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Abstract—Without high-bandwidth broadcast, large num-
bers of cores require a scalable point-to-point interconnect and
a directory protocol. In such cases, a shared, inclusive last
level cache (LLC) can improve data sharing and avoid three-
way communication for shared reads. However, if inclusion
encompasses thread-private data, two problems arise with the
shared LLC. First, current memory allocators align stack bases
on page boundaries, which emerges as a source of severe
conflict misses for large numbers of threads on data-parallel
applications. Second, correctness does not require the private
data to reside in the shared directory or the LLC.

This paper advocates stack-base randomization that elimi-
nates the major source of conflict misses for large numbers
of threads. However, when capacity becomes a limitation for
the directory or last-level cache, this is not sufficient. We then
propose non-inclusive, semi-coherent cache organization (NISC)
that removes the requirement for inclusion of private data
and reduces capacity misses. Our data-parallel benchmarks
show that these limitations prevent scaling beyond 8 cores,
while our techniques allow scaling to at least 32 cores for
most benchmarks. At 8 cores, stack randomization provides a
mean speedup of 1.2X, but stack randomization with 32 cores
gives a speedup of 2.7X over the best baseline configuration.
Comparing to conventional performance with a 2 MB LLC, our
technique achieves similar performance with a 256 KB LLC,
suggesting LLCs may be typically overprovisioned. When very
limited LLC resources are available, NISC can further improve
system performance by 1.8X.

I. INTRODUCTION AND BACKGROUND

Processors optimized for throughput employ many small,
multithreaded cores [1] and seem likely to scale up to
large core and thread counts. They are sometimes referred
to as chip multithreading (CMT). Examples include Sun’s
Niagara [2] and Intel’s Larrabee [3]. At the same time, caches
remain important for performance and they reduce off-chip
traffic. Hardware cache coherence also remains important
because it simplifies the task of writing parallel programs.
As the number of cores increases, a single broadcast

medium cannot sustain the inter-processor communication
bandwidth. This requires a shift to point-to-point on-chip
networks (OCNs) as well as a directory protocol, because the
broadcast operations required for snooping are not practical
over a point-to-point OCN. The directory coherence, in turn,
benefits from a shared, inclusive last level cache (LLC) for
management of shared data. This is because exclusive [4]
or non-inclusive [5] caching both incur three-way commu-
nication (i.e. among data requester, directory, and owner) to
locate shared data and they also introduce nontrivial design
and verification complexity [6].
Inclusion poses a problem for large-scale, CMT organiza-

tions, because each LLC cache set is contended for by all

threads. Multithreaded manycore chips risk excessive conflict
misses over the shared, inclusive LLC. Inclusion requires that
an eviction in the LLC also evict any copies in the L1s, so
conflicts can lead to cache thrashing even for data in active
use.
We have observed that one of the most important sources

of thrashing is LLC contention by private data that need not
reside in the LLC at all. In the rest of paper, we refer to data
that are only accessed from one core as private data, and they
are mostly composed of thread-private data such as stacks.
All other data are referred to as shared data, which may be
accessed from multiple cores. We find that current memory
management practice typically distributes private data non-
uniformly among the LLC cache sets, with wasteful and
unnecessary LLC conflicts. In this paper, we focus on the
problem caused by conventional stack allocation mechanisms
that tend to align stack bases to page boundaries, with the
consequence that thread-private data are likely to concentrate
on a few LLC cache sets.
To our knowledge, there has been no prior study that

shows to what extent private data contend for the LLC and
how they may affect the performance of a large scale CMT
connected through a point-to-point OCN. While separate
address spaces [7], locality-aware memory allocators [8],
[9], [10] and task schedulers [11], [12], [13] can reduce
coherence traffic, they do not address capacity or conflict
misses in the LLC. Even based upon a locality-aware mem-
ory allocator, we show that with 16 eight-way multi-threaded
cores in an inclusive organization, 5-10% of cache sets in
a 16-way associative LLC are severely contended for by
private data, raising conflict misses and unnecessary L1
evictions in an inclusive organization. This may eventually
lead to cache thrashing and jeopardize performance.
To reduce LLC conflicts and mitigate cache thrashing, we

first propose a simple run-time stack allocation mechanism
that randomizes the offset of the stack bases relative to page
boundaries. Without any modification to the program nor
the hardware, stack randomization distributes thread-private
data more uniformly, and it alone improves performance
by a factor of 2.7X on 32 cores compared to the best
baseline configuration. This is different from address space
randomization used for security reasons [14], which may
randomize stack bases — not necessarily their offsets relative
to page boundaries — to lower the chances that stack bases
are easily predicted by an attacker.
We also compare different LLC replacement policies

according to their ability to address the same issue with-
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out modifying the application or the run-time system. We
observe that the LRU insertion policy (LIP) [15] barely
mitigates the penalty of LLC conflicts in such scenario. We
also investigate a modified LRU replacement policy, LRSU,
that replaces shared data in a conflicting cache set before
replacing any private data. This may seem counter-intuitive,
but assumes that private data (such as stack variables) are
likely to be used actively in the L1 caches. However, like
LIP, LRSU also proves to be inferior.
Despite the potential benefit of stack randomization, it

does not address the underlying hardware behavior: private
data are used by a single core and if threads do not migrate,
private data can be excluded from coherence as well as the
inclusive hierarchy to make room for shared data in the LLC.
Although researchers proposed dedicated storage for thread-
private data [16], [17], [18], [19], such techniques run the risk
of under- or over-utilization of the private storage. Using the
MESI coherence protocol as a baseline design, we exclude
private data—including both stacks and private heaps—from
the inclusive coherence protocol. We refer to this as a non-
inclusive, semi-coherent (NISC) cache organization. NISC
allows private data to exist only in the L1 caches and private
data evicted from LLC need not invalidate their copies in the
L1 cache. Results show NISC performs significantly better
than cache replacement policies but stack randomization still
performs the best for LLCs with sufficient capacity. However,
NISC can be employed together with stack randomization,
and we show that when the LLC does not have sufficient
capacity to support inclusion, NISC’s ability to reduce the
number of lines contending for the LLC allows significant
performance benefits relative to just stack randomization.
The resulting ability to reduce the demand for LLC resources
can be used to reduce silicon costs or to increase the number
of cores, as well as accommodate more concurrent processes
with large working sets.

II. NON-UNIFORM DISTRIBUTION OF PRIVATE DATA

We study a two-level memory hierarchy with private L1
caches and an LLC as shared, distributed L2 caches. Hsu
et al. [20] underline the importance of shared LLC, and a
great deal of work has explored ways to hide wire delay for
distributed L2 caches [21], [22], [23]. However, they do not
mitigate LLC contention caused by non-uniform distribution
of data, which would arise regardless of whether the LLC
is centralized or distributed. In the following discussion we
focus on the non-uniform distribution of private data in the
LLC, which is mainly caused by conventional stack alloca-
tion mechanisms that align stack bases to page boundaries.
As an example, consider an operating system (OS) with

a page size of 8 KB and a cache hierarchy with a 1024
KB, 16-way associative LLC with 128 B cache lines. As
Figure 1 illustrates, the LLC has 512 cache sets in total each
with a 9-bit index, of which 6 bits are part of page offsets
and only 3 bits are part of page numbers. Therefore, data
located at page boundaries is clustered around cache sets
with the indices of “xxx000000”. As a result, private data
compete for these cache sets more intensively than others.
Specifically, stack bases on page boundaries would compete

for 8 cache sets or 128 cache lines; in other words, thrashing
is likely to occur when the LLC is shared by 128 concurrent
threads or more. We name this small subset of cache lines
that lead to thrashing critical lines, and their number can be
calculated as

max(
LLC size

page size
, LLC associativity) (1)

Usually, Equation 1 results in LLC size
page size

and it indicates
that systems with larger page sizes or smaller LLCs have
fewer critical lines and data distribution becomes less uni-
form. Even worse, critical lines also have to accommodate
data other than stacks, and they are scattered in different
cache sets which may not be evenly contended for. As a
result, despite the increased number of critical lines, a larger
LLC may only suffer less, but not avoid thrashing caused by
private data. We further study this effect in Section V-B.

Fig. 1: The OS segments the address space to pages while the
hardware segments the address space into cache sets and blocks.
Aligning stack bases to page boundaries introduces non-uniform
distribution of private data. This is illustrated by OS with 8K pages
and a 1024 KB, 16-way associative LLC with 128 B cache lines.

This issue of LLC contention caused by the non-uniform
distribution of private data, to the best of our knowledge, has
not been studied since the advent of the recent trend toward
manycore CMT architectures. We characterize a spectrum
of nine benchmarks (shown in Table II in Section III-B)
and simulate them on a multithreaded CMP that has 1–32
cores, with each providing 8 hardware thread contexts. For
all benchmarks except KMeans, private data consists of stack
data only. KMeans also has private heaps that store partial
sums during Map-Reduce computation. The effect of fewer
critical lines is reflected in Figure 2(a) where a larger page
size leads to performance degradation at smaller number of
cores or threads.
With a page size of 8 KB, Figure 2(b) shows the occu-

pancy of private data in a 1-2 MB shared, inclusive LLC
that accommodates I- and D-caches of 16 KB each. With 16
cores and 128 thread contexts or more, 5-10% of the 16-way
associative LLC cache sets have private data occupying more
than half of their blocks. These cache sets are intensively
contended and victims have to invalidate their D-cache copies
as well. Victims in these cache sets are likely to be private
data.
We further characterize our benchmarks and study the

breakdown of their memory accesses using the infrastructure
described in Section III. For 16 cores with 128 thread
contexts, private data account for less than 15% of the
applications’ working set, however, 51% of the memory
accesses request private data. This reflects that private data
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Fig. 2: (a) The average speedup across all benchmarks when we scale the number of cores from 1 to 32, each is 8-way threaded. The
LLC is 1 MB and 16-way associative. Speedup is normalized to single-threaded execution. A larger page size leads to more performance
degradation at a smaller number of cores. (b) Bars show the distribution of LLC cache sets with regard to private data occupancy, and
lines illustrate the correlation with relative performance speedup. The LLC is 16-way associative, with a capacity of 1024 KB with 16
cores or fewer and 2048 KB with 32 cores. Each core is 8-way multi-threaded.

TABLE I: Default System Configuration
Technology Node 65 nm
Cores Alpha ISA, 2.0 GHz, 0.9V Vdd

in order, 8-way multithreaded
2 SIMD thread groups each with 4 threads

L1 Caches 16 KB I-cache and 16 KB D-cache
16-way associative, 32 B line size, write-back
physically indexed, physically tagged
4 banks, 16 MSHRs, 3 cycle hit latency

L2 Cache ≥ 1024 KB, distributed
16 banks, up to 8 pending requests each
16-way associative, 128 B line size
32 cycle access latency, write-back
physically indexed, physically tagged
64 MSHRs, each can hold up to 8 requests

Interconnect 2-D Mesh, wormhole routing
300 MHz, 57 Gbytes/s
1 cycle routing latency
1 cycle link latency per hop

Memory Bus 266 MHz, 16 GB/s
Main Memory 50 ns access latency

are reused much more often than shared data. On the other
hand, 64% of D-cache misses occur to private data and
62% of these misses end up reloading an invalidated block.
This implies that evicting private data as victims of LLC
conflicts introduces unnecessary invalidations and causes
cache thrashing. Note that this phenomenon is only obvious
when a large number of threads aggregate a large amount of
private data that all compete for the inclusive LLC.

III. EXPERIMENTAL SETUP

A. Simulation

Due to the unavailability of coherent, cache-based many-
core products with large numbers of cores and threads, we
simulate a future CMT processor using M5 [24], a cycle-
accurate, event-driven simulator for networks of processors.
We extend the simple, scalar core model to support fine-
grained multithreading and add support for a 2D mesh OCN,
directory-based coherence, and a shared, banked LLC. We
name our large-scale CMT simulator MV5.

Table I summarizes the main parameters of the simulated
manycore processor. We model throughput-oriented, multi-
threaded in-order cores that are loosely inspired by Niagara-
style cores [2]. Scalar threads are grouped into SIMD groups

that share a common instruction sequencer as modern GPUs
do [25]. Upon memory accesses, the SIMD group cannot
proceed until all its threads’ requests are fulfilled. In order
to hide this memory latency, the core immediately switches
to another SIMD group and continues execution with no
extra latency by simply indexing into the appropriate register
files. We acknowledge the limitation that our core model
does not support non-blocking loads or other more aggressive
techniques for exploiting memory-level parallelism (MLP),
and that the interaction between MLP techniques and the
phenomena we study is an interesting area for future work.
The memory system is a two-level coherent cache hierar-

chy. Each core has a private I-cache and D-cache, which are
connected to a shared LLC through a 2D mesh interconnect.
The LLC is composed of distributed L2 cache banks, with
the number of banks equal to the number of cores. L2
caches and cores are tiled in an interleaved way similar to a
checkerboard. The total size of the LLC is 1024 KB with 16
cores or fewer and 2048 KB with 32 cores, note that LLC
capacity is no smaller than twice the cumulative L1 cache
capacity, as Hsu et al. [20] suggested. The LLC cache sets
are statically partitioned across the L2 banks. L1 caches are
kept coherent through an inclusive, directory-based MESI
protocol.
We model cache latency according to Cacti [26] and work

from Kim [27]. Pullini et al. provide the basis for our
interconnect latency modeling [28]. For the in-order cores,
instructions-per-cycle (IPC) is assumed to be one except for
memory references, which are modeled faithfully through
the memory hierarchy (although we do not model memory
controller effects).

B. Benchmarks

We select a set of emerging data-parallel applications rang-
ing across image processing, scientific computing, physics
simulation, machine learning and data mining. Our primary
objective is to obtain representatives of different paral-
lel program types. We choose the input size such that
our benchmarks exhibit sufficient parallelism for evaluation
while maintaining manageable simulation times. Table II
summarizes the benchmarks. Benchmarks are cross-compiled



to the Alpha ISA using GCC 4.1.0. Parallel for loops
are annotated in OpenMP style and are interpreted by an
emulated system call that later allocate memory spaces for
stacks and spawn threads across cores. Data-parallel tasks
are grouped into blocks according to the number of cores.
Blocks are assigned to cores in a persistent order for the
purpose of cache-affinity.
Our performance study uses a baseline that already em-

ploys a scalable locality-aware memory allocator that main-
tains per-core lists of private pages for private data [9], [10].
By doing so, we isolate our results from previous studies
that aim to reduce coherence traffic.

TABLE II: Simulated benchmarks with descriptions and input sizes.

Benchmark Description

FFT Fast Fourier Transform (Splash2 [29])
Spectral methods. Butterfly computation
Input: a 1-D array of 32,768 (215) numbers

Filter Edge Detection of an Input Image
Convolution. Gathering a 3-by-3 neighborhood
Input: a gray scale image of size 500 × 500

HotSpot Thermal Simulation (Rodinia [30])
Iterative partial differential equation solver
Input: a 300 × 300 2-D grid, 100 iterations

LU LU Decomposition (Splash2 [29]). Dense linear algebra
Alternating row-major and column-major computation
Input: a 300 × 300 matrix

Merge Merge Sort. Element aggregation and reordering
Input: a 1-D array of 300,000 integers

N-W Needleman-Wunsch DNA alignment. (Rodinia [30])
Dynamic programming by updating matrix with a diagonal wavefront
Input is a 2-D array of size 512 × 512

Short Winning Path Search for Chess. Dynamic programming.
Neighborhood calculation based on the the previous row
Input: 6 steps each with 150,000 choices

KMeans Unsupervised Classification (MineBench [31]). Map-Reduce.
Distance aggregation. Input: 10,000 points in a 20-D space

SVM Supervised Learning (MineBench [31])
Support vector machine’s kernel computation.
Input: 1,024 vectors with a 20-D space

IV. APPROACHES TO REDUCE LLC CONFLICTS

From the aspects of both software and hardware, we pro-
pose and compare several solutions to reduce LLC conflicts
and cache thrashing caused by non-uniform distribution of
private data. We also evaluate existing techniques in their
effectiveness to address the same issue.

A. Randomly Offsetting Stack Bases

Since the non-uniform distribution of private data is mostly
caused by stack bases that are usually aligned to page
boundaries, we modify the thread library so that stack bases
are now offset to random locations within a physical page.
We still enforce the stack bases to be aligned to cache line
boundaries in order to avoid misaligned data. In this way,
stack may start with any cache lines and private data are
likely to span evenly across all LLC cache sets. We do not
modify the operating system’s mechanism that maps virtual
pages to physical pages.
No hardware modification is needed for this approach.

However, this may introduce inefficient memory manage-
ment in the OS since offsetting stack bases introduces
fragmentation in the allocated physical pages. In the case

where the stack base is offset to the tail of a page, the
fragment can be almost as large as an entire page. The issue
of fragmentation warrants further investigation but space
limitations preclude their study here.

B. LLC Replacement Policies

Randomizing the stack bases avoids conflict misses caused
by private data in the LLC. Alternatively, the underlying
architecture can be designed to tolerate the non-uniform
distribution of private data with no need to modify existing
stack allocation mechanisms. We extend the LLC’s LRU
replacement policy to evict shared data first. In this way,
actively used private data in the L1s are not likely to be
invalidated due to LLC conflicts. This policy is referred to
as LRSU (least recently used shared data) replacement.
Alternatively, we also experiment LLCs with LIP (LRU

Insertion Policy) [15]. Based on our observation that private
data are reused more often than shared data (private data
evicted from D-caches are likely to be reloaded), we postu-
late that these more valuable lines are more likely to reside
closer to the MRU (most recently used) position. For shared
data that are streamed into L1s for one-time access, their
LLC cache blocks stay in the LRU position and get evicted
during the next replacement, leaving private data intact in the
LLC. However, in some circumstances, LIP may increase the
chance of private data to thrash the LLC — for those private
data that remain in the L1, it is possible that their LLC copies
are not reused and remain in the LRU position; these private
data are likely to subject to LLC replacement.

C. Non-Inclusive, Semi-Coherent Cache Hierarchy

Cache replacement policies, however, do not address the
fundamental issue: private data compete for LLC space
due to the enforcement of inclusion property, however they
require no coherence and therefore do not benefit from inclu-
sion property’s savings of coherence overhead. By excluding
private data from the inclusive coherence protocol, private
data can be well accommodated in D-caches and the LLC can
host more shared data. We call this a Non-Inclusive, Semi-
Coherent cache organization (NISC). As Figure 3 illustrates,
NISC allows private data to exist only in the L1 cache—
replaced private data in LLC do not have to invalidate their
copies in the L1 cache. As a result, private data contend less
for LLC cache sets, reducing LLC conflict misses. Moreover,
the overall on-chip storage is utilized better because of the
reduced data replicates, and this reduces capacity misses as
well.
NISC is compatible with any inclusive coherence proto-

cols, and we demonstrate how NISC works with a simple
MESI coherence protocol [32] for a two-level write-back
cache hierarchy. An additional coherence toggle bit (CTB)
is added to each cache line’s state. The CTB marks whether
the cache line stores shared or private data so that coherence
is toggled on and off for that cache line, respectively. The
CTB can be determined in several ways:

• Option 1 (OS approach): Utilizing run-time scalable
memory allocators which maintain a list of per-core pri-
vate pages and shared pages [9], [10]. Private pages can



mark their TLB entries as private using an additional
bit per TLB entry, whose value can be inherited by the
corresponding cache line’s CTB.

• Option 2 (Compiler approach with extended ISA): Us-
ing implicit static analysis or explicit code annotations
to identify private data. The compiler then uses a
different set of memory access instructions specifically
for accessing private data. For example, the ATI instruc-
tion set [33] and NVIDIA’s parallel thread extension
(PTX) [34] already use a different set of memory
instructions for private data. These private-data oriented
memory instructions set the corresponding cache lines’
CTBs. For example, stack data can be assumed to be
thread-private in most cases (although not guaranteed).
On the other hand, private data may be easily identified
and annotated by programmers, as demonstrated in
several parallel programming languages and APIs such
as OpenMP [35] and CUDA [36].

Any access to those cache lines with their CTBs set by-
passes the MESI coherence protocol entirely and is managed
through a non-inclusive, non-coherent protocol. Accesses to
other cache lines proceed with the original MESI protocol.
In this way, NISC manages private data and shared data
distinctly while balancing them in the same storage hierarchy.
Care has to be taken for NISC upon thread migration.

Since coherence is disabled for cache lines with CTBs set,
these lines have to be flushed to the shared cache and
reloaded to the destination L1 cache that will host the thread
after its migration. Since we are dealing with data-parallel
workloads with abundant parallelism, we assume workload
can be mostly balanced and thread migration need not take
place frequently. Nevertheless, context switches may still
occur occasionally due to page faults or interrupts, and
flushing the cache serves as a solution in such circumstances.

Fig. 3: The NISC protocol based on MESI. Except for requests
and spillings for private data, all other data movement exhibits the
same behavior as in MESI. Note that blocks holding thread-private
data should not have copies in remote L1s and therefore are always
writable.

V. EVALUATION

The following configurations are compared and their sen-
sitivity to the last level cache design is studied as well.

• conv: The conventional system with stack bases aligned
to page boundaries and the memory system is main-
tained by an inclusive MESI coherence protocol with
LRU replacement policy.

• randStack: The OS offsets the stack base to some
random distance away from the page boundary. The
underlying hardware is unmodified.

• LRSU: The OS is unmodified. The LLC employs LRSU
replacement policy that attempts to hold as much private
data as possible.

• LIP: The OS is unmodified. The LLC employs LIP that
first replaces lines that are not reused.

• NISC: The OS is unmodified except it signals private
data to the hardware which sets the CTB for correspond-
ing cache lines and excludes them from the inclusive
coherence.

• NISC+randStack: The OS randomizes stack bases as
in randStack and it operates over an architecture with
NISC cache organization.

A. Performance Scaling

We increase the number of cores from 1 to 32 and the total
number of thread contexts from 8 to 256, and speedup is
calculated based on single threaded execution. These results
are shown in Figure 4. Performances of conv, LIP and LRSU
start to degrade beyond 8 cores. Note that we we double the
LLC size to 2 MB with 32 cores to ensure the LLC size
is no smaller than twice the aggregate size of L1 caches.
However, performance with 32 cores is still much worse
than 8 cores with conv. In order to eliminate partial accesses
to LLC lines which may reduce the effectiveness of LIP,
we also experiment an LLC with a line size equal to that
of the L1 line size, however, performance scaling for LIP
remains similar. LIP and LRSU fail to improve performance
mainly because they do not reduce the amount of data that
contend for the same LLC cache sets. We also observe that
applications with more private data competing for the LLC
degrades more severely, as we illustrate in Figure 2(b).
On the other hand, performance of randStack, NISC and

NISC+randStack continues to scale. Comparing to the peak
performance of conv at 8 cores, the middleware approach,
randStack, achieves average speedups of 1.2X at 8 cores,
1.8X at 16 cores, and 2.7X at 32 cores. The average speedups
for the hardware approach, NISC, are 1.0X, 1.5X and 2.0X,
respectively. Their combination, NISC+randStack, performs
similarly to randStack. We also evaluate the combinations
of randStack with LIP and LRSU, and they perform simi-
larly to randStack as well. Therefore, provided with stack
randomization and sufficient LLC capacity, there is no need
to further employ hardware approaches to address the non-
uniform distribution of private data.

B. LLC Sensitivity

If the LLC is simply too small, techniques such as stack
randomization that only address conflicts will be insufficient.
The LLC may not have sufficient capacity for programs with
large working sets, or when trading off LLC area to include
more cores within a given die budget. NISC is attractive here
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Fig. 4: Speedup vs. Number of eight-way multithreaded cores.
Speedup is normalized to single-threaded execution. LLC size is
no smaller than twice the aggregate size of L1 caches, therefore it
is 2048 KB in the case of 32 cores and 1024 KB otherwise.

because it reduces the capacity requirement of the LLC by
relaxing inclusion for private data. On the other hand, if this
is merely a capacity issue, then randStack is not expected to
benefit large enough LLC.
As we observe from Figure 5 when scaling the LLC size

up to 16 MB over 16 cores, the benefit of randStack is not
limited to small LLC sizes. With smaller LLCs, conv, LIP
and LRSU degrade drastically, and randStack degrades more
gracefully. With an LLC larger than 256 KB, randStack, as a
technique that avoids LLC conflicts caused by private data,
out-performs NISC, which merely attempts to tolerate the
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Fig. 5: Speedup over single-threaded execution vs. LLC sizes.
Speedup is measured on a system with 16 cores and 128 thread
contexts, and is calculated relative to the performance of a single-
threaded execution. LLC associativity is 16.

LLC conflicts. However, when the LLC is smaller than 256
KB, capacity misses dominate and this is only addressed by
NISC. The best performance with a small LLC is achieved
by combining these two approaches — in NISC+randStack,
NISC further improves the performance of randStack by
a factor of 1.8 with a small LLC capacity of 128 KB.
This shows that the software approach (stack randomization)
and the hardware approach (NISC) are complementary. We
also experiment with LIP and LRSU when combined with
stack randomization. However, they do not further improve
performance over randStack.

Similar benefit of NISC+randStack is observed with
smaller LLC associativity, as shown in Figure 6. Besides,
Equation 1 indicates that larger associativity is not likely
to increase the number of critical lines, but only helps dis-
tributing private data more evenly across cache sets that host
critical lines. Therefore, we observe that the conventional
performance improves significantly, but still cannot match
that of randStack with an LLC associativity of 512.

Fig. 6: Speedup over single-threaded execution vs. LLC associa-
tivity. Speedup is measured on a system with 16 cores and 128
thread contexts, and is calculated relative to the performance of a
single-threaded execution. The size of the LLC is 1024 KB.



VI. CONCLUSIONS AND FUTURE WORK

In the presence of a large number of concurrent threads,
even a small amount of private data per core can swamp a
shared inclusive LLC. Worse yet, LLC evictions due to this
contention then evict private data in the L1s. However, a
shared, inclusive LLC is valuable in directory-coherence.
We study the performance impact of non-uniform dis-

tribution of private data caused by conventional stack al-
location mechanisms. Several solutions are proposed. Our
data-parallel benchmarks show that these limitations prevent
scaling beyond 8 cores, while our techniques allow scaling
to at least 32 cores for most benchmarks. At 8 cores, stack
randomization provides a mean speedup of 1.2X, and stack
randomization with 32 cores gives a speedup of 2.7X over the
best baseline configuration. However, stack randomization
may introduce fragmentation in the physical pages. We there-
fore investigate several hardware approaches including dif-
ferent LLC replacement policies and a non-inclusive, semi-
coherent (NISC) cache organization that excludes private
data from cache coherence. While LLC replacement policies
fail to improve performance significantly, NISC alone scales
performance up to at least 32 cores in most cases. Comparing
to the best baseline configuration at 8 cores, NISC provides
a mean speedup of 1.5X at 16 cores and 2.0X at 32 cores.
In cases where the LLC may have insufficient capacity

for programs with large working sets, or when trading
off LLC area to include more cores within a given die
budget, combining NISC with stack randomization yields the
best performance. With a limited LLC capacity of 128KB,
NISC further improves the performance of randStack by
a factor of 1.8. NISC results with small LLC suggest an
interesting avenue for further research in reducing LLC area
and allowing that to be used for other purposes.
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