- Need ways to automatically model floorplan
- Develop more accurate power projections for future technology nodes

adron et al. ISCA-30 @ 2003 ACM

Summary

- > Architects can help control thermal effects
- Need proper tools
 - ◆ Simple estimation techniques are dangerous
 - Lumped RC model is a computationally efficient and accurate solution
 - Floorplan (thermal diffusion), package, and sensor effects must be included
 - HotSpot is publicly available and useful for system-level studies as well as micro-architectural and even circuits
- DTM can provide runtime cooling and lower manufacturing costs with low performance overhead
 - ◆ Localized microarchitectural techniques are promising

Wide open area, lots of low-hanging fruit!

Skadron et al. ISCA-30 @ 2003 ACM

Page 33

Ultimate Goal

Integrated, workload-aware, autonomic control of performance, temperature, and energy

Download: http://lava.cs.virginia.edu/HotSpot

(also tech report with extended results)

Skadron et al. ISCA-30 @ 2003 ACM

