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Abstract

SIMD organizations amortize the area and power of fetch, decode, and issue logic across multiple
processing units in order to maximize throughput for a given area and power budget. However, through-
put is reduced when a set of threads operating in lockstep (a warp) are stalled due to long latency
memory accesses. The resulting idle cycles are extremely costly. Multi-threading can hide latencies by
interleaving the execution of multiple warps, but deep multi-threading using many warps dramatically
increases the cost of the register files (multi-threading depth × SIMD width), and cache contention
can make performance worse. Instead, intra-warp latency hiding should first be exploited. This allows
threads that are ready but stalled by SIMD restrictions to use these idle cycles and reduces the need
for multi-threading among warps. This paper introduces dynamic warp subdivision (DWS), which al-
lows a single warp to occupy more than one slot in the scheduler without requiring extra register file
space. Independent scheduling entities allow divergent branch paths to interleave their execution, and
allow threads that hit to run ahead. The result is improved latency hiding and memory level parallelism
(MLP). We evaluate the technique on a coherent cache hierarchy with private L1 caches and a shared L2
cache. With an area overhead of less than 1%, experiments with eight data-parallel benchmarks show
our technique improves performance on average by 1.7X with energy savings of 30%. We further study
the performance sensitivity of DWS to various D-cache sizes and associativities. The performance benefit
of DWS is also demonstrated with various SIMD widths and multi-threading depths. While DWS may
increase the number of scheduling entities, we propose ways to limit this side effect. The effectiveness of
such technique is also analyzed quantitatively.

1 Introduction

Single instruction, multiple data (SIMD) organizations use a single instruction sequencer to operate multiple
datapaths or “lanes” in lockstep. SIMD is generally more efficient than multiple instruction, multiple data
(MIMD) in exploiting data parallelism, because it allows greater throughput within a given area and power
budget by amortizing the cost of the instruction sequencing over multiple datapaths. This observation
is becoming important, both because data parallelism is common across a wide range of applications; and
because data-parallel throughput is increasingly important for high performance as single-thread performance
improvement slows.

SIMD lockstep operation of multiple datapaths can be implemented with vector units, where the SIMD
operation is explicit in the instruction set and a single thread operates on wide vector registers. SIMD
lockstep can also be implicit, where each lane executes distinct threads that operate on scalar registers, but
the threads progress in lockstep. The latter is also referred to by NVIDIA as single instruction multiple
threads (SIMT). For purpose of generality in this paper, we refer to the set of operations happening in
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lockstep as a warp and the application of an instruction sequence to a single lane as a thread. We refer to a
set of hardware units under SIMD control as a warp processing unit or WPU.1 SIMD organizations of both
types are increasingly common in architectures for high throughput computing, exemplified today in STI’s
Cell Broadband Engine (CBE) [12], Clearspeed’s CSX600 [22], Intel’s Larrabee [30], Cray [29], and Taran-
tula [10]. Graphics processors (GPUs), including NVIDIA’s Tesla [9] and Fermi [1], and AMD/ATI’s recent
architectures [2] also employ SIMD organizations and are increasingly used for general-purpose computing.
Academic researchers have also proposed stream architectures that employ SIMD organizations [15, 28], and
in fact this history goes back to the Illiac project [23]. For both productivity and performance purposes, an
increasing number of SIMD organizations support gather and scatter, where each lane can load from or store
to unrelated addresses. (Vector architectures implement this by loading or storing a vector of data from or
to a vector of addresses [8, 9, 30].) This introduces the possibility of “divergent” memory access latency,
because a SIMD gather or scatter may access a set of data that is not fully in a particular level of the cache.

As in other throughput-oriented organizations that try to maximize thread concurrency and hence do
not waste area on discovering instruction level parallelism, WPUs typically employ in-order pipelines that
have limited ability to execute past L1 cache misses or other long latency events. To hide memory latencies,
WPUs instead time-multiplex among multiple concurrent warps, each with their own PCs and registers.
However, the multi-threading depth (i.e., number of warps) is limited because adding more warps multiplies
the area overhead in register files, and may increase cache contention as well. As a result of this limited
multi-threading depth, the WPU may run out of work. This can occur even when there are runnable threads
that are stalled only due to SIMD lockstep restrictions. For example, some threads in a warp may be ready
while others are still stalled on a cache miss.

This paper observes that when a WPU does not have enough warps with all threads ready to execute,
some individual threads may still be able to proceed. This occurs in two cases:

• Branch divergence: Branch divergence occurs when threads in the same warp take different paths
upon a conditional branch. In current organizations, the WPU can only execute one path of the
branch at a time for a given warp, with some threads masked off if they took the branch in the
alternate direction. In array organizations, this is handled in hardware by a re-convergence stack [11]
or conditional streams [14]; in vector organizations, this is handled in software by using the branch
outcomes as a set of predicates [17, 31, 32]. In either case, allowing both paths to run creates problems
in re-converging the warp.

• Memory latency divergence: Memory latency divergence occurs when threads from a single warp
experience different memory-reference latencies caused by cache misses or accessing different DRAM
banks. In current organizations, the entire warp must wait until the last thread has its reference
satisfied. This occurs in both array and vector organizations (if the vector instruction set allows
gather/scatter).

We propose dynamic warp subdivision (DWS) to utilize both thread categories. Warps are selectively
subdivided into warp-splits. Each has fewer threads than the available SIMD width, but can be individually
regarded as an additional scheduling entity to hide latency and can both be active:

• Upon branch divergence, a warp can be divided into two active warp-splits, each representing threads
that fall into one of the branch paths. The WPU can then interleave the computation of different
branch paths to hide memory latency.

• Upon memory latency divergence, a warp can be divided into two warp-splits as well: one represents
threads whose memory operations have completed, the other represents threads that are still stalled
(e.g., on a cache miss). The former warp-split need not suspend; it can run ahead non-speculatively
and in the process touch and potentially prefetch cache lines that may also be needed by threads that
fell behind.

In both cases, stall cycles are reduced, latency hiding is improved, and the ability to overlap more outgoing
memory requests increases memory level parallelism (MLP). The challenge is to manage this process without
reducing overall throughput: aggressive subdivision may result in performance degradation because it may

1We invent a new term here to distinguish it from “cores”, “lanes” or “PEs,” terms which are sometimes used to refer to
individual scalar pipelines that constitutes the WPU.
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lead to a large number of narrow warp-splits that only exploit a fraction of the SIMD computation resources.
A dynamic mechanism is needed because the divergence pattern depends on run-time dynamics such as
cache misses and may vary across applications, phases of execution, and even different inputs.

We evaluate several strategies for dynamic warp subdivision based upon eight distinct data-parallel
benchmarks. Experiments are conducted by simulating WPUs operating over a two-level cache hierarchy
that has private L1 caches sharing an inclusive, on-chip L2. The results show that our technique improves
the average performance across a diverse set of parallel benchmarks by 1.7X with energy savings of 30%.
It is robust and shows no performance degradation on the benchmarks that were tested. We estimate that
dynamic warp subdivision adds less than 1% area overhead to a WPU. This report extends our prior work
in [20] by more comprehensive sensitivity studies and tradeoff analysis. We further study the performance
sensitivity of DWS to various D-cache sizes. The performance benefit of DWS is also demonstrated with
various SIMD widths and multi-threading depths. While DWS may increase the number of scheduling
entities, we propose ways to limit this side effect.

2 Impact of Memory Latency Divergence
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Figure 1: (a) A wider SIMD organization does not always improve performance due to increased time spent waiting for memory.
The number of warps is fixed at four. (b) 16-wide WPUs with 4 warps even suffer from highly associative D-caches. (c) A few
8-wide warps can beneficially hide latency, but too many warps eventually exacerbates cache contention and increases the time
spent waiting for memory. Results are harmonic means across the benchmarks listed in Table 2 on the system configuration in
Table 3.

As SIMD width increases, the likelihood that at least one thread will stall the entire warp increases.
However, inter-warp latency tolerance (i.e., deeper multi-threading via more warps) is not sufficient to hide
these latencies. The number of threads whose state fits in an L1 cache is limited. That is why intra-warp
latency tolerance is needed. Intra-warp latency also provides opportunities for memory-level parallelism
(MLP) that conventional SIMD organizations do not.

In order to illustrate the impact of memory latency divergence, the limitations on warp count, and the
need for intra-warp latency tolerance, Figure 1a shows the performance scaling when varying the SIMD
width from 1 to 16 with four warps sharing a 32 KB L1 D-cache. As the SIMD width grows, the overall
execution time first improves (thanks to greater throughput) but eventually starts to get worse even though
this experiment is increasing the total computation resources; although the time spent in SIMD computation
keeps decreasing, the time spent waiting for memory drastically increases and eventually dominates. The
reasons for this trend are two-fold: first, a wider SIMD organization incorporates more threads, which
increase D-cache contention; second, wider warps are more likely to incur memory divergence and suspend
due to individual cache misses. The overall effect is fewer active warps but more latency to hide. Figure 1c
shows that adding more warps does exacerbate L1 contention. This is a capacity limitation, not just an
associativity problem, as shown in Figure 1b, where time waiting on memory is still significant even with full
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associativity.2 These results are all averages across the benchmarks described in Section 3.2 and obtained
with the configuration described in Section 3.

FFT Filter HotSpot LU Merge Short KMeans SVM

Avg. instruction count between branches 59 12 16 53 9 19 10 12
Percentage of divergent branches 3.4% 0% 1.4% 4.3% 13.1% 22.0% 2.0% 4.3%

Avg. instruction count between misses 7 27 7 5 45 6 47 11
Avg. instruction count between div. misses 10 30 10 6 75 8 57 17
Percentage of divergent memory accesses 69% 88% 77% 81% 60% 79% 83% 62%

Table 1: Characterization of the frequency of branch divergence and SIMD cache misses.

Intra-warp latency tolerance hides latencies without requiring extra threads. However, intra-warp latency
tolerance is only beneficial when threads within the same warp exhibit divergent behavior. Table 1 shows
that many benchmarks exhibit frequent memory divergence. A further advantage of intra-warp latency
tolerance is that the same mechanisms also improve throughput in the presence of branch divergence.

In summary, scaling SIMD width is not always beneficial in systems with limited on-chip storage capacity.
In order to host wider SIMD organizations and further improve throughput, it is necessary to hide such
latency without additional threads. Section 4 and Section 5 show how DWS can address both branch and
memory divergence. DWS is the first technique that can address both sources of divergence using the same
hardware mechanism.

3 Methodology

3.1 Overall Architecture

Branch and memory-latency divergence can affect a variety of architectures. In order to draw more gen-
eral conclusions, this paper models a general system that blends important aspects of modern CPU and
GPU architectures: general-purpose ISAs (represented here by the Alpha ISA), SIMD organization, multi-
threading, and a cache-coherent memory hierarchy. We model implicit, array-style SIMD instead of a vector
architecture because this places fewer burdens on software. While there are simulators available for vec-
tor architectures, traditional CPUs, and GPUs, we are not aware of any that combine these aspects. We
therefore developed MV5 [19] to simulate WPUs. MV5 is a cycle-accurate, event-driven simulator based
on M5 [3]. Because existing thread schedulers do not directly support the management of SIMD threads,
applications are simulated in system emulation mode with a set of primitives to create and schedule threads
on SIMD resources.

The simulated applications are programmed in an OpenMP-style API implemented in MV5, where data
parallelism is expressed in parallel for loops. Applications are cross-compiled to the Alpha ISA using
G++ 4.1.0, with new instructions recognized by MV5 inserted to signal SIMD thread management to the
simulator. The code for a thread is compiled as a scalar code, and the programming model then launches
multiple copies for SIMD execution. Neighboring tasks are assigned to threads in the same warp in a way
that exploits both spatial and temporal data locality [18].

3.2 Benchmarks

We simulate a set of benchmarks shown in Table 2. The benchmarks are selected from several benchmark
suites including MineBench [21], Splash2 [36], and Rodinia [5]. No consideration of SIMD divergence was
present in selecting the benchmarks. The benchmarks are the same as those used to study thread scheduling
when many threads share a cache [18]. These benchmarks are common, data-parallel kernels and applications.
They cover the application domains of scientific computing, image processing, physics simulation, machine
learning and data mining. They demonstrate varied data access and communication patterns. We increase

2It is true that current GPU architectures such as Tesla [9] and Fermi [1] have much higher warp counts because they
reference global memory frequently (no L2 for Tesla and L2 is only a victim cache in Fermi), and have very long WPU latencies
to issue back to back instructions from the same thread. If we increase L1 miss latency to 300 cycles (similar to having no L2),
our architecture’s optimal warp count also jumps to 8 or 16; the extra cache contention is now justified by the dramatic need
for extra latency hiding. Intra-warp latency hiding is still beneficial in this case, of course.
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Benchmark Description

FFT Fast Fourier Transform (Splash2 [36]).
Spectral methods. Butterfly computation
Input: a 1-D array of 65,536 (216) numbers

Filter Edge Detection of an Input Image.
Convolution. Gathering a 3-by-3 neighborhood
Input: a gray scale image of size 500 × 500

HotSpot Thermal Simulation (Rodinia [5]).
Iterative partial differential equation solver
Input: a 300 × 300 2-D grid, 100 iterations

LU LU Decomposition (Splash2 [36]).
Dense linear algebra. Alternating row-major
and column-major computation
Input: a 300 × 300 matrix

Merge Merge Sort. Element aggregation and reordering
Input: a 1-D array of 300,000 integers

Short Winning Path Search for Chess.
Dynamic programming. Neighborhood calculation
based on the the previous row
Input: 6 steps each with 150,000 choices

KMeans Unsupervised Classification (MineBench [21]).
Distance aggregation using Map-Reduce.
Input: 10,000 points in a 20-D space

SVM Supervised Learning (MineBench [21]).
Support vector machine’s kernel computation.
Input: 100,000 vectors with a 20-D space

Table 2: Simulated benchmarks with descriptions and input sizes.

Figure 2: The baseline SIMD architecture groups scalar threads into warps and executes them using the same instruction
sequencer. A thread operates over a scalar pipeline or lane that consists of register files, ALUs, and memory units.

the input sizes from the original benchmarks so that we have reasonable simulation times of within six hours.
All means reported in this paper are harmonic means.

3.3 Architecture Details

The baseline SIMD architecture used in this study is illustrated in Figure 2. The system has a two level
coherent cache hierarchy. Each WPU has private I- and D-caches which interact with an on-chip, shared, last-
level cache (LLC). Only the LLC communicates with the off-chip memory. Examples of SIMD organizations
that use cache hierarchies include Larrabee [30] and Fermi [1], both of which support general purpose
computation. (Fermi’s caches, however, are not cache-coherent). WPUs are simulated with up to 64 thread
contexts and 16 lanes. The experiments in this paper are limited to four WPUs because this provide
reasonable simulation time.

A WPU groups scalar threads into warps. A fetched instruction is executed by threads within the same
(active portion of a) warp simultaneously. Each thread’s register state resides in a particular lane and the
thread must execute in the corresponding lane. The register file is highly banked, with banks corresponding
to lanes, so that multiple threads can access their operands at the same time without requiring deep multi-
porting. Branch divergence is enabled by a re-convergence stack [11] — using a bit mask, threads that do not
fall into the current control path are not executed. The mechanism is described in more detail in Section 4.1.
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Tech. Node 65 nm
WPU 1 GHz, 0.9 V Vdd, Alpha ISA, in-order

64 hardware thread contexts
4 warps with a SIMD width of 16
SIMD threads translate addresses simultaneously

I-Cache 16 KB, 4-way associative, 128 B line size
1 cycle hit latency, 4 MSHRs, LRU, write-back
physically tagged, physically indexed

D-Cache 32 KB, 8-way associative, 128 B line size
MESI directory-based coherence
3 cycle hit latency, LRU, write-back
32 MSHRs each hosts up to 32 requests
physically tagged, physically indexed

L2 Cache 4096 KB, 16-way associative, 128 B line size
30 cycle hit latency, LRU, write-back
256 MSHRs each hosts up to 64 requests

Crossbar 300 MHz, 57 Gbytes/s
Memory 100 cycles access latency

Table 3: Parameters for the two-level coherent cache hierarchy.

Due to the lack of compiler support, we manually instrument the application code with post-dominators to
signal control flow re-convergence after branches.

For the WPU lanes, we model in-order issue of one instruction per cycle. All instructions have latency
of one except for memory references, which are modeled faithfully through the memory hierarchy (although
we do not model memory controller reordering effects). The 4-way 16 KB L1 I-cache has a 1-cycle latency,
while the baseline 8-way, 32 KB, L1 D-cache has a 3-cycle latency. Both caches use 128-byte lines. To hide
latency on cache misses, a WPU switches to execute a different warp when the current warp accesses the
cache. Switching warps takes no extra latency; the next warp is scheduled while the current warp issues.

This study does not model non-blocking loads whose benefits are limited with in-order issue. The
hardware overhead is also considerable as the number of threads (SIMD width × multi-threading depth)
goes up. DWS would further increase the state for tracking non-blocking loads by the number of warp-splits
allowed. These considerations are interesting areas for future work.

Each WPU has a private I-cache and D-cache. I-caches are not banked because only one instruction is
fetched every cycle and distributed across all lanes. D-caches are always banked according to the number of
lanes to cater to the high bandwidth demand of memory accesses. We assume there is a crossbar connecting
the lanes with the D-cache banks. If bank conflicts occur, these memory requests are serialized and a small
queuing overhead (one cycle) is charged. The queuing overhead can be smaller than the hit latency because
we assume requests can be pipelined. Each cache bank performs its own tag match to support gather
and scatter. All caches are physically indexed and physically tagged and use an LRU replacement policy.
Memory coalescing is performed at the L1. All requests from a warp to the same cache line are coalesced
in the MSHR. Otherwise, requests to the L2 are serialized. Each MSHR hosts a cache line and can track as
many requests to that line as the SIMD width requires. Because the WPU supports gather/scatter, the TLB
is multi-ported according to the number of lanes. The L1 caches connect to L2 banks through a crossbar.
Coherence uses a directory-based MESI protocol.

Table 3 summarizes the main architectural parameters. Note that the aggregate L2 access latency is
broken down into L1 lookup latency, crossbar latency, and the L2 tag and data lookup. The L2 then
connects to the main memory through a 266 MHz memory bus with a bandwidth of 16 GB/s. The latency
in accessing the main memory is assumed to be 100 cycles, and the memory controller is able to pipeline the
requests.

Energy is modeled in four parts. We use Cacti4.2 [34] to calculate both the dynamic energy for reads
and writes as well as the leakage power of the caches. We estimate the energy consumption of the cores
using Wattch [4]. The pipeline energy is divided into seven parts including fetch and decode, integer ALUs,
floating point ALUs, register files, result bus, clock and leakage. Dynamic energy is accumulated each time
a unit is accessed. The crossbar’s switches and routers are modeled after the work of Pullini et al. [24], and
we assume the physical memory consumes 220 nJ per access [13]. We neglect refresh power.
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Figure 3: Conventional mechanism to handle branch divergence and re-convergence for a SIMD organization. (a) An example
program; (b) the execution trace of diverged threads; (c)-(f) the state of the re-convergence stack. This is adapted from a figure
by Fung et al. [11].

4 Dynamic Warp Subdivision Upon Branch Divergence

To hide more latency in the case of insufficient warps, we identify two categories of threads that may be
unnecessarily suspended and can actually continue to execute. In this section, we discuss threads suspended
due to branch divergence. Section 5 discusses threads suspended due to memory divergence.

4.1 Branch Divergence, Memory Latency and MLP

Figure 3 illustrates the conventional mechanism presented by Fung et al. [11] to handle divergent branches.
Assume that a warp with a SIMD width of eight encounters a conditional branch at the end of code block
A. Six of the threads branch to code block B (indicated by bit mask 11111001 in Figure 3), while the other
two threads branch to code block C (indicated by bit mask 00000110 in Figure 3). The WPU first chooses to
execute code block B. It then pushes the warp’s re-convergence stack with the above two sets of bit masks,
with the one that corresponds to code block B on the top of the stack (TOS). The first PC in code block D
becomes the immediate post-dominator of B. Not until this post-dominator is reached can the re-convergence
stack pop and switch to activate threads executing the alternate path (code block C) — in this way, the
re-convergence stack is able to handle potentially nested branches within code block B. Eventually code
block C re-converges at the same post-dominator into code block D.

The fact that the re-convergence stack can only activate one branch path at a time may limit a WPU’s
ability to hide latency and leverage MLP. Figure 4 illustrates this scenario. If threads executing code block
B miss the cache and all other warps are waiting for memory as well, the WPU has to stall even though
the threads that branched into code block C do not suffer from cache misses; these threads could actually
continue to execute if it were not for the re-convergence mechanism.

Figure 4: (a) The conventional mechanism serializes the execution of different branch paths. (b) By allowing threads that take
different paths to interleave their execution, more latency can be hidden and memory level parallelism can be improved.

The post-dominator based re-convergence may also undermine MLP when threads that have reached
their post-dominator have to wait for those that have not. As shown in Figure 5, if threads executing code
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block C miss the cache and all other warps are waiting for memory as well, the WPU has to stall even though
the threads that finished code block B do not suffer from cache misses. If re-convergence can be relaxed,
these threads can make progress themselves, getting their own memory requests issued earlier, as well as
prefetching for the others.

Figure 5: (a) The conventional mechanism forces diverged threads to re-converge at the post-dominator. (b) By allowing threads
that reach the post-dominator first to run ahead, they can issue more outgoing requests to leverage memory level parallelism.

While the above examples are based on array organizations, the same problems exist for vectors as well.
With vectors, the branch stack is managed by the software. Branch outcomes are used as a set of predicates
to mask threads associated with the active branch. Different branch paths still have to be traversed in a
predefined order, limiting latency hiding and MLP.

It is important to note that DWS upon branch divergence can hide latency and improve MLP with or
without the presence of memory divergence. As we will discuss in Section 5, DWS upon branch divergence
and DWS upon memory divergence are independent, complementary techniques, but DWS allows them to
be integrated using the same hardware mechanisms and re-convergence policies. In order to isolate the role
of branch divergence, results in this section disable the ability to perform DWS on memory divergence (i.e.,
warps cannot proceed until all threads’ memory operations have completed).

4.2 Relaxing the Re-convergence Stack for
Memory Throughput

Figure 6: An example of dynamic warp subdivision upon branch divergence. Conventionally, different branch paths in the
example program (a) are pushed to different layers in the re-convergence stack (c) and the execution of different paths is
serialized (b). With dynamic warp subdivision, branch paths create entries in the warp-split table instead (e), denoting SIMD
thread groups that can be simultaneously active. Their immediate post-dominator is ignored as well and no longer enforces
re-convergence. As a result, diverged threads can interleave their execution (d), and they no longer have to re-converge at the
beginning of code block F. Therefore, F is executed twice by different warp-splits; this may improve MLP but it also risks
pipeline under-utilization.
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We propose to subdivide a warp into two warp-splits upon branch divergence. Warp-splits are independent
scheduling entities and are treated equally as warps by the scheduler. A warp-split can conceivably be
recursively subdivided in future divergence events until it consists of only one thread. A full warp can be
viewed as a root warp-split with full SIMD width. We use the term SIMD groups to refer to both full warps
and warp-splits in the rest of the paper.

After a divergent branch subdivides a warp, the resulting warp-splits can interleave their computation
to hide latency and improve memory level parallelism. This is demonstrated by an example in Figure 6.
After a divergent branch in code block B, the conventional approach uses the re-convergence stack to serialize
different branch paths (Figure 6b). Alternatively, dynamic warp subdivision uses a warp-split table described
in Section 4.4 so that a warp can progress like a binary tree with simultaneously active warp-splits (Figure 6d).

4.3 Over-subdivision

Warps may not benefit from subdivision upon every divergent branch — such aggressive subdivision may
lead to a large number of narrow warp-splits, which can otherwise run altogether in a wider SIMD group.
This phenomenon is referred to in the rest of the paper as over-subdivision. Due to the potential for over-
subdivision, we subdivide warps conditionally upon selected branches.

A static approach is used to select which branches are allowed to subdivide warps. As a side effect of
subdivision, SIMD resources may be under-utilized if warp-splits are not re-converged in time. This occurs
when two warp-splits have both passed their common post-dominator, but are not able to re-converge. This
is illustrated in Figure 6 when the execution reaches time T2. We therefore use the heuristic that warps
only subdivide upon branches whose associate post-dominator is followed up by a short basic block (F in
the example of Figure 6) of no more than 50 instructions. This value was chosen because it takes roughly
the same time to execute that many instructions as to handle an L1 miss, so run-ahead threads resulting
from subdivision can hide some latency and initiate some further memory requests without running too far
ahead and potentially inhibiting re-convergence. We manually instrumented the code to identify branches
that subdivide warps, but in practice this process would be automated by the compiler.

4.4 Unrelenting Subdivision

When warp-splits independently execute the same instruction sequence while there is not much latency to
hide, SIMD resources are under-utilized for little benefit. This scenario is referred to in the rest of the paper
as unrelenting subdivision. Under such circumstances, it may be better to re-converge the warp-splits as soon
as possible so they can execute together as a wider SIMD group. Therefore it is important both to create
warp-splits and to re-converge them appropriately.

To meet such requirement, a warp-split table (WST) is introduced in addition to the re-convergence
stack to keep track of subdivision while preserving the re-convergence mechanism. Each entry in the WST
corresponds to a warp-split. It records the warp-split’s parent warp, the current PC, and the active mask
that indicates the associated threads. Figure 6 illustrates an example of warp subdivision. Upon a divergent
branch at the end of code block B, the warp can choose to push the re-convergence stack to serialize code
blocks E and D (Figure 6b, c), or it can choose to be subdivided according to the branch outcome so that code
blocks E and D can be interleaved (Figure 6d, e). If a warp is subdivided, two additional entries are created
in the warp-split table. The re-convergence stack remains intact to avoid imposing a particular execution
order of the paths; it can therefore no longer keep track of this and future branches nested within the branch
registered on its TOS. As a result, future nested branches as well as their post-dominators are ignored by the
re-convergence stack; warp-splits continue executing asynchronously and keep being subdivided upon future
divergent branches until they reach the post-dominator associated with the top of the re-convergence stack.
At this point, the warp-split stalls waiting to be re-united with other warp-splits once they reach the same
post-dominator. The re-convergence is performed by the re-convergence stack in the conventional manner.
We name this scheme stack-based re-convergence.

4.5 PC-based Re-convergence

Using stack-based re-convergence, warp-splits can eventually re-converge; however, they can re-converge
earlier when they happen to execute the same instruction. For example, at time T2 in Figure 6d, both
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warp-splits are asynchronously executing the same code block and they might arrive at the same PC. In such
cases, the two warp-splits can be re-united naturally without stalling any of them.

By recording the PC of each warp-split in the warp-split table, the WPU can identify and re-unite warp-
splits belonging to the same warp that are ready to execute and share the same PC. We name this scheme
PC-based re-convergence. Note that stack-based re-convergence is still used if PC-based re-convergence does
not occur. A similar principle has been used in Fung et al.’s dynamic warp formation, although it was used
to group any threads from different warps that execute the same branch path [11].

While comparing multiple PCs may take three to four cycles, such PC-based re-convergence does not
have to be checked every cycle, and the latency can usually be hidden. Because the scheduler only switches
SIMD groups upon cache accesses, resumed warp-splits from the ready queue always start with memory
instructions. As a result, PCs need only be compared when the running warp-split executes a memory
instruction. Furthermore, because re-convergence takes place only when there are one or more SIMD groups
in the ready queue, the WPU can immediately switch to execute another SIMD group, preferably from a
different warp, to hide the latency PC comparisons.

4.6 Results
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Figure 7: Performance gained by dynamic warp subdivision upon branch divergence. Speedups are normalized to that of
the equivalent WPUs without DWS. Compared to stack-based re-convergence, PC-based re-convergence reduces unrelenting
subdivision and improves performance significantly without ever making performance worse.

Dynamic warp subdivision upon branch divergence is evaluated with both stack-based re-convergence
and PC-based re-convergence. Figure 7 compares their speedups over a conventional architecture with no
DWS. While stack-based re-convergence demonstrates performance gains for some applications, it penalizes
the performance of KMeans significantly due to over-subdivision and unrelenting subdivision — the average
SIMD width for executed instructions are reduced to 4 for 16-wide WPUs. By introducing PC-based re-
convergence, the average SIMD width for executed instructions increases to 9. This drastically reduces
the under-utilization of SIMD resources. However, without memory divergence handling, warp-splits re-
converged upon the same PC are not able to split again upon cache misses to hide intra-warp latency.
As a result, for some applications, stack-based re-convergence performs slightly better than PC-based re-
convergence. Overall, PC-based re-convergence outperforms stack-based re-convergence and it generates an
average speedup of 1.13X.

Not all benchmarks are sensitive to branch divergence. Table 1 shows that the benchmarks benefiting
from DWS frequently encounter conditional branches and the branch outcomes exhibit a significant fraction
of divergence. Besides the occurrence of divergent branches, the benefit of DWS is also affected by other
run-time dynamics. In the case of KMeans and Merge, memory divergence occurs frequently and there are
usually ample instructions for latency hiding between cache misses. Therefore, they benefit significantly
from having more warp-splits to hide latency.

5 Dynamic Warp Subdivision Upon Memory Divergence

In conventional SIMD implementations, memory divergence stalls an entire warp. We propose to dynamically
subdivide warps upon memory divergence so threads that hit can continue execution to hide latency for the
threads that missed. This also offers the possibility for run-ahead threads to bring in cache lines that the
fall-behind threads will also need. Warp-splits can be subdivided recursively upon future memory divergence.
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5.1 Improve Performance upon Memory Divergence

Figure 8: Dynamic warp subdivision upon memory divergence can reduce pipeline stalls and improve MLP. For illustration
purposes, the SIMD width is shown as two but similar scenarios exist for wider SIMD organizations as well.

Figure 9: Dynamic warp subdivision upon memory divergence allows run-ahead threads to prefetch cache blocks for the fall-
behind.

Figures 8 and 9 compare conventional SIMD execution with dynamic warp subdivision upon memory
divergence. Consider a warp with two memory instructions (not necessarily consecutive). Assuming all other
warps have been suspended already, DWS can reduce pipeline stalls and leverage MLP in two scenarios:

• Threads that miss upon the former instruction hit the cache with the latter instruction, while threads
that hit first later miss the cache. In this case, DWS allows run-ahead threads to initiate their misses
earlier (Figure 8).

• Some threads hit and some miss on the first instruction, but all threads miss on the same cache
block with the latter instruction. In this case, the run-ahead warp-splits in DWS not only initiate
their misses earlier; they also prefetch data for the fall-behind warp-split (Figure 9). In contrast to
speculative precomputation [7] or run-ahead simultaneous threads [26], the run-ahead warp-split always
performs useful computation and threads’ states are saved right away, requiring no ROB or dependency
analysis that would otherwise complicate the design of the simple, in-order WPU.

The above scenario is applicable to both array and vector organizations if they support gather loads or
scatter stores. Using the same principle as DWS in array organizations, a WPU can use a set of bit masks
to mark out vector components that hit the cache so that they can continue their execution and issue more
memory requests. The PC upon which the memory divergence occurs can be stored in a table so that those
vector components that miss can resume later at the recorded PC afterwards.
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Figure 10: Performance may degrade if the run-ahead warp-split does not generate long latency memory requests before any
outgoing request completes. Such case may take place with LazySplit and ReviveSplit. We demonstrate the case with two
warps with arrows pointing to the warp-split that the WPU executes.

However, DWS may not improve performance if the same subset of threads keep missing the cache and
requesting disparate addresses. If other SIMD groups are not able to hide sufficient memory latency, the
computation and the memory latency incurred by those fall-behind threads become the critical path of the
execution. As a result, the overall execution time would stay the same even if DWS allows other threads to
run ahead.

Similar to branch divergence, unconstrained warp subdivision may lead to over-subdivision. Therefore,
we investigate several methods in Section 5.2 to selectively subdivide warps upon memory divergence. On
the other hand, to reduce unrelenting subdivision, we exploit different mechanisms in Section 5.3.1 to re-
converge warp-splits. Finally, it is important to handle branch divergence correctly even with the introduction
of warp subdivision upon memory divergence. This is ensured by re-convergence techniques described in
Section 5.3.1.

5.2 Preventing Over-subdivision

Warp subdivision is not likely to provide benefits when there are already sufficient active warps to hide
latency. Aggressively subdividing warps upon every memory divergence regardless of the existence of other
active SIMD groups may unnecessarily generate many narrow warp-splits which under-utilize SIMD re-
sources. This brute force subdivision scheme is referred to in the rest of the paper as AggressSplit.

To lower the chance of unnecessary warp subdivision, the WPU can create more warp-splits only when
there are no other SIMD groups to hide latency. Upon memory divergence, the WPU checks whether all
other SIMD groups are waiting for memory. If so, the WPU subdivides the current active warp or warp-split
to allow threads that hit to run ahead. This subdivision scheme is referred to as LazySplit.

However, LazySplit risks the inability to effectively subdivide warps. If the last active SIMD group has
all its threads miss the cache, LazySplit has to stall the WPU’s pipeline even though there may be other
SIMD groups that have previously incurred memory divergence but were not subdivided and are waiting
for memory. We therefore extend LazySplit by allowing it to look for those suspended SIMD groups that
are eligible for subdivision when the pipeline is stalled. To avoid over-subdivision, only one SIMD group is
subdivided at a time. We name this subdivision scheme ReviveSplit.

While ReviveSplit can leverage all SIMD groups that can be subdivided upon memory divergence, its
performance may still be suboptimal. Since ReviveSplit attempts to subdivide warps whenever the pipeline
is stalled, performance may degrade if the resulting run-ahead warp-split is not able to issue subsequent
long latency memory requests in time (i.e., before a suspended SIMD group is resumed by a completed
request), as illustrated in Figure 10. In this case, the run-ahead warp-split may occupy the pipeline, keep-
ing those resumed warp-splits from making progress while exploiting no more MLP. Afterwards, the same
instruction stream will be executed again by the fall-behind warp-split, increasing the number of executed
cycles. However, to make an optimal decision to subdivide warps, foreknowledge or speculation is required to
estimate how soon a run-ahead warp-split will encounter another cache miss and how soon outgoing requests
will complete and resume awaiting SIMD groups. Compiler analysis, dynamic optimization, or prediction
hardware may be able to provide such information, and this is an interesting area for future work.
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Figure 11: Harmonic means of speedups across all benchmarks. Dynamic warp subdivision upon memory divergence alone has
limited benefits due to frequent branches. The BranchLimited re-convergence (specified by BL) results in little performance
gains for all subdivision schemes, including AggressSplit, LazySplit, and ReviveSplit.

5.3 To Re-converge or To Run Ahead

If warp-splits are not re-converged, they will individually execute the same instruction sequence that could
otherwise be run together in a wider warp. If such overhead outweighs the benefits of latency hiding and MLP
brought by warp-slits, warp subdivision may penalize performance. On the other hand, if re-convergence
is enforced too early, the run-ahead warp-split is likely to stall waiting for the fall-behind warp-split before
it can beneficially issue another memory request to overlap outgoing requests. Nevertheless, PC-based re-
convergence introduced in Section 4.5 allows multiple warp-splits to run together as a wider SIMD group
without the cost of stalling any warp-split. Therefore it is always used in DWS upon memory divergence.
However, since PC-based re-convergence does not force a run-ahead warp-split to wait for the fall-behind, it
alone may still lead to unrelenting subdivision.

Similar to the process of subdivision, determining the optimal timing to enforce re-converge requires
foreknowledge about whether future cache misses can occur in time to overlap with outgoing requests. In
this paper, we exploit several heuristics to effectively address re-convergence; some natural places to force
warp-splits to re-converge are branches and post-dominators, as discussed below.

5.3.1 Branch Handling after Memory Divergence

Branches may interfere with the re-convergence process of warp-splits that divided upon memory divergence.
Upon branches or post-dominators, the re-convergence stack acts implicitly as a barrier for the subdivided
warp-splits to re-converge; when warp-splits are synchronized and re-
converged, the re-convergence stack can be pushed or popped in a conventional manner. Afterwards, the
warp can be subdivided again upon future memory divergence. In other words, only those threads masked
on the TOS are subdivided into warp-splits. Since this re-convergence scheme limits a warp-split’s lifespan
between branches and post-dominators, we name it BranchLimited re-convergence.

Although BranchLimited re-convergence allows DWS upon memory divergence while preserving the struc-
ture of the re-convergence stack, characterizations show it is likely to limit the benefit in latency hiding and
MLP. As shown in Table 1, most benchmarks experience frequent branch instructions with only tens of
instructions in between. Given such small basic blocks, a run-ahead warp-split is likely to reach the end of
the basic block immediately and stall waiting for the fall-behind warp-split before beneficially issuing further
memory requests. As a result, the performance gains from BranchLimited re-convergence are limited, as
shown in Figure 11.

5.3.2 Run Ahead Beyond Branches and Loops

If run-ahead warp-splits can proceed beyond branches, they would have a better chance of issuing and
overlapping further memory requests with the stall experienced by the fall-behind threads. Fortunately,
we have already discussed in Section 4.2 how to use DWS to relax the re-convergence stack for branch
divergence. Upon a future divergent branch, the run-ahead warp-split is subdivided into two warp-splits. As
a result, the status of the re-convergence stack remains intact while more entries are added to the warp-split
table. These warp-splits re-converge when their PCs met. Otherwise, they are forced to wait for others
to re-converge once they hit the post-dominator denoted by the re-convergence stack’s TOS. We name this
re-convergence scheme BranchBypass. Note that with BranchBypass, warps can be subdivided upon both
memory divergence and branch divergence.
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By allowing run-ahead warp-splits to proceed beyond
branches, it may appear harder for the fall-behind warp-split to catch up with the run-ahead. However, it is
important to note that the ability to bypass branches naturally entitles the run-ahead warp-split to bypass
loop boundaries into the next iteration. In such cases, the fall-behind warp-split may not have to execute
the same number of instructions as the run-ahead to get re-united with it, especially if the loop body is
short (i.e., contains only a few instructions). In such a scenario, the run-ahead warp-split may frequently
revisit the PC at which the fall-behind warp-split stopped. Once this PC is revisited and the run-ahead
warp-split finds the fall-behind split is ready to execute, it re-unites with the fall-behind split immediately,
despite potentially being a few iterations ahead of the fall-behind. In contrast to adaptive slip [33], which
exploits this same opportunity, DWS warp-splits do not rely on short loops to re-converge: the fall-behind
warp-split always resumes itself upon completion of data requests so that it can catch up with the run-ahead
split in the case of a large loop body.

5.4 Implementation

Figure 12: An example of dynamic warp subdivision upon memory divergence. While divergent branches can still be handled
using the re-convergence stack (b, f), the warp-split table can be used to create warp-splits using the hit mask that marks
threads that hit the cache (c-e).

Dynamic warp subdivision upon memory divergence is handled in the same way as DWS for branch
divergence, except that the branch outcome that is used to divide threads is replaced by a hit mask that
marks threads that hit the cache. Figure 12 illustrates the process. After memory divergence, two warp-splits
are created: one with threads that hit and are ready to execute; another with threads that miss and are
waiting for memory. Note that after subdivision, the entry of the obsolete parent warp-split is overwritten by
one of the resulting child warp-splits so that the WST only records existing warp-splits. Moreover, creating
a new scheduling entity does not require any other new state. Warp-splits still share the same register file
resources, etc. Once the two warp-splits re-unite, their WST entries are merged into one by taking an “or”
operation on their active masks. The hardware overhead is discussed in more detail in Section 5.6. There
is no need to differentiate warp-splits resulting from memory divergence with those resulting from branch
divergence. Any warp-split can be further subdivided upon either branch or memory divergence.

Divergence does not break synchronization or communication semantics if programming models do not
implicitly guarantee threads in a warp to operate in lockstep. Otherwise, DWS is not compatible because
it allows warp-splits to proceed asynchronously for variable periods of time. With DWS, inter-thread syn-
chronization or communication is only guaranteed through the use of explicit synchronization primitives,
upon which warp-splits simply re-converge. Of course, frequent synchronization will limit intra-warp latency
tolerance.

Compared to the baseline architecture, warp-splits merely change the ordering of execution for threads
within the same warp. This does not affect memory exceptions. It only affects consistency for threads
within the same warp. However, most SIMD programming models do not impose such sequential consistency.
Finally, precise traps can still be handled for each individual warp-split.
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5.5 Results

In Figure 13, we compare variations of dynamic warp subdivision and characterize the benefits of individual
optimizations. DWS upon branch divergence (DWS.BranchOnly) alone reaches a speedup of 1.13X. DWS
upon memory divergence alone using ReviveSplit (DWS.ReviveSplit.MemOnly) achieves a speedup of 1.20X.
While DWS for branch and memory divergence are complementary and can be integrated, the overall benefit
of DWS is sensitive to the combination of specific subdivision and re-convergence schemes. For example,
DWS.AggressSplit and DWS.LazySplit combine BranchBypass with AggressSplit and LazySplit respectively,
and they both lead to performance degradation. Nevertheless, the combination of the best subdivision
scheme (ReviveSplit) and re-convergence scheme (BranchBypass) does not harm performance in any case
and it achieves an overall speedup of 1.71X (DWS.ReviveSplit). On average, DWS.ReviveSplit reduces the
percentage of time in which WPUs stall waiting for memory from 76% to 36%; in the mean time, the average
SIMD width per instruction drops from 14 to 4.

It is also observed that memory divergence may not be uniformly distributed across SIMD threads due to
run-time dynamics. Figure 14 presents the normalized number of cache misses caused by individual threads
over a 16-wide WPU with four warps. We observe that the pattern varies across benchmarks or even phases
of execution. It is therefore difficult to statically pinpoint threads or lanes for warp subdivision.
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Figure 13: Comparing various DWS schemes. Speedups are normalized to that of equivalent baseline WPUs without DWS.
Modest speedups are achieved when DWS applies to branch divergence alone (DWS.BranchOnly) or memory divergence alone
(DWS.ReviveSplit.MemOnly). However, the combination of the two achieves a speedup of 1.71X (DWS.ReviveSplit). Slip only
outperforms DWS in Filter and it is often subject to performance degradation, even after being modified to bypass branches
(Slip.BranchBypass). The harmonic mean of the speedups for all benchmarks is shown as h-mean.

Figure 14: Spatial distribution of memory divergence among SIMD threads. Threads are mapped to a grid where rows represent
warps and columns represent lanes. Data is measured with a system configured according to Table 3. Lighter color indicates
threads with more frequent cache misses that stall other threads in the same warp. (Best viewed in color.)

5.6 Hardware Overhead

Because DWS does not increase the demand for tags and TLB ports, the hardware cost only lies in the
WST and the scheduler. For a given WPU, the maximum number of warp-splits may become as large as the
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number of threads if each warp-split consists of a single thread. With a large number of threads per WPU,
this may drastically increase the complexity of the hardware scheduler (e.g., a priority encoder) in order to
identify the next ready SIMD group in one cycle. We therefore model a scheduler that only doubles the
number of entries in a conventional setting. This approximately doubles the cost of any scheduling structure,
but can accommodate more scheduling entities resulting from DWS. In case there are more warp-splits than
scheduling slots, the extra warp-splits sit idle until a scheduling slot is available. We also limit the number of
WST entries to 16 to reduce its storage cost; warps are not able to be subdivided when the WST is already
full. Sensitivity study shows that the above limitations only cost less than 1% of the overall performance.

To estimate area overhead, we measure the realistic sizes for the different units of a core according to a
publicly available die photo of the AMD Opteron processor in 130nm technology. We scale the functional
unit areas to 65nm, assuming a 0.7 scaling factor per generation. We assume each SIMD lane has a 32 bit
data path (adjacent lanes are combined if 64 bit results are needed). We also measure the cache area per
1 KB of capacity and scale that according to the cache capacity. If the WPU has four warps with a SIMD
width of 16, each entry needs 16 bits for the active mask, 2 bits for the warp ID, 64 bits for the PC, and 2
bits for the warp status. The resulting size for each WST entry is then 84 bits or 11B. With up to 16 WST
entries, the WST state consumes less than 1% of the storage area in a WPU, assuming the WPU has a 32
KB D-cache and a 16 KB I-cache.

5.7 Comparison with Adaptive Slip

Tarjan et al. [33] proposed adaptive slip, which allows a subset of threads to continue while other threads
in the same warp are waiting for memory. Those threads that wait for memory stay suspended until the
run-ahead threads in that warp revisit the same memory instruction again, presuming memory divergence
mainly occurs within iterative short loops. Their approach presumes aggressive predication so that run-ahead
threads can always “slip” into the next iteration regardless of branch divergence.

We compare the performance of DWS to that of adaptive slip without aggressive branch predication,
which we refer to in Figure 13 as Slip. To adaptively find out the maximum allowed thread divergence
for adaptive slip, an interval of 100,000 cycles is used for dynamic profiling. The maximum allowed thread
divergence is incremented if the WPU spends more than 70% of the time waiting for memory, and it is
decremented if the pipeline actively executes for more than 50% of the time. These thresholds are obtained
by experimenting with various combinations and selecting the combination that yields the best performance.

While adaptive slip leads to significant speedup for Filter, it results in performance degradation for many
other benchmarks. The reasons are three-fold:

• Without aggressive predication, the run-ahead threads have to stall waiting for the fall-behind upon a
conditional branch. This is because the re-convergence stack needs to generate the branch outcome for
all threads masked by the TOS. As a result, adaptive slip is hardly effective when the main computation
involves frequent conditional branches inside loops. Such is the case with HotSpot, Merge and Short.

• A diverged warp may not be re-united in time. This can be caused by long loops (i.e., loops with a
large section of code in each iteration) where slipping into the next iteration may take a long time (e.g.,
FFT). The same situation may also occur in the case of nested loops where memory divergence takes
place inside the outer loop but outside of the inner loop; the fall-behind threads cannot be resumed
until the run-ahead threads jump out of the inner loop (e.g., KMeans).

• The appropriate thresholds to increase or decrease the maximum allowed thread divergence vary across
benchmarks and hardware configurations. The same thresholds may work well for Filter while penal-
izing the performances of SVM.

We also attempt to combine adaptive slip with DWS upon branch divergence so that run-ahead threads
can continue beyond branches to “slip” into subsequent iterations. This scheme is referred to in Figure 13 as
Slip.BranchBypass. While this scheme significantly improves performance for many benchmarks, it does not
address all the issues with adaptive slip and still harms performance for KMeans, Short, and FFT. Moreover,
if memory divergence occurs within a branch path that is rarely visited and the run-ahead threads proceed
to the next iteration, it may take a long time before the run-ahead can branch into the same path and
re-converge with the fall-behind threads. In this case, this scheme can even perform worse than adaptive
slip, as can be observed from KMeans.
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6 Sensitivity Analysis

The benefit of dynamic warp subdivision in latency hiding and memory level parallelism depends on various
factors: the frequency of branch and memory divergence, the length of memory latencies, and the WPU’s
ability to hide latency with existing warps. We study its sensitivity to various architectural factors. We
show that DWS can bring performance gains in a wide range of configurations. In this section, we use the
configuration DWS.ReviveSplit to represent the performance of DWS which can subdivide warps upon both
branch and memory divergence. We refer to the conventional architecture without DWS as Conv.

6.1 Cache Misses and Memory Divergence

4 8 16 32 full
0

2

4

Filter

4 8 16 32 full
0

2

4

6

HotSpot

4 8 16 32 full
0

1

2

KMeans

4 8 16 32 full
0

1

2

D−cache Associativity

N
or

m
. S

pe
ed

up

h−mean

 

 

Conv DWS Slip.BranchBypass

Figure 15: Speedup vs. D-cache associativity. DWS refers to DWS.ReviveSplit in Figure 13. Systems are configured according
to Table 3. Performance is normalized to each benchmark’s execution time under Conv. The harmonic mean for the normalized
speedup of all benchmarks is shown as h-mean. Several individual applications with diverse behavior are also shown.

With larger D-cache associativity, both cache miss rate and memory divergence tend to decrease, and
hence there is less latency to hide and less memory level parallelism to exploit. As a result, DWS may occur
less often and its benefit may decrease. Figure 15 demonstrates this trend when the D-cache associativity is
varied from four to fully-associative.

It can also be observed from Figure 15 that the benefit from DWS does not always increase with smaller
D-cache associativity. Because small D-cache associativity leads to more cache misses, threads in a SIMD
group are more likely to miss the cache simultaneously, and therefore the the occurrence of divergent memory
accesses may decrease. As a result, DWS upon memory divergence is less likely to take effect — in benchmarks
such HotSpot, performance of DWS drops more than that of the conventional architecture when the D-cache
associativity decreases to four.

6.2 Miss Latency

The amount of latency to hide also affects the effectiveness of DWS. The D-cache miss latency is largely
dependent on the memory hierarchy. While most of the evaluation in this paper is based upon a shared L2
cache as the last-level cache, there are various alternatives. Some architectures use private L2 caches while
others do not have L2 caches at all and L1 misses are sent directly to the main memory [9]. The L1 miss
latency can therefore vary from a few cycles to hundreds of cycles.

We study the sensitivity of the L1 miss latency by varying the L2 lookup latency from 10 cycles to
300 cycles. Results in Figure 16 shows that while DWS also suffers from longer miss latency, its speedup
compared to the equivalent conventional architecture increases. This is not surprising because more SIMD
groups are needed to hide longer latency; DWS achieves this by generating more warp-splits on demand.

6.3 D-cache Size

Since DWS mainly improves latency hiding, its benefit decreases when there are ample storage resources
which lead to few D-cache misses and little latency to hide. Figure 17 demonstrates this trend. We increase
the D-cache size from 8 KB to 128 KB. With 128 KB D-caches, the performance of DWS is almost identical
to conventional WPUs. Approximately, employing DWS generates similar effects as doubling the D-cache
size.
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Figure 16: Speedup vs. L2 lookup latency. DWS refers to DWS.ReviveSplit in Figure 13. The speedup of DWS compared
to Conv increases with longer L2 latency. Systems are configured according to Table 3. Performance is normalized to each
benchmark’s execution time under Conv with an L2 lookup latency of 10 cycles. The harmonic mean for the normalized speedup
of all benchmarks is shown as h-mean.
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Figure 17: The speedup of DWS with various D-cache sizes. Each WPU has four 16-wide warps. Speedups are normalized to
that of conventional WPUs. D-caches are 8-way associative.

6.4 Various SIMD Width and Depth

We vary the SIMD width and the number of warps for each WPU. Figure 18 shows that DWS works
especially well for wider SIMD. Within a similar area budget that host up to 32-wide SIMD, the best DWS
configuration has two 16-wide warps, and it achieves an average speedup that is 1.2 times of that of the best
conventional configuration with four 8-wide warps.

We also show that DWS consistently outperforms conventional WPUs when the SIMD width is equal to
or larger than eight. For WPUs that have many narrow warps, there are already sufficient warps to hide
latency already. As a result, subdividing warps merely risk low pipeline utilization. However, when a WPU
already has more than eight warps each narrower than a width of four, the WPU can already hide latency
with existing warps, and DWS introduces unnecessary warp-splits at a cost of lower pipeline utilization. In
such cases, DWS performs inferior to Conv. Nevertheless, as Figure 18 suggests, DWS with a few wide warps
outperforms Conv with many narrow warps significantly.

On the other hand, Slip.BranchBypass does not scale well for wider warps executing over cache hierarchies.
As described in Section 5.7, the risks of pipeline underutilization raised by adaptive slip increases with wider
SIMD, especially when the branches are not predicated. As shown in Figure 18a, its overall performance
may be even worse than that of conventional WPUs.

Finally, as Figure 18 shows, with highly associative D-caches of large capacity, DWS no longer plays an
important role in performance improvement. In such circumstance, the probability of divergent memory
accesses reduces, as well as the need to hide latency.

6.5 Energy Savings

The energy savings correlate with performance gains because at 65nm, leakage becomes a significant com-
ponent of the energy spent, which grows linearly with time. As a result, DWS saves energy by 30%.
Slip.BranchBypass, however, consumes only 5% less energy than the conventional implementation.
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(a) WPUs with 8-way associa-
tive, 32 KB L1 D-caches
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(b) WPUs with fully associa-
tive, 32 KB L1 D-caches
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(c) WPUs with 8-way associa-
tive, 256 KB L1 D-caches
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Figure 18: Comparing the speedups of Conv, DWS, and Slip.BranchBypass with different D-cache setups. Speedups are
presented as harmonic means across all benchmarks. They are normalized to the performance with single threaded, conventional
WPUs under equivalent configurations. The L2 size is 4 MB.

6.6 Number of Scheduling Slots

To limit the size of the scheduler, we allow the scheduler to take only a subset of warp-splits at a time.
Nevertheless, those warp-splits that are not being scheduled can still merge with those that are. A warp-
split that is being scheduled will continue to reside in the scheduler until it hits a synchronization point (i.e.,
a post-dominator on top of the re-convergence stack, an explicit barrier, etc).

It is observed in Figure 20 that DWS performs best with a moderate number of scheduling slots. The
reason is twofold. First, a small number of scheduler slots limit the degree of multi-threading. For warp-
splits that are ready to execute but are not being scheduled, they are not able to hide latency even if all
scheduling entities are suspended. This side effect can be mitigated with more scheduling slots. Second, the
effect of scheduling only a subset of warp-splits is similar to temporarily deactivate those threads that are
not being scheduled, which may reduce cache contention when the D-cache is intensively competed by too
many threads. The fewer slots there are, the less likely cache thrashing would occur. A moderate number
of scheduling slots achieves the best tradeoff between these two aspects.

6.7 Size of the Warp-split Table

It is unnecessary for WPUs to be able to accommodate the finest granularity of subdivision (i.e., every
thread constructs a warp-split). The number of entries in the WST can be smaller than the total number
of threads on that WST; when the WST is full, dynamic warp subdivision is disabled. We vary the number
of WST entries from 4 to 64 for WPUs with 64 threads in total. Results show that as long as there are
twice the number of WST entries as the number of slots in the scheduler, DWS consistently delivers best
performance. In fact, further increasing the size of the WST no longer improves performance, as Figure 21
shows.
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Figure 19: The energy savings of DWS. For each benchmark, we compare the energy among three system. From left to right:
Conv, DWS, and Slip.BranchBypass. Energy consumption is normalized to that of Conv for each benchmark.
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Figure 20: Sensitivity to various number of available slots in the scheduler. Each WPU has four 16-wide warps. Speedups are
normalized to that of conventional WPUs.

7 Related Work

Fung et al. [11] addressed the under-utilization of the SIMD resources due to branch divergence. They
proposed dynamic warp formation (DWF) in which diverged threads that happen to arrive at the same
PC, even though they belong to different warps, can be grouped and run together as a wider SIMD group.
However, if a subset of threads in a warp miss the cache and stall, there is still no way to allow the threads
that hit to continue: this behavior is not compatible with the active mask on top of the re-convergence
stack. As Table 1 has shown, divergent memory accesses can be more common than divergent branches
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Figure 21: The speedup of DWS by varying the number of entries in the WST. Each WPU has four 16-wide warps. Speedups
are normalized to that of conventional WPUs. The scheduler has 8 slots. We show Slip.BranchBypass for comparison purposes;
it does not use any WST.

in some applications. Furthermore, dynamic warp formation only occurs when multiple warps arrive at
the same PC; if such condition is not met, the conventional re-convergence stack still prevents threads in
the same warp from hiding each other’s latency upon branch divergence. Our approach instead creates
separate scheduling entities so that each warp-split can execute independently. This means that even after a
divergent branch, threads on both paths are able to make progress and hide each others’ latency. By creating
new scheduling entities after each branch or miss divergence, our approach fully integrates branch and miss
handling. Dynamic warp formation also incurs extra hardware overheads. A WPU logically has a wide,
deep register file (SIMD width × number of warps). In reality, the conventional register file is banked with
a single index fanned out across the entire width. Our approach does the same (although some lanes may
be idle in a given cycle). On the other hand, dynamic warp formation may execute threads from different
warps in the same cycle, which means each thread may access a different location in a SIMD processor’s
register file. This requires the ability to independently look up the base location of each thread’s register
set, calculate the correct index, and then independently access each lane’s bank.

Similar to dynamic warp formation, stream processors such as Imagine can split streams conditionally
according to branch outcomes [14], and each resulting stream follows the same control flow. Although
conditional streams reduce unnecessarily predicated computation and communication, they do not address
latency hiding. In fact, latency hiding is not necessary for stream processors; data is always available through
the stream register file. For this reason, memory divergence never occurs as well.

Our technique is complementary to Vector Lane Threading (VLT) [27] and the Vector-Thread (VT)
Architecture [16]. VLT assigns groups of lanes to different user-level threads; lanes belonging to the same
user-level thread execute in SIMD, but they do not need to execute in lockstep with lanes in other groups.
However, lanes belonging to the same SIMD group may still stall unnecessarily due to branch and memory
divergence. VT is a MIMD implementation of vector semantics, where each lane has the autonomy and
overhead of its own fetch/decode/scoreboard logic. It is therefore not a strict SIMD organization and not
subject to the divergence phenomena addressed in this paper. Nevertheless, the principles of DWS may also
apply to VT when it executes data-parallel applications.

Adaptive slip [33] addresses memory divergence to improve latency hiding for SIMD organizations. It
employs a mechanism that is similar to a re-convergence stack, by simply using the cache access outcome
instead of branch outcome so that threads that hit can continue. Similar to using the re-convergence stack,
threads exhibiting divergent behavior cannot interleave their execution to hide latency, which limits benefits.
It also assumes aggressive branch predication to avoid forced re-convergence at conditional branches within
a loop body. Section 5.7 compares adaptive slip with DWS in more detail.

Existing techniques that address long latency memory accesses in the context of simultaneous multi-
threading (SMT) do not help in the case of SIMD because SMT threads share a single datapath. With SMT,
the problem is resource contention and reduced instruction level parallelism (ILP), since a stalled thread
occupies expensive issue queues, rename-registers, and reorder-buffer entries, which limits ILP discovery
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for the other thread. Techniques for SMT resource distribution [6, 35] do not apply to in-order SIMD
organizations, since SIMD threads operating on different lanes do not compete for pipeline resources. Instead,
the main problem raised by long latency memory accesses is the risk of stall cycles due to inadequate latency
hiding. Pre-computation using speculative threads [7] or runahead threads [26] improves MLP. However,
these speculative approaches require run-time dependency analysis among instructions as well as the ability
for out-of-order execution and commit. These requirements are usually not met with simple, in-order SIMD
hardware. We provide a solution designed specifically for SIMD hardware that allows it to exploit more
MLP without speculative execution.

We have not considered the effect of prefetching or non-blocking loads. Nevertheless, DWS is complemen-
tary to both. It helps even in cases where the access pattern is not easily prefetched. Moreover, prefetching
may increase contention for cache and bandwidth, especially when contention among many threads is severe.
On the other hand, non-blocking loads employed by Tesla [9] and Fermi [1] are still in-order issue so they
improve MLP but provide minimal latency hiding benefit. In both cases, memory divergence still occurs if
threads in a warp are not all runnable at the same time.

Dynamic warp subdivision is also complementary to MLP-aware cache replacement [25]. While DWS
creates additional scheduling entities to hide latency and issue more over-lapping requests, MLP-aware cache
replacement smartly prioritizes these outgoing requests to reduce their aggregate latency.

8 Conclusions & Future Work

This paper proposes dynamic warp subdivision to create warp-splits in the case that the SIMD processor
does not have sufficient warps to hide latency and leverage MLP. Warp-splits are simply extra schedulable
entities that do not require extra register file state. They can be generated upon branch divergence or
memory divergence. The conventional re-convergence stack is amended with a warp-split table to relax the
serialization of different branch paths and it allows threads in the same warp to interleave their execution in
an asynchronous manner.

We evaluate the technique using a general purpose multi-core processor with four 16-wide WPUs, each
with four warps operating over a coherent cache hierarchy. Using a two level cache hierarchy, DWS generates
an average speedup of 1.7X. We further study the sensitivity of DWS to various architectural parameters
and demonstrate that the performance of DWS is robust and it does not degrade performance on any of the
benchmarks tested.

One opportunity for future work is to integrate DWS with dynamic warp formation [11]. It may further
improve performance by speculating cache miss frequency and miss latencies in order to better decide when
to subdivide warps. Finally, it would be interesting to study applications quantitatively to identify those
that would benefit from particular SIMD architectures according to their degree of divergence.
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