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ABSTRACT 
This paper proposes a technique to use on-chip event- or 
performance-counters to augment, or even replace, traditional 
analog CMOS temperature sensors. Using activity data from 
the performance counters, energy consumption that 
consequently causes heat dissipation can be tracked. Simple 
regression analysis permits us to find a relation between 
activity data and temperature. Performance counters already 
exist in many processors for debugging and performance 
characterization, require only minimal computation to 
interpret for temperature monitoring, and these calculations 
only need to operate at low frequency, so the marginal cost of 
this additional temperature-sensing capability is negligible. 
Performance counters monitor activity data (access count) of 
most on-chip functional units and therefore allow high-
resolution, localized temperature sensing across a 
microprocessor. This in turn allows tracking of localized 
hotspots. Fine-grained, localized sensing is needed because 
different units can become hotspots depending on benchmarks. 
This is especially true if a malicious program intentionally 
induces high activity in a selected functional unit. This paper 
presents measurements from a commercial system to illustrate 
the accuracy of performance counters as additional 
temperature sensors.  
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INTRODUCTION 
Technology trends are packing transistors ever more tightly, 
and as voltage scaling slows down, power densities are 
increasing rapidly.  This in turn creates cooling challenges, 
especially in high-performance ICs. Possible failure due to 
high temperature can cause tremendous damage not only to 
microprocessors but also to whole systems. Effective and 
robust cooling solutions are a (costly) necessity.  Aggressive 
packaging and fans are the primary solution, but dynamic 
thermal management (DTM) is a complementary solution that 
allows less expensive packaging/fan (“external”) solutions. 
The external solution can be designed for typical operation. 
Then, if severe environmental conditions or an unusual 
workload cause temperature to exceed safe operating limits, 
DTM slows execution to reduce power density until 
temperatures return to a safe level.  DTM has primarily been 
achieved with voltage/frequency scaling or some mechanism 

that stops issuing instructions, variously called clock gating, 
fetch gating, pipeline throttling, etc. In short, these hardware 
solutions trade reduced performance for reduced packaging 
cost. These DTM techniques are actually more sophisticated, 
more aggressive versions of prior runtime techniques that 
were needed as failsafes in case of catastrophic events like fan 
failure or heat-sink detachment. 
For accurate temperature measurements, on-chip thermal 
sensors were adopted in modern processors. For example, 
there are two independent thermal sensors in the Intel Pentium 
4 Processor in the 478-pin package [1]. By using an accurate 
on-die temperature sensing circuit and a fast-acting 
temperature control circuit, the processor can rapidly initiate 
thermal management control. The Pentium 4, however, only 
uses one of its sensors for thermal management; the other is 
for external use. In fact, hotspots may move over time, 
depending on which on-chip structures (register file, integer 
arithmetic, floating-point arithmetic, etc.) are most heavily 
used.  Temperature differences become exponentially larger 
with distance, so a single sensor is not sufficient to track 
temperature changes across a large chip like the Pentium 4.  
This is especially a concern in the case of malicious software 
that might try to create a hotspot in an un-monitored structure 
[2][12]. In the case of the Pentium 4, the sensor associated 
with the thermal-control circuit is placed near the structure 
that is likely to be the hottest.  While this has been verified to 
be safe for the Pentium 4, it requires a massive validation 
effort to ensure that no hotspots can arise that would be missed 
by the single sensor.  This validation effort can be avoided by 
using multiple sensors.  An alternative is to simply use a large 
safety margin, making the DTM trigger temperature well 
below the actual safe operating limit.  This incurs a large 
overhead in unnecessary throttling that again can be avoided 
by using multiple sensors. 
Using multiple CMOS sensors for fine-grained temperature 
sensing has its own drawbacks.  Sensors must be fairly large 
to achieve good precision, making them costly in terms of area 
and power.  Increasing the number of sensors also increases 
the testing and calibration cost for each chip.  These concerns 
have led most chip designs to stick with a small number of 
sensors. 
Software can also benefit from precise, localized temperature 
sensing capability.  For example, some research [3][4][5][6] 
has explored temperature-aware scheduling to meet real-time 
or other quality-of-service requirements. Other research, e.g. 



[7][8], has taken advantage of the fact that, even though 
hotspots move over time, entire micro-architectural structures 
tend to exhibit approximately the same temperature, because 
the entire structure operates as a single unit. These techniques 
assume accurate temperature measurement. In fact, most chips 
today do not provide this capability. 
This paper proposes an accurate, localized temperature-
measurement technique which does not incur any complicated 
computation and does not use additional physical thermal 
sensors. Instead, it utilizes off-line regression analysis to 
interpret readings from existing, on-chip performance counters, 
which can be configured to gather specific micro-architectural 
events such as cache hits and are therefore a good estimate of 
processor activity.  Performance counters have been proposed 
before as a way to infer temperature [9][10][6], but these prior 
techniques required expensive, on-line computation, while our 
regression-based approach incurs almost no overhead.  At 
runtime, the processor only has to calculate the temperature 
from a simple formula by reading performance counter values 
and performing a few multiplies and adds. Compared to fine-
grained hardware temperature sensors, performance counters 
trade a negligible extra computational requirement and some 
imprecision in timing for a substantial reduction in hardware 
cost. 
The rest of this paper is organized as follows. Section 2 
explains previous work on temperature measurement. Section 
3 describes our regression-based temperature measurement 
technique. Section 4 evaluates the accuracy of the proposed 
technique on two different architectural functional units. 
Section 5 concludes the paper and describes some avenues for 
future work. 
 
PEVIOUS WORK ON SOFTWARE TECHNIQUES FOR 

TEMPERATURE MEASUREMENT 
Initially, the performance counter was designed to evaluate the 
performance of each functional unit. In recent microprocessors, 
including even embedded processors, most of them embed 
performance counters. In this paper, the performance counters 
are utilized to obtain activity data (access counts) of functional 
units. For example, activity data for the cache can be obtained 
by reading the performance counter, since the activity data is 
stored in the performance counter in order to calculate cache 
miss rate (= cache miss/cache access). In Pentium 4, activity 
data for most functional units can be read through as many as 
45 performance counters. 
HotSpot is a software model for simulating on-chip 
temperatures at a micro-architectural granularity.  It models 
the processor as a network of thermal resistors and conductors 
per functional unit, where power dissipation in each unit is 
treated as current source in the RC network [7][8]. This model 
gets activity data not from performance counters but from 
simulations. Lee and Skadron extended HotSpot to interface 
with performance counters in order to get activity data from a 
real processor [10]. The HotSpot calculations are, however, 
too expensive to be practical for real-time temperature 
estimation.  
This creates an online thermal model that can measure 
temperature based on real workloads in real processors. Their 
approach estimates power dissipation from performance 

counters based on a model by Isci and Martonosi [11]. To 
better understand the need for localized temperature 
measurement, Lee and Skadron also proposed an analytical 
model describing the maximum temperature difference 
between a hotspot and a region of interest based on their 
distance and attributes of the processor package [12]. Bellosa 
et al. also use performance counters for an event-driven 
approach [9][3]. They calculate a single temperature value by 
solving differential equations, which occupies substantial 
processor resources.  
In this paper, we propose a simple and accurate temperature-
estimation technique based on performance counters that 
require minimal computation. 
 

SIMPLE AND ACCURATE TEMPERATURE 
MEASUREMENT TECHNIQUE 
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Fig. 1 Comparison of the original HotSpot, the performance-
counter version of HotSpot, and our proposed technique  

 
As mentioned earlier, previous techniques for estimating 
temperature via software techniques, shown in Figure 1 (a) 
and Figure 1 (b), are accurate but impose too much 
computational overhead to be practical at runtime, since they 
use the HotSpot or differential equations to calculate 
temperature. In this paper, we propose a simple temperature 
measurement technique, shown in Figure 1 (c). In our 
proposed technique, we also read the performance counters for 
activity data of each functional unit of interest. But in contrast 
to prior techniques, we use simple offline regression analysis 
to find a simple relation between selected values of activity 
data and observed values of temperature. Please recall that the 
most probable value of Y can be predicted for any value of X 
by simple regression analysis. Temperature can then be 
estimated using a simple formula (T = aX + b, where T is 
temperature, X is activity data, and a and b are coefficients). 
In most cases, we only have to consider only the activity count 
of the functional unit that is investigated. The key observation 
is that the regression captures second-order contributions from 
other functional units. 
At runtime, multiplying the activity count by the regression 
coefficient is required for temperature measurement. Although 
it is feasible to re-compute temperature every cycle, this is 
wasteful, since even at the fine granularity of architectural 
units, temperatures take at least 100K cycles to rise by 0.1C 
[7]. We chose a sample period 10 ms, since this is the 



scheduling granularity of commercial operating systems and 
creates a natural opportunity for software to read the event 
counters. For our CPU clock rate of 2.6 GHz, this works out to 
be sampling period of 26 M cycles. This is in any case the 
minimum granularity at which software techniques could 
perform any kind of thermal management. 
For example, to compute the temperature of the integer 
register file, we only use the IIPC performance-counter 
statistic (Integer Instructions Per Cycle). We did try multiple 
regression analysis with the current IIPC and the previous 
IIPC. Results were at best minimally improved compared to 
results from simple regression analysis, and in fact accuracy 
with multiple regression was sometimes worse.  

 
EVALUATION 

Experimental Environment 
The processor used for the experiments is a 2.6 GHz Pentium 
4, 130 nm Northwood core. The typical power dissipation is 
69.0 W, and the operating voltage is 1.6 V [12]. The processor 
supports hyper-threading technology, which allows the 
processor to run two threads simultaneously. This means that 
the task that regularly reads the performance counters and 
calculates the temperature interferes minimally with user 
tasks: not only does it consist of only a few instructions, but 
hyper-threading fits these few instructions into empty 
execution slots as instructions are issued within the processor. 
The Pentium 4 includes a rich set of performance monitoring 
features, with 45 configurable events and 18 physical 
performance counters [13][14]. The performance counters are 
used to count specific micro-architectural events for 
debugging and performance measurements. Each counter is 
associated with one counter configurable control register 
(CCCR), which determines the specific counting scheme. The 
event selection control registers (ESCRs) determine which 
event is to be counted. A simplified device driver, adapted 
from the abyss device driver[14], is used to configure all the 
control registers and read the performance counters. 
The temperature model requires the geometric specifications 
and the floorplan layout of the processor. Table 1 shows the 
parameters that we derived to configure HotSpot for the 
Pentium 4. These parameters are based on design schematics 
found in [12]. We also use the floorplan layout that was 
adapted from the Northwood core die photo [15].  
 

Table 1. HotSpot simulator configuration to approximate a 
Pentium 4 

 
HotSpot Variable Value Description (Unit) 
t_chip 0.5 Chip thickness (mm) 
c_convec 140.4 Convection capacitance (J/K) 
r_convec 0.1 Convection resistance (K/W) 
s_sink 60 Heat sink thickness (mm) 
t_sink 6.9 Heat sink thickness (mm) 
s_spreader 30 Heat spreader side (mm) 
t_spreader 1 Heat spreader thickness (mm) 
t_interface 0.075 Interface material thickness 

(mm) 
ambient 40+273

.15 
Ambient temp (K) (inside box) 

 
We selected ten benchmarks (bzip2, crafty, gap, gcc, gzip, mcf, 
parser, twolf, vortex, and vpr) from the SPEC CPU2000 
benchmark suite [16]. The SPEC CPU2000 benchmark suite is 
designed to provide performance measurements that can be 
used to compare computation-intensive workloads on different 
computer systems. More details on ten benchmarks are 
described in Table 2. By running all the benchmarks, we 
obtain the regression coefficients. For regression analysis, we 
ran 50G cycles (5K samples) for each benchmark. We did a 
regression analysis with the collected data and we compared 
the proposed technique with the performance-counter version 
of HotSpot [10] that was previously validated against the 
original, validated HotSpot [8]. 
 

Table 2. SPEC CPU2000 Benchmarks used for evaluation 
 
Benchmark Description 
Bzip2 Compression program based on Julian Seward's 

bzip2 version 0.1 
Crafty High-performance Computer Chess program 

that is designed around a 64-bit word 
Gap Program for computational discrete algebra, 

with particular emphasis on 
Computational Group Theory 

Gcc Gcc compiler with many of its optimization 
flags enabled 

Gzip Compression program that uses Lempel-Ziv 
coding (LZ77) as its compression algorithm 

Mcf Program used for single-depot vehicle 
scheduling in public mass transportation 

Parser Syntactic parser of English, based on link 
grammar, an original theory of English syntax 

Twolf Placement and global routing package used in 
the process of creating the lithography artwork 
needed for the production of microchips 

Vortex Single-user object-oriented database transaction 
benchmark 

Vpr Integrated Circuit Computer-Aided Design 
Program that performs placement and routing in 
Field-Programmable Gate Arrays 

 
Because the Pentium 4’s externally-visible temperature sensor 
is not helpful (being located on the edge of the chip, far from 
structures of interest), we use the performance-counter version 
of HotSpot [10] as the source of reference temperatures for 
determining accuracy, and for calculating the regression 
coefficients. 
 
Temperature Measurement on the Integer Register File 
We investigate the temperature of the integer register file 
which is known as one of the hottest functional units. In the 
simple regression analysis formula, IIPC is X (selected value) 
and the temperature is Y (observed value). The integer register 
file is accessed whenever an instruction is issued unless the 
instruction includes a floating point operation. Thus, we use 
IIPC to measure the integer register file. The formula we 
obtained from the simple regression analysis is Y = 14.92*X + 
50.39. Figure 2 shows the temperature of the integer register 



file from the performance-counter version of HotSpot, from 
the proposed technique, and the temperature difference. When 
the temperature difference is a positive number, the 

temperature from the proposed technique is overestimated, 
and vice-versa.  
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       (g) parser                (h) twolf 



Although there are times when our method under- or over-
estimates temperature by as much as 10°, these large 
differences only occur when the performance-counter 
technique responds faster than the actual temperature.  The 
performance-counter technique under-estimates peak 
temperature by at most 2.4°!   
Bzip2 provides an excellent illustration, since the spikes and 
dips are most severe in bzip2. Figure 3 magnifies a portion of 
its execution.  As shown at points (i) and (ii) in Figure 3, when 
the temperature increases/decreases fast, we can observe the 
temperature from the proposed technique increases/decreases 
much faster. The reason is that our technique considers only 
activity data (in this case, the IIPC for the integer register file), 
and our temperature is linearly proportional to the activity data. 
However, the temperature from the Hotspot is changed slowly 
after the activity data (in this case, IIPC) is changed, because it 
takes some time for the dynamic power to be transformed into 
thermal dissipation. As far as we can tell, all the major spikes 
and dips are due to this reason. This timing inaccuracy can 
actually be useful, because it acts like a temperature predictor. 
In fact, huge body of architecture research studies how 
predictors of various types (e.g. branch, value predictors) 
allow architectural optimizations.  
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Fig. 3 Accuracy of temperature measurement in bzip2 
(enlarged figure) 
 
Temperature Measurement on the L1 Data Cache 
For the L1 data cache, we use the number of L1 data cache 
accesses as X for the simple regression analysis. The number 
of L1 data cache accesses is the summation of read data 
allocation from lower-level memory, write data allocation 
from lower-level memory, and total requests from the pipeline 
to the L1 data cache. Read /write data allocations occur when 
there is a cache miss in the L1 data cache. For the simple 
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         (i) vortex                  (j) vpr  
 
Fig. 2 Accuracy of integer register file temperature measurement (temperature difference = temperature from the proposed 

technique – temperature from performance-counter-HotSpot) 
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regression analysis, X is the number of L1 data cache accesses 
and Y is the temperature. The formula we obtained from the 

simple regression analysis is Y = 1.4*10-6*X + 44.413. The 
coefficient for X is much smaller here than with the register 
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         (i) vortex                  (j) vpr 
 

Fig. 4 Accuracy of L1 data cache temperature measurement (temperature difference = temperature from the proposed 
technique – temperature from performance-counter-HotSpot) 

 



file, because the register-file temperature uses IIPC (which is 
typically between 0 and 4) while the data cache temperature 
uses number of data references, which is in the millions. 
Figure 4 shows the temperature of the L1 data cache from 
HotSpot, the temperature from the proposed technique, and 
the temperature difference. In most cases, the temperature 
difference is small.  In addition to the spikes and dips shown 
in Figure 2, there are periodic spikes. The reason is periodic 
large number of L1 data cache accesses, which may be caused 
by operating system context-switching activities. The spikes 
of the estimated temperature from the performance counter 
can be somewhat eliminated by limiting the maximum 
increase/decrease of the estimated temperature from the 
performance counter in one sampling period. 
 

CONCLUSIONS AND FUTURE WORK 
Temperature is typically similar across an architectural 
functional unit, such as a register file or computational unit, 
because the whole unit operates in unison. Uneven activity 
from one functional unit to another, however, results in 
localized hotspots, and the hotspot may move over time. 
Accurate thermal monitoring therefore requires thermal 
sensors near any potential hotspot. This may be too costly, 
because precise CMOS temperature sensors are expensive in 
terms of area and power. As an alternative, we propose a high-
resolution, real-time temperature measurement technique 
using on-chip performance (event) counters. The proposed 
technique uses simple regression analysis using X (activity 
data) to calculate Y (temperature). The advantage of these 
“soft sensors” based on performance counters is that the 
counters are already embedded in most processors.  
Experimental results, obtained from the Intel Pentium 4 
processor, show that using performance counters for 
temperature measurement estimates peak temperature with 
high accuracy.  Counter-based sensing can therefore augment 
a small number of hardware sensors to provide accurate, 
localized temperature sensing with low hardware and 
execution-time costs.  Performance-counter based techniques 
are especially well suited for software thermal-management 
techniques like temperature-aware job scheduling. 
Interesting directions for future work include techniques for 
improving both the temperature and timewise accuracy of the 
soft-sensor approach, as well as applications in temperature-
aware scheduling. Temperature-aware scheduling is becoming 
increasingly important with the advent of chips with multiple 
CPUs, for which the scheduling problem requires not only 
how to order tasks in time, but how to place them and possibly 
migrate them across the multiple CPUs. 
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