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ABSTRACT
This paper proposes a technique to use on-chip event- or
performance-counters to augment, or even replace, traditional
analog CMOS temperature sensors. Using activity data from
the performance counters, energy consumption that
consequently causes heat dissipation can be tracked. Simple
regression anaysis permits us to find a relation between
activity data and temperature. Performance counters aready
exist in many processors for debugging and performance
characterization, require only minima computation to
interpret for temperature monitoring, and these calculations
only need to operate at low frequency, so the marginal cost of
this additional temperature-sensing capability is negligible.
Performance counters monitor activity data (access count) of
most on-chip functional units and therefore alow high-
resolution, localized temperature sensing across a
microprocessor. This in turn alows tracking of locaized
hotspots. Fine-grained, localized sensing is needed because

different units can become hotspots depending on benchmarks.

This is especidly true if a malicious program intentionally
induces high activity in a selected functional unit. This paper
presents measurements from a commercia system to illustrate
the accuracy of performance counters as additional
temperature sensors.
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INTRODUCTION
Technology trends are packing transistors ever more tightly,
and as voltage scaling sdows down, power densities are
increasing rapidly. This in turn creates cooling challenges,
especiadly in high-performance 1Cs. Possible failure due to
high temperature can cause tremendous damage not only to
microprocessors but aso to whole systems. Effective and
robust cooling solutions are a (costly) necessity. Aggressive
packaging and fans are the primary solution, but dynamic
thermal management (DTM) is a complementary solution that
allows less expensive packaging/fan (“externa”) solutions.
The externa solution can be designed for typical operation.
Then, if severe environmental conditions or an unusual
workload cause temperature to exceed safe operating limits,
DTM slows execution to reduce power density until
temperatures return to a safe level. DTM has primarily been
achieved with voltage/frequency scaling or some mechanism
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that stops issuing instructions, variousy called clock gating,
fetch gating, pipeline throttling, etc. In short, these hardware
solutions trade reduced performance for reduced packaging
cost. These DTM techniques are actually more sophisticated,
more aggressive versions of prior runtime techniques that
were needed as failsafes in case of catastrophic events like fan
failure or heat-sink detachment.

For accurate temperature measurements, on-chip thermal
sensors were adopted in modern processors. For example,
there are two independent thermal sensorsin the Intel Pentium
4 Processor in the 478-pin package [1]. By using an accurate
on-die temperature sensing circuit and a fast-acting
temperature control circuit, the processor can rapidly initiate
therma management control. The Pentium 4, however, only
uses one of its sensors for thermal management; the other is
for externa use. In fact, hotspots may move over time,
depending on which on-chip structures (register file, integer
arithmetic, floating-point arithmetic, etc.) are most heavily
used. Temperature differences become exponentialy larger
with distance, so a single sensor is not sufficient to track
temperature changes across a large chip like the Pentium 4.
This is especially a concern in the case of malicious software
that might try to create a hotspot in an un-monitored structure
[2][12]. In the case of the Pentium 4, the sensor associated
with the thermal-control circuit is placed near the structure
that is likely to be the hottest. While this has been verified to
be safe for the Pentium 4, it requires a massive validation
effort to ensure that no hotspots can arise that would be missed
by the single sensor. This validation effort can be avoided by
using multiple sensors. An alternative is to smply use alarge
safety margin, making the DTM trigger temperature well
below the actual safe operating limit. This incurs a large
overhead in unnecessary throttling that again can be avoided
by using multiple sensors.

Using multiple CMOS sensors for fine-grained temperature
sensing has its own drawbacks. Sensors must be fairly large
to achieve good precision, making them costly in terms of area
and power. Increasing the number of sensors aso increases
the testing and calibration cost for each chip. These concerns
have led most chip designs to stick with a small number of
SeNnsors.

Software can aso benefit from precise, locdized temperature
sensing capability. For example, some research [3][4][5][6]
has explored temperature-aware scheduling to meet rea-time
or other quality-of-service requirements. Other research, e.g.
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[71[8], has taken advantage of the fact that, even though
hotspots move over time, entire micro-architectural structures
tend to exhibit approximately the same temperature, because
the entire structure operates as a single unit. These techniques
assume accurate temperature measurement. In fact, most chips
today do not provide this capability.

This paper proposes an accurate, localized temperature-
measurement technique which does not incur any complicated
computation and does not use additiona physical thermal
sensors. Instead, it utilizes off-line regression anaysis to
interpret readings from existing, on-chip performance counters,
which can be configured to gather specific micro-architectural
events such as cache hits and are therefore a good estimate of
processor activity. Performance counters have been proposed
before as away to infer temperature [9][10][6], but these prior
techniques required expensive, on-line computation, while our
regression-based approach incurs amost no overhead. At
runtime, the processor only has to calculate the temperature
from a simple formula by reading performance counter values
and performing a few multiplies and adds. Compared to fine-
grained hardware temperature sensors, performance counters
trade a negligible extra computationa requirement and some
imprecision in timing for a substantial reduction in hardware
cost.

The rest of this paper is organized as follows. Section 2
explains previous work on temperature measurement. Section
3 describes our regression-based temperature measurement
technique. Section 4 evaluates the accuracy of the proposed
techniqgue on two different architectura functional units.
Section 5 concludes the paper and describes some avenues for
future work.

PEVIOUSWORK ON SOFTWARE TECHNIQUES FOR
TEMPERATURE MEASUREMENT

Initidly, the performance counter was designed to eval uate the
performance of each functional unit. In recent microprocessors,
including even embedded processors, most of them embed
performance counters. In this paper, the performance counters
are utilized to obtain activity data (access counts) of functional
units. For example, activity data for the cache can be obtained
by reading the performance counter, since the activity data is
stored in the performance counter in order to calculate cache
miss rate (= cache miss/cache access). In Pentium 4, activity
data for most functional units can be read through as many as
45 performance counters.

HotSpot is a software mode for simulating on-chip
temperatures at a micro-architectural granularity. It models
the processor as a network of thermal resistors and conductors
per functiona unit, where power dissipation in each unit is
treated as current source in the RC network [7][8]. This model
gets activity data not from performance counters but from
simulations. Lee and Skadron extended HotSpot to interface
with performance counters in order to get activity data from a
real processor [10]. The HotSpot calculations are, however,
too expensive to be practica for red-time temperature
estimation.

This creates an online thermal model that can measure
temperature based on real workloads in real processors. Their
approach estimates power dissipation from performance

counters based on a model by Isci and Martonosi [11]. To
better understand the need for localized temperature
measurement, Lee and Skadron aso proposed an analytical
model describing the maximum temperature difference
between a hotspot and a region of interest based on their
distance and attributes of the processor package [12]. Bellosa
et d. also use peformance counters for an event-driven
approach [9][3]. They calculate a single temperature value by
solving differential equations, which occupies substantial
Processor respurces.

In this paper, we propose a simple and accurate temperature-
estimation technique based on performance counters that
require minimal computation.

SIMPLE AND ACCURATE TEMPERATURE
MEASUREMENT TECHNIQUE

Temperature Temperature Temperature

t t t

Simple Formula

AEFs: by Regression Analysis

HotSpot

i i i

Architectural Simulator

]

(a) HotSpot

Performance Counter

o

(c) Proposed Technique

Performance Counter

o

(b) HotSpot Using
Performance Counter

Fig. 1 Comparison of the original HotSpot, the performance-
counter version of HotSpot, and our proposed technique

As mentioned earlier, previous techniques for estimating
temperature via software techniques, shown in Figure 1 (a)
and Figure 1 (b), are accurate but impose too much
computational overhead to be practica at runtime, since they
use the HotSpot or differential eguations to calculate
temperature. In this paper, we propose a simple temperature
measurement technique, shown in Figure 1 (c). In our
proposed technique, we aso read the performance counters for
activity data of each functional unit of interest. But in contrast
to prior techniques, we use simple offline regression analysis
to find a simple relation between selected values of activity
data and observed values of temperature. Please recall that the
most probable value of Y can be predicted for any value of X
by simple regression analysis. Temperature can then be
estimated using a smple formula (T = aX + b, where T is
temperature, X is activity data, and a and b are coefficients).
In most cases, we only have to consider only the activity count
of the functiona unit that is investigated. The key observation
is that the regression captures second-order contributions from
other functional units.

At runtime, multiplying the activity count by the regression
coefficient is required for temperature measurement. Although
it is feasible to re-compute temperature every cycle, this is
wasteful, since even at the fine granularity of architectural
units, temperatures take at least 100K cycles to rise by 0.1C
[7]. We chose a sample period 10 ms, since this is the



scheduling granularity of commercia operating systems and
creates a natural opportunity for software to read the event
counters. For our CPU clock rate of 2.6 GHz, this works out to
be sampling period of 26 M cycles. This is in any case the
minimum granularity at which software techniques could
perform any kind of thermal management.

For example, to compute the temperature of the integer
register file, we only use the IIPC performance-counter
statistic (Integer Instructions Per Cycle). We did try multiple
regression anaysis with the current 1IPC and the previous
I1PC. Results were at best minimally improved compared to
results from simple regression anaysis, and in fact accuracy
with multiple regression was sometimes worse.

EVALUATION
Experimental Environment
The processor used for the experiments is a 2.6 GHz Pentium
4, 130 nm Northwood core. The typical power dissipation is
69.0 W, and the operating voltage is 1.6 V [12]. The processor
supports hyper-threading technology, which alows the
processor to run two threads simultaneously. This means that
the task that regularly reads the performance counters and
calculates the temperature interferes minimally with user
tasks: not only does it consist of only a few instructions, but
hyper-threading fits these few instructions into empty
execution slots as instructions are i ssued within the processor.
The Pentium 4 includes a rich set of performance monitoring
features, with 45 configurable events and 18 physical
performance counters [13][14]. The performance counters are
used to count specific micro-architectural events for
debugging and performance measurements. Each counter is
associated with one counter configurable control register
(CCCR), which determines the specific counting scheme. The
event selection control registers (ESCRs) determine which
event is to be counted. A simplified device driver, adapted
from the abyss device driver[14], is used to configure al the
control registers and read the performance counters.
The temperature model requires the geometric specifications
and the floorplan layout of the processor. Table 1 shows the
parameters that we derived to configure HotSpot for the
Pentium 4. These parameters are based on design schematics
found in [12]. We also use the floorplan layout that was
adapted from the Northwood core die photo [15].

Table 1. HotSpot simulator configuration to approximate a

We selected ten benchmarks (bzip2, crafty, gap, gcc, gzip, mcf,
parser, twolf, vortex, and vpr) from the SPEC CPU2000
benchmark suite [16]. The SPEC CPU2000 benchmark suite is
designed to provide performance measurements that can be
used to compare computati on-intensive workloads on different
computer systems. More details on ten benchmarks are
described in Table 2. By running al the benchmarks, we
obtain the regression coefficients. For regression analysis, we
ran 50G cycles (5K samples) for each benchmark. We did a
regression analysis with the collected data and we compared
the proposed technique with the performance-counter version
of HotSpot [10] that was previously validated against the
original, validated HotSpot [8].

Table 2. SPEC CPU2000 Benchmarks used for evaluation

Benchmark Description

Bzip2 Compression program based on Julian Seward's
bzip2 version 0.1

Crafty High-performance Computer Chess program
that is designed around a 64-bit word

Gap Program for computationa discrete agebra,
with particular emphasis on
Computational Group Theory

Gce Gcee compiler with many of its optimization
flags enabled

Gzip Compression program that uses Lempel-Ziv
coding (LZ77) asits compression agorithm

Mcf Program used for single-depot vehicle
scheduling in public mass transportation

Parser Syntactic parser of English, based on link
grammar, an origina theory of English syntax

Twolf Placement and globa routing package used in
the process of creating the lithography artwork
needed for the production of microchips

Vortex Single-user object-oriented database transaction
benchmark

Vpr Integrated Circuit Computer-Aided Design
Program that performs placement and routing in
Field-Programmable Gate Arrays

Pentium 4
HotSpot Variable | Value Description (Unit)
t_chip 0.5 Chip thickness (mm)
C_convec 140.4 Convection capacitance (JK)
r_convec 0.1 Convection resistance (K/W)
s sink 60 Heat sink thickness (mm)
t_sink 6.9 Heat sink thickness (mm)
S _spreader 30 Heat spreader side (mm)
t_spreader 1 Heat spreader thickness (mm)
t_interface 0.075 Interface  materia  thickness
(mm)
ambient 40+273 | Ambient temp (K) (inside box)
15

Because the Pentium 4' s externally-visibl e temperature sensor
is not helpful (being located on the edge of the chip, far from
structures of interest), we use the performance-counter version
of HotSpot [10] as the source of reference temperatures for
determining accuracy, and for calculating the regression
coefficients.

Temperature M easurement on the Integer Register File

We investigate the temperature of the integer register file
which is known as one of the hottest functional units. In the
simple regression analysis formula, 1PC is X (selected value)
and the temperatureis Y (observed value). The integer register
file is accessed whenever an instruction is issued unless the
instruction includes a floating point operation. Thus, we use
[IPC to measure the integer register file. The formula we
obtained from the simple regression analysisis Y = 14.92*X +
50.39. Figure 2 shows the temperature of the integer register




file from the performance-counter version of HotSpot, from temperature from the proposed technique is overestimated,
the proposed technique, and the temperature difference. When  and vice-versa.
the temperature difference is a positive number, the

Temperature from HotSpot Using Performance Counter Temperature from the Proposed Technique - * - Temperature Difference Temperature from HotSpot Using Performance Counter Temperature from the Proposed Technique - ---- -Temperature Difference
100 100
90 90
80 -~ o A 80
o 11 il
7 il VI { v. AN 0 :
| & \
oo b L \ \ \ A 5
s L@
§ e
£ o
s §
" 30 = 30
2 0
10 L H E i |
¥ i L ; ; o
RN 3 i i
St 0 = ™
m 221 ra?'MZu aé W /e ef E7E Jiﬂn {2114172 m ki msﬂﬁax"’na ;/mm\zﬁdu}‘z yﬁn{ [ 1 2531 2601 3751 192 383 574 T8 Sa LLeT L T LR T e e e e e e T N A Y e e e
10 ! 0
2 2
Samping Count Sampiing Court
‘Temperature from HotSpot Using Performance Counter Temperature from the Proposed Technique - - - - - * Temperature Difference ' Temperature from HotSpot Using Performance Counter “Temperature from the Proposed Technique - - -~ - Temperature Difference
100 10
a0 w0
w0 w0
) 70 LANDA J¥ \/ n
‘v ') vi -
J w0 -, L
o 50 Y
H H
£ fo
§ :
" 30 " *
0 0

i 1

o oy . g P A S
89 177 265 353 441 529 617 705 793 881 969 1057 1145 1233 1321 1409 1497 1 17691849 1937:2025'23 2201
10
20
Sampling Count Sampling Count
‘Temperature from HotSpot Using Performance Counter Temperature from the Proposed Technique - - - - - - Temperature Difference Temperature from HotSpot Using Performance Counter Temperature from the Proposed Technique - - -~ - Temperature Difference
100 100
%0 %0
80 Y
o mmams i
1 f v f i o
I | | | |
60 ! { 60
poeia ] B
- Y
B B
g 4 g 4
5 5
") " a0
2 20
10 10
B ] 0 i i ) Y i i . 1 - i i
192 383 4 ? & *3H21 401 4394 f58 *4987 192 383 574 765 956 1147 1338 1529 1720 1911 2102 2293 2484 2675 2866 3057 3248 3439 3630 3821 4012 4203 4394 4585 4776 4967
-10 i -10
20 20
Sampling Count Sampling Count
‘Temperature from HotSpot Using Performance Counter Temperature from the Proposed Technique Temperature Difference
Temperature from HotSpot Using Performance Counter Temperature from the Proposed Technique -+~ ~Temperature Difference
100
100
90
%0
80
80
o
o L Javian . v N | . L
AT (S NP, PONELIN |
60 -
60 ) E——
50
o 50 ¢
H g
g 40 g 4
3 5
5 i
2 £
2 20
10
H
HEH
102 383 574 765 956 1147 1338 1509 1720 1911 210 2293 2484 2675 2666 3057 3b48 3439 3630 521 4012 4208 4394 4585 476 A9KT
10
20
Sampling Count Sampling Count

(9) parser (h) twolf



Temperature from HotSpot Using Performance Counter Temperature from the Proposed Technique

Temperature from HotSpot Using Performance Counter ‘Temperature from the Proposed Technique ==~ - Temperature Difference

70 ks P

Temperature

192 '383 574 765 956 1147 1338 1529 1720 {gn 2103 239372484 265 3866 5067 3243 34393690 3631 4012 4403 43944585 4176 49

A AR AN = A AR P A VAL L WAl A PRSI, 0L i S A

Temperature

Sampling Count

(i) vortex

Sampiing Count

() vpr

Fig. 2 Accuracy of integer register file temperature measurement (temperature difference = temperature from the proposed
technique — temperature from performance-counter-HotSpot)

Although there are times when our method under- or over-
estimates temperature by as much as 10° these large
differences only occur when the performance-counter
technique responds faster than the actual temperature. The
performance-counter  technique  under-estimates  peak
temperature by at most 2.4°!

Bzip2 provides an excellent illustration, since the spikes and
dips are most severe in bzip2. Figure 3 magnifies a portion of
its execution. As shown at points (i) and (ii) in Figure 3, when
the temperature increases/decreases fast, we can observe the
temperature from the proposed technique increases/decreases
much faster. The reason is that our technique considers only
activity data (in this case, the I1PC for the integer register file),
and our temperature is linearly proportiona to the activity data.
However, the temperature from the Hotspot is changed slowly
after the activity data (in this case, [1PC) is changed, because it
takes some time for the dynamic power to be transformed into
thermal dissipation. As far as we can tdll, al the major spikes
and dips are due to this reason. This timing inaccuracy can
actualy be useful, because it acts like a temperature predictor.
In fact, huge body of architecture research studies how
predictors of various types (e.g. branch, value predictors)
allow architectural optimizations.
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Fig. 3 Accuracy of temperature measurement in bzip2
(enlarged figure)

Temperature Measurement on the L1 Data Cache

For the L1 data cache, we use the number of L1 data cache
accesses as X for the simple regression analysis. The number
of L1 data cache accesses is the summation of read data
alocation from lower-level memory, write data allocation
from lower-level memory, and total requests from the pipeline
to the L1 data cache. Read /write data allocations occur when
there is a cache miss in the L1 data cache. For the simple
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Fig. 4 Accuracy of L1 data cache temperature measurement (temperature difference = temperature from the proposed
technique — temperature from performance-counter-HotSpot)

regression analysis, X isthe number of L1 data cache accesses  simple regression analysis is Y = 1.4*10%X + 44.413. The
and Y is the temperature. The formula we obtained from the coefficient for X is much smaller here than with the register



file, because the register-file temperature uses I1PC (which is
typically between 0 and 4) while the data cache temperature
uses number of datareferences, which isin the millions.
Figure 4 shows the temperature of the L1 data cache from
HotSpot, the temperature from the proposed technique, and
the temperature difference. In most cases, the temperature
difference is small. In addition to the spikes and dips shown
in Figure 2, there are periodic spikes. The reason is periodic
large number of L1 data cache accesses, which may be caused
by operating system context-switching activities. The spikes
of the estimated temperature from the performance counter
can be somewhat eliminated by limiting the maximum
increase/decrease of the estimated temperature from the
performance counter in one sampling period.

CONCLUSIONSAND FUTURE WORK

Temperature is typically similar across an architectura
functiona unit, such as a register file or computationa unit,
because the whole unit operates in unison. Uneven activity
from one functional unit to another, however, results in
localized hotspots, and the hotspot may move over time.
Accurate therma monitoring therefore requires thermal
sensors near any potential hotspot. This may be too costly,
because precise CMOS temperature sensors are expensive in
terms of area and power. As an aternative, we propose a high-
resolution, real-time temperature measurement technique
using on-chip performance (event) counters. The proposed
technique uses ssimple regression analysis using X (activity
data) to calculate Y (temperature). The advantage of these
“soft sensors’ based on performance counters is that the
counters are already embedded in most processors.
Experimental results, obtained from the Intel Pentium 4
processor, show that using performance counters for
temperature measurement estimates pesk temperature with
high accuracy. Counter-based sensing can therefore augment
a smal number of hardware sensors to provide accurate,
localized temperature sensing with low hardware and
execution-time costs. Performance-counter based techniques
are especialy well suited for software thermal-management
techniques like temperature-aware job scheduling.
Interesting directions for future work include techniques for
improving both the temperature and timewise accuracy of the
soft-sensor approach, as well as applications in temperature-
aware scheduling. Temperature-aware scheduling is becoming
increasingly important with the advent of chips with multiple
CPUs, for which the scheduling problem requires not only
how to order tasks in time, but how to place them and possibly
migrate them across the multiple CPUs.
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