
Using Performance Counters for Runtime Temperature Sensing
in High-Performance Processors

Kyeong-Jae Lee and Kevin Skadron
Department of Computer Science

University of Virginia
kl2z@virginia.edu, skadron@cs.virginia.edu

Abstract

As energy consumption in high-performance systems has
increased, thermal management has become a big chal-
lenge. Providing a cost-effective and detailed temperature
sensing mechanism is crucial to effectively employ a ther-
mal management technique. Existing hardware sensors are
too costly to implement and add additional heat while soft-
ware simulations fail to account for all possible hardware
effects.

In this paper, we describe a software solution for temper-
ature sensing that uses real hardware resources such as per-
formance counters. The resulting temperature model pro-
vides a detailed spatial gradient of the processor and exe-
cutes at runtime. In particular, the model is configured for
the Pentium 4 processor. We run SPEC2000 benchmarks to
analyze the thermal behavior of applications and explain
the potential benefits of using our model for temperature-
aware research.

1. Introduction

The main objective of this paper is to present a runtime
temperature sensing methodology that can be used for high-
performance architecture studies on real hardware, even in
the absence of fine-grained on-chip sensor hardware. We
then use this methodology to show how the temperature
model can be used to characterize high-performance appli-
cations and guide temperature-aware design. This will be
achieved by analyzing SPEC benchmark results on a Pen-
tium 4 processor.

High performance drives development of many cate-
gories of processors. As a result, power and heat density of
processors has increased exponentially with Moore’s Law
to the point that they affect system performance, accelerate
aging of the chip, and increase the cost of cooling solutions.
As an effort to reduce heat dissipation, researchers have de-
veloped various dynamic thermal management (DTM) tech-

niques, such as clock gating and dynamic voltage scaling
[2, 3, 4, 9]. DTM techniques monitor and control the tem-
perature of the chip at runtime.

While temperature-aware design has gained importance
in the field, most control mechanisms require the ability to
accurately measure the temperature of the processor; the
DTM detects when the temperature reaches a certain thresh-
old and then regulates processor operations. Temperature
sensing methods are also important for architecture studies,
to allow researchers to examine thermal effects or test DTM
algorithms. Skadron et al proposed a thermal model called
HotSpot, which computes the temperature for each microar-
chitecture block on the chip [10]. Their thermal model can
interface with power-performance simulators for architec-
ture studies. Simulation is an inexpensive way to get re-
sults, but fails to account for all system-wide hardware ef-
fects and can be prohibitively slow. Obtaining real temper-
ature readings directly from the chip’s temperature sensors
would be ideal, but there are several limitations to this. First,
most of the sensors are based on analog CMOS circuit de-
signs, and can be costly to implement and may even exac-
erbate the thermal problem by dissipating too much power.
Second, a chip usually contains only a few numbers of sen-
sors so their placement on the chip becomes an important
design issue. Third, the sensor’s response time to a temper-
ature change can be too slow unless it is implemented in
CMOS in the chip. Hence, an accurate overall representa-
tion of the thermal distribution of the chip at runtime can be
difficult to obtain through thermal sensors.

This paper proposes a new runtime thermal model and
temperature sensing architecture that extends HotSpot to
interface with physical hardware resources such as perfor-
mance counters. Performance counters can be configured
to gather specific micro-architectural events such as cache
hits, and are therefore a good estimate of processor activ-
ity. Isci and Martonosi have already shown that accurate
runtime modeling of power is possible using performance
counters [8]. Our proposed thermal model attempts to re-
place the use of thermal sensors and provide a detailed, run-



time, floorplan-level profile of the chip’s temperature distri-
bution. We focus on the Intel Pentium 4 processor and its
architecture.

The paper is structured as follows. Section 2 gives an
overview of the requirements and implementation details.
Section 3 provides an analysis of the model in terms of per-
formance penalty and current limitations. Section 4 presents
several thermal maps of the Pentium 4 as an example how
researchers could use the model to improve hardware de-
sign in addition to its use for temperature sensing. Section
5 concludes the paper.

2. Implementation

2.1. Pentium 4 Architecture

The machine used for the experiments is a 2.6 GHz
Pentium 4 processor, 130 nm Northwood core. The typi-
cal power dissipation is 69.0 W, and the operating voltage
is 1.6 V [7]. The Pentium 4 uses a 20-stage pipeline and a
trace cache, which eliminates the normal instruction decod-
ing from the execution loop by storing IA-32 instructions.
The two ALUs each execute in one-half the clock cycle, and
thus double the effective throughput. The machine also sup-
ports hyper-threading technology, which allows the proces-
sor to run two threads simultaneously. Because the temper-
ature model is constantly running in the background, hyper-
threading allows calculations from the model to run concur-
rently with other programs with less overhead. The Pentium
4 also includes a rich set of performance monitoring fea-
tures, with 45 configurable events and 18 physical perfor-
mance counters [5, 12]. The performance counters are used
to count specific micro-architectural events for debugging
and performance measurements. Each counter is associated
with one counter configuration control register (CCCR),
which determines the specific counting scheme. The event
selection control registers (ESCRs) determine which event
is to be counted. A simplified device driver, adapted from
the abyss device driver [11], is used to configure all the
control registers and read the performance counter values.

The temperature model also requires the geometric spec-
ifications and the floorplan layout of the processor. Table 1
shows the mechanical dimensions and material characteris-
tics for components in the processor package. These settings
are based off of design schematics found in [7] and are used
to configure the HotSpot simulator program. Figure 1 is an
approximated floorplan layout that has been adapted from
the Northwood core die photo [6]. It includes the follow-
ing functional units: L1 branch prediction unit (BPU), L2
BPU, instruction decoder, trace cache, memory order buffer
(MOB), ITLB, bus control unit, DTLB, L1 cache, L2 cache,
micro-code ROM (UROM), allocation unit, rename unit, in-
struction Q1, instruction Q2, scheduler, retirement unit, FP

Table 1. HotSpot simulator configuration

HotSpot variable Value Description (Unit)
t chip 0.00074 chip thickness (m)
therm threshold 135+273.15 DTM threshold (K)
c convec 295.7 convection capaci-

tance (J/K)
r convec 0.467 convection resistance

(K/W)
s sink 0.076 heat sink side (m)
t sink 0.0411 heat sink thickness

(m)
s spreader 0.031 heat spreader side

(m)
t spreader 0.0015 heat spreader thick-

ness (m)
t interface 0.000127 interface mate-

rial thickness (m)
ambient 45+273.15 ambient temp (K)

execution unit, FP register file, integer execution unit, in-
teger register file, and the memory control unit. The trace
cache and L1 cache have been divided into two units for
simplicity.

Figure 1. Floorplan layout of Pentium 4
(adapted from chip-architect.com)

2.2. HotSpot Extension and Power Modeling

The proposed model extends the HotSpot thermal model
developed by Skadron et al [10]. HotSpot has already been
validated against a thermal test chip and IBM finite-element
simulations. Currently, HotSpot models the processor as a
network of thermal resistors and conductors per functional



unit, with power dissipation in each unit treated as a cur-
rent source in the RC network. The proposed model needs
to estimate power dissipation from performance counters.
Isci and Martonosi have already shown that power can be
accurately modeled from performance counters [8]. Their
model uses the following equation:

Power = AccessRate (1)
×ArchitecturalScaling
×MaxPower
+NonGatedClockPower

Several micro-architectural events, which are measured
through performance counters, are combined to closely ap-
proximate the number of accesses to each functional unit.
We use similar metrics found in [8] and extend HotSpot
to interface with performance counters. For the Pentium
4, not all performance metrics can be measured simulta-
neously using the 18 performance counters. Four sets of
counter rotations are required to sample all necessary ar-
chitectural events. Thus, the performance counters are peri-
odically sampled but a different set of architectural events is
measured each time. Although only two counters are time-
shared by different metrics across all four rotations, some
events will be missed and the temperature values may even-
tually need to be calibrated against the hardware sensor. Re-
fining the model to further improve its accuracy is an area
for future work.

In addition, the main temperature computation algorithm
must be optimized to satisfy the runtime requirements. For
example, if we are updating the temperature values every
10 ms, the actual sampling and calculation performed by
the program must be less than 10 ms. This also assumes
that the program is multithreaded. Currently, HotSpot uses
a 4th order Runge-Kutta solution to calculate temperature.
This solution was designed with a conservative step size and
proved to be inadequate for runtime measurements despite
some parameter changes. In our model, we implement the
Runge-Kutta-Fehlberg method, which uses an adaptive step
size to minimize the calculation time. Despite the complex-
ity, the RKF method is more efficient and can be easily in-
tegrated into the existing HotSpot framework. Further op-
timizations of the HotSpot model are an important area for
future work.

3. Results

3.1. Program Overhead

The temperature model was compiled using gcc-
3.2.2 with compiler flags of “-O3 -march=pentium4
-mfpmath=sse -mmmx -msse -msse2”. All benchmark pro-
grams were run on the linux kernel 2.4.20-24.9smp.

When the temperature model executes, it periodically
prints out a list of temperature values for each func-
tional unit. We use the default calling interval for all exper-
iments; 5 ms for each counter-rotation, and 20 ms to update
temperature values. Although the temperature model up-
dates temperature values infrequently, the program contin-
ually monitors access to performance counters and updates
power values. It also needs to perform a large set of cal-
culations to obtain temperature values; these all add to the
system overhead. Two metrics are used to find the inher-
ent overhead of the program.

Table 2. Thermal Overhead (oC)

Unit Steady-
state

Two In-
stances

Overhead

BusCtl 47.73 51.24 3.51
L2 Cache 50.08 54.19 4.11
L2 BPU 56.11 64.02 7.91
InstrDecoder 55.12 61.24 6.12
L1 BPU 55.71 62.04 6.33
ITLB 51.57 57.03 5.46
TrCache Top 58.00 63.79 5.79
TrCache Bot 58.26 63.50 5.24
DTLB 56.65 63.33 6.68
L1 Cache Top 53.96 60.37 6.41
L1 Cache Bot 58.79 66.93 8.14
IntExe 66.33 79.18 12.85
MemCtl 64.43 73.35 8.92
IntReg 70.03 83.68 13.65
FpExe 55.65 59.27 3.62
FpReg 59.31 63.30 3.99
UROM 52.63 56.13 3.50
Alloc 74.83 79.81 4.98
Rename 76.24 81.13 4.89
Retire 69.76 75.59 5.83
InstrQ1 76.59 82.22 5.63
Sched 74.05 82.25 8.20
InstrQ2 69.48 77.69 8.21

To estimate the thermal overhead, we obtain the steady-
state temperature values for each functional unit. We run
the model by itself until the temperature reaches steady
state. Then we execute two slightly different instantiations
of the model simultaneously. Since there is no natural way
of knowing the temperature per block without using the
model, the amount of heat generated by the model itself
is approximated as the difference between the values from
this experiment and the steady-state condition. One instan-
tiation is the normal program while the other is modified
so that counter values are statically assigned instead of ob-
taining real counter values via the device driver. This ap-
proximation serves as a general indicator since the major-



ity of the CPU activity is in the HotSpot calculation algo-
rithm and not in the performance monitoring functionality.
Table 2 shows that for most units the increase in tempera-
ture is around 4 to 8 oC.

To estimate the performance overhead, we obtain the ex-
ecution time of SPEC benchmarks. All SPEC benchmarks
were compiled using the SPEC “base” tuning option. Fig-
ure 2 shows the execution time of benchmarks while run-
ning the temperature model simultaneously. All values are
normalized to the execution time of each benchmark run-
ning alone. The overhead of the execution time varies across
applications, and the variation is larger across floating-
point benchmarks than integer benchmarks. The tempera-
ture model’s main computation algorithm requires several
iterations of the Runge-Kutta algorithm. Benchmarks with
iterative numerical methods that stress floating-point units
are more likely to compete in hyper-threading with the tem-
perature model for CPU resources, and hence the overhead
is greater for these benchmarks. Benchmarks that have high
overhead are of special interest since those programs pro-
duce more thermal stress and can be more easily used to
characterize their thermal behavior. Section 4 includes a
more detailed discussion of the thermal characteristics of
the gzip and wupwise benchmarks.

Normalized Execution Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

e

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

W
up

w
is

e

S
w

im

M
gr

id

A
pp

lu

M
es

a

A
rt

E
qu

ak
e

A
m

m
p

S
ix

tr
ac

k

A
ps

i

INT FP
SPEC Benchmarks

R
at

io
 (

N
o

rm
al

iz
ed

)

With HotSpot

Figure 2. Performance overhead

3.2. Limitations

The temperature model processes performance statistics
and outputs a temperature reading for each functional block
of the Pentium 4. This temperature sensing methodology
provides three main advantages over other sensing mecha-
nisms: the model provides a detailed spatial thermal distri-
bution, calculation is based on real hardware activity, and
the information is presented at runtime. The model facili-

tates architecture studies that can help guide temperature-
aware design and chip floorplanning for high-performance
computing. Section 4 explains how this model can be used
to analyze thermal stress patterns and understand how such
patterns are dependent on the application characteristics.
However, as evident from Section 3.1, the high overhead
of this program becomes problematic for high-performance
applications that need greater precision, faster response
times, and lower runtime costs. This may not be as criti-
cal for architectural studies since researchers can quantify
the overhead. Although the calculations are required infre-
quently, multithreading the performance counter sampling
and temperature calculations can overload the processor.
The high increase of temperature in the integer units in Ta-
ble 2 also show that the proposed model is more likely to
slow down computation-intensive applications.

Future research may explore ways to reduce the over-
head of the model. One method is through optimizing the
software code. The heavy computation needs to be reduced
either by improving upon the Runge-Kutta numerical solu-
tion or by replacing it with a more efficient algorithm. It
may even be desirable to trade off some accuracy to ob-
tain a radically simpler algorithm. Bellosa et al also use per-
formance counters as an event-driven approach, but calcu-
late a single temperature value by solving differential equa-
tions [1]. Compiler optimization may also help. For ex-
ample, when running the wupwise benchmark, the use of
machine-specific compiler flags (e.g., -march=p4, -mmx,
etc) for the temperature model reduced the thermal stress
on the chip. While the effect is minimal for most functional
units, the integer execution unit and register file showed a
temperature reduction of 4.1 oC. An alternative to optimiz-
ing the source code is to exploit various hardware resources.
One method would be to generate a sensor-fusion algorithm
where readings from the thermal sensor and software pro-
gram are combined (see Section 4.3). It would be possible
to create an algorithm to infer the thermal distribution from
a sensor and invoke the program only when needed. This
can minimize excess computation and still take advantage
of the existing sensors.

4. A Case Study of the Pentium 4

4.1. Thermal Stress Patterns

The proposed temperature model is a cost-efficient soft-
ware solution that can provide reasonable estimates of tem-
perature. This information is useful for studying thermal be-
havior of high-performance applications and temperature-
aware designs. In this section, we use thermal maps of
the Pentium 4 to illustrate the thermal characteristics of
the SPEC benchmarks. While the information is applica-
ble to most of the benchmarks, we focus on the gzip inte-



Transient Analysis (gzip)

40

45

50

55

60

65

70

75

80

85

90

95

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

T
em

p
er

at
u

re
 (

C
)

BusCtl

L2_Cache

L2_BPU

InstrDecoder

L1_BPU

ITLB

MOB

TrCache_Top

TrCache_Bot

DTLB

L1_Cache_Top

L1_Cache_Bot

IntExe

MemCtl

IntReg

FpExe

FpReg

UROM

Alloc

Rename

Retire

InstrQ1

Sched

InstrQ2

Transient Analysis (wupwise)

40

45

50

55

60

65

70

75

80

85

90

95

100

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

T
em

p
er

at
u

re
 (

C
)

BusCtl

L2_Cache

L2_BPU

InstrDecoder

L1_BPU

ITLB

MOB

TrCache_Top

TrCache_Bot

DTLB

L1_Cache_Top

L1_Cache_Bot

IntExe

MemCtl

IntReg

FpExe

FpReg

UROM

Alloc

Rename

Retire

InstrQ1

Sched

InstrQ2

Figure 3. (a) Temperature change over time (gzip) (b) Temperature change over time (wupwise) and
(c) Spatial difference for gzip and wupwise benchmarks

ger benchmark and wupwise floating-point benchmark. Ta-
ble 2 in Section 3.1 shows that the allocation, rename, in-
struction Q, scheduling units are generally the hottest units
on the chip. This seems reasonable, since every instruction
must be processed through the pipeline. Figure 3 shows
the change in temperature over time for the gzip and wup-
wise benchmark. For integer benchmarks, the integer units
are typically the hottest units on the chip. In comparison to
the steady-state condition, the amount of increase in tem-
perature for each functional block during peak execution
varies from 4 to 25 oC. In contrast, the floating-point bench-
marks show a relatively uniform temperature increase over
all functional blocks; the range of the amount of temper-

ature increase, 6 to 12 oC, is smaller than that of the in-
teger benchmarks. While the floating-point units still heat
up the most for floating-point benchmarks, the overall ther-
mal distribution does not differ much from the steady-state
condition other than the fact that the average temperature is
higher. Figure 3 also shows a thermal plot of the processor
for each benchmark, gzip and wupwise, during its peak ex-
ecution. The larger temperature range across the entire pro-
cessor for the gzip benchmark is easily noticeable.

In addition to the application-specific spatial differences,
our model can be used to demonstrate how hot spots can
move during the execution of an application. Figure 4
shows a temperature trace of the gcc integer benchmark.



Figure 5. Hot spot movement. Hottest block moves from the integer register file to the scheduler unit,
and then to the L2 BPU

Transient Analysis (gcc)

45

50

55

60

65

70

75

80

85

90

95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

T
em

p
er

at
u

re
 (

C
)

BusCtl

L2_Cache

L2_BPU

InstrDecoder

L1_BPU

ITLB

MOB

TrCache_Top

TrCache_Bot

DTLB

L1_Cache_Top

L1_Cache_Bot

IntExe

MemCtl

IntReg

FpExe

FpReg

UROM

Alloc

Rename

Retire

InstrQ1

Sched

InstrQ2

Figure 4. Temperature change over time (gcc)

Note that the maximum temperature value does not come
from the same functional unit during execution. This is
more clearly illustrated in Figure 5. The three thermal plots
in Figure 5 are separate instances in time during the execu-
tion of the gcc benchmark. The hottest block moves from
the integer register file to the scheduler unit, and then to the
L2 BPU.

4.2. Hardware Design Improvements

This section includes a discussion how the thermal map-
ping of the chip can guide processor designers to develop
thermal-efficient systems.

Our model can provide useful information when manu-
facturers are designing the processor package. Results from
Section 4.1 suggest that floating-point benchmarks tend to

uniformly stress the processor with less temperature varia-
tion across functional units than integer benchmarks. This
indicates that it may be feasible to use less expensive pack-
aging materials for computer systems that chiefly support
numerical computations. Since integer benchmarks tend to
create large temperature gradients around the integer units,
differentiating the heat spreader material around the known
hot spots would be a possible solution to effectively remove
heat for processors running integer applications.

In addition, our temperature model can help designers
identify the thermal gradient bounds and intelligently place
thermal sensors. Gunther et al have explained the impor-
tance of examining thermal maps to find the optimal loca-
tion of sensors on the Pentium 4 [4]. While they used a
simulated thermal plot, our temperature model presents a
more realistic representation of temperature through the use
of performance counters. Hence, hot spots are more accu-
rately identified through our model.

The Pentium 4 has two thermal sensors, and one acts as
a catastrophic shutdown detector. An interesting question to
consider is whether hot spots could be artificially induced
where the sensor cannot effectively detect them. Complete
or partial meltdown of the processor can raise enormous
thermal security risks. Even unexpected shutdowns cause
an availability and possible data integrity risk. Consider
the thermal maps in Figure 3 in Section 4.1. Note that the
hottest block for the wupwise benchmark is the instrQ1 unit,
which is further away from the coolest unit (i.e., the BusCtl
unit) than the integer register file is for the gzip bench-
mark. The gzip benchmark stresses integer units and cre-
ates a larger gradient between the coolest and hottest area
(40 oC) than the wupwise benchmark (30 oC). If a program
can target a specific functional unit to overheat more quickly
than the thermal control circuit can respond, it may be pos-
sible that the throttling is not engaged fast enough. This



illustrates another potential use of the temperature model:
to study thermal viruses that can cause unexpected system
shutdown.

4.3. Hybrid Hardware-Software Solution for
Thermal Sensing

One promising area for future research is to combine our
temperature sensing approach with existing hardware sen-
sors. A hybrid hardware-software solution may prove to be
the most cost-effective method to obtain an accurate and
detailed temperature sensing method that can be used for
DTM. It would be possible to create a model that uses per-
formance counters as a proxy for temperature. The new
model could continually monitor the counter values, and
re-caclulate the temperature for each functional unit only
when the gradient is large enough or when the temperature
is reaching a certain threshold. We can use the thermal sen-
sors of the Pentium 4 to callibrate the new temperature val-
ues based on the floorplan layout and the location of the
sensor.

Compared to a purely hardware-based or software-based
solution, this sensor-fusion algorithm can reduce the overall
cost and provide the benefits of both approaches. Receiving
input from the hardware sensors effectively minimizes the
number of times the temperature values are calcuated, and
hence the computation overhead of the software (see Sec-
tion 3) can be reduced. In addition, the system can obtain
a detailed spatial distribution of temperature through soft-
ware modeling even in the absence of fine-grained on-chip
sensors.

5. Conclusions

This paper has presented a runtime thermal model con-
figured for the Pentium 4 processor. This software solution
provides detailed temperature information at the floorplan
level and uses the hardware performance counters as a mea-
sure of real processor activity. The software can be used
for both architectural studies and on-line temperature sens-
ing. We have shown early work of the potential benefits, but
a great deal of future work is required for our approach to
fully develop as a low-cost and reliable temperature sensing
mechanism. The current implementation of the model adds
about 4 to 8 oC of thermal overhead and can slow down
the execution time of SPEC benchmarks by up to 54 %.
The main bottleneck of the program is in the multithreaded
code for performance monitoring and temperature calcula-
tions. If the model is further optimized, it can then be used
for high-performance applications that require low runtime
costs, or even as a cost-effective alternative to thermal sen-
sors for runtime DTM techniques.

In addition, the Pentium 4 has only two thermal sensors
and hence the accuracy of our current temperature model
has not yet been fully validated. One of the two sensors is
accessible through software, and the temperature estimate
from our model has been shown to closely match the read-
ing from the hardware sensor. Furthermore, the relative hea-
tup and stress patterns of the processor still provide use-
ful information for temperature-aware architecture studies
as shown in Section 4. One possible extension is to ap-
ply our sensing methodology to IBM’s Power5 processor,
which has 24 thermal sensors. Not only will it be possi-
ble to validate our sensing methodology, but it will also al-
low researchers to study a hyrbid hardware-software tem-
perature sensing solution that may be more efficient than a
hardware solution of many sensors.

We also showed how the model can be used for thermal-
aware, high-performance computing studies. We used
the gzip and wupwise SPEC2000 benchmarks as an ex-
ample to highlight some of the key thermal features
of the integer and floating-point benchmarks. Our re-
sults show that integer benchmarks tend to have more vari-
ation than floating-point benchmarks in terms of tempera-
ture changes across functional units. Localized hot spots
can also move across the processor during program exe-
cution. Understanding application-specific thermal behav-
ior can guide researchers in designing new thermal-efficient
processor packages, floorplan layouts, and in placing ther-
mal sensors on the chip. We hope our sensing approach
will be used as a tool for future studies on thermal ef-
fects in high-performance computing.

Acknowledgments

This work is supported in part by the National Science
Foundation under grant no. CCR-0133634, a grant from In-
tel MRL, the University of Virginia Fund for Excellence
in Science and Technology, and the University of Virginia
Summer Science and Engineering Scholars Program. We
would also like to thank Mircea Stan, Karthik Sankara-
narayanan, and Puyan Dadvar for their constructive feed-
back.

References

[1] F. Bellosa, A. Weissel, M. Waitz, and S. Kellner. Event-
driven energy accounting for dynamic thermal management.
In Proc. COLP 2003, Sep. 2003

[2] D. Brooks and M. Martonosi. Dynamic thermal management
for high-performance microprocessors. In Proc. HPCA-7,
pp.171-82, Jan. 2001

[3] M. Fleischmann. Crusoe power management: Cutting x86
operating power through LongRun. In Embedded Processor
Forum, June 2000



[4] S. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. Man-
aging the impact of increasing microprocessor power con-
sumption. Intel Tech. J., Q1 2001

[5] Intel Corporation. IA-32 Intel Arch. Software Developers
Manual, Vol. 3: System Programming Guide, 2004

[6] Intel Pentium 4 Northwood die photo. From web-
site: Chip Architect. http://www.chip-architect.com/news/
2003 04 20 Looking at Intels Prescott part2.html

[7] Intel Pentium 4 technical docu-
ments. From website: Intel Corporation.
http://www.intel.com/design/Pentium4/documentation.htm

[8] C. Isci and M. Martonosi. Runtime power monitoring in
high-end processors: Methodology and empirical data. In
Proc. MICRO-36, Dec. 2003

[9] M. Ma et al. Enhanced thermal management for future pro-
cessors. VLSI Circuits, pp.201-204, Jun. 2004

[10] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-
narayanan, and D. Tarjan. Temperature-aware microarchitec-
ture. In Proc. ISCA-30, Apr. 2003

[11] B. Sprunt. Brink and Abyss Pentium 4 Per-
formance Counter Tools For Linux, Feb. 2002.
http://www.eg.bucknell.edu/bsprunt/emon/brink abyss

[12] B. Sprunt. Pentium 4 performance-monitoring features.
IEEE Micro, 22(4):7282, Jul/Aug 2002


