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Abstract
We present MNRL, an open-source, general-purpose and

extensible state machine representation language. The rep-

resentation is �exible enough to support traditional �nite

automata (NFAs, DFAs) while also supporting more complex

machines, such as those which propagate multi-bit signals

between processing elements. The speci�cation is based on

JSON, a data interchange format that is supported across

general-purpose programming languages. We also provide

Python and C++ APIs for direct reading and writing of MNRL

�les.

We also discuss MNCaRT, the software ecosystem built

around MNRL. MNCaRT is an umbrella repository of previously-

published tools, which have been adapted to support MNRL,

as well as new tools, which were speci�cally designed for

MNRL. Tool support includes manipulation of MNRL �les,

execution of complex machines, high-speed processing of

simpli�ed MNRL �les, and compilation of regular expres-

sions to MNRL. We support the execution of MNRL net-

works on CPUs (with VASim and Intel Hyperscan), GPUs

(with a custom DFA engine), and FPGAs (with a MNRL to

HDL translator). As with MNRL, all of the tools in MNCaRT

are open-source, allowing for development and use in both

academia and industry.

CCS Concepts • Software and its engineering → Spe-
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tensions;
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1 Introduction
Years of research and tools development have resulted in

high-throughput automata processing architectures and soft-

ware engines [9, 11, 13, 16, 26, 28, 34, 38]. These develop-

ments have lead to the discovery of new, non-obvious use-

cases and application domains for �nite automata, such as

natural language processing [41], network security [24],

graph analytics [23], high-energy physics [37], bioinformat-

ics [21, 22, 30], pseudo-random number generation and simu-

lation [31], data-mining [35, 36], and machine learning [29].

Unfortunately, the software frameworks for the construc-

tion, manipulation, and translation of �nite automata are

frustratingly fractured and restrictively licensed. For exam-

ple, Micron licenses a comprehensive, closed-source soft-

ware development kit that speci�cally targets their D480

Automata Processor [17]. While these tools are useful for

developing applications for the AP, the tools do not allow

a researcher to easily evaluate their designs across hard-

ware platforms, such as CPUs, GPUs, and FPGAs. Addition-

ally, the tools are closed-source and therefore cannot be

easily extended to support new architectures and automata

paradigms. Instead, a general and extensible framework is

needed to enable the development of platform-independent

applications and to support experimental automata designs.

We therefore present MNRL, the MNRL Network Repre-

sentation Language (pronounced “mineral”), a JSON-based,

open-source language and associated Python and C++ APIs

to support the development of, and experimentation with,

new automata processing-based applications and architec-

tures. MNRL allows a user to de�ne a network (or collection)

of MNRL nodes, which represent the states within �nite au-

tomata. Each node stores con�guration information (such as

node type, name, etc.) as well as connections to other nodes

within the network. Note that the language speci�cation is

general, allowing state machines other than �nite automata

to also be represented in the language. We provide initial def-

initions for traditional �nite automata states, homogeneous

states, up-counters, and Boolean logic in the MNRL speci�-

cation; additional node types may be de�ned by the user for

speci�c applications. We provide a simpli�ed speci�cation,

nfaMNRL, for representation of pure DFAs and NFAs.
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Additionally, we have developed a suite of tools for creat-

ing, manipulating, and executing MNRL �les, which we refer

to as MNCaRT (the MNRL Network Computation and Re-

search Testbed). MNCaRT collects a diverse set of automata

processing tools and algorithms into a central location. As

new projects are contributed to the MNRL ecosystem, they

will become available as part of MNCaRT. We currently

provide support for compiling state machines from Perl com-

patible regular expressions (PCRE) patterns [19] to MNRL,

high-speed execution of NFAs and DFAs written in MNRL

using Intel Hyperscan [13], and optimization and simulation

of experimental automata designs with the Virtual Automata

Simulator (VASim) [34]. Further, we provide back-ends for

executing DFAs on GPUs [32], FPGAs [34], and exploring

routing constraints for experimental spatial architectures via

the Automata-to-Routing (ATR) tool [33].

The language speci�cation and all supporting tools are

publicly available (typically under a BSD 3-clause license),

allowing both academics and industry experts to contribute

to, and use, the codebases.

This work makes the following technical contributions:

• MNRL, an open-source (BSD 3-clause) and extensible

JSON speci�cation for representing state machines

as well as a simpli�ed JSON speci�cation for DFAs

and NFAs (nfaMNRL).

• Python and C++ APIs for reading, creating, manipu-

lating, and writing MNRL �les.

• Extensions to Intel’s Hyperscan regular expression

processing engine to support the compilation and

execution of nfaMNRL �les.

• Extensions to Hyperscan supporting the compilation

of PCRE to nfaMNRL �les.

• An extended version of VASim, which supports read-

ing and writing of MNRL �les.

2 Background and Related Work
A �nite automaton includes of a set of states and a set of tran-

sitions de�ning how the states become active based on sym-

bols observed in an input stream [25]. In a non-deterministic

�nite automaton (NFA), it is possible to transition to multiple

states on the same input symbol. These are often represented

as a graph, de�ning the topological layout of the computa-

tion. By providing this topological speci�cation, computation

is decoupled from the de�nition of the state machine. This

allows for a common execution engine, which de�nes the

execution model, to process arbitrary automata, improving

code reuse and reducing sources for bugs. Automata can also

be represented as a set of regular expressions, which de�ne

the search pattern the automata recognize.

In the remainder of this section, we brie�y describe cur-

rent automata representation languages and discuss their

limitations.

2.1 Automata Network Markup Language (ANML)
ANML is a proprietary automata description language. This

representation de�nes a special type of homogeneous au-

tomata [7],
1

and is unable to describe arbitrary �nite au-

tomata networks. ANML has speci�c tags for each hard-

ware element on the Automata Processor, but the schema

does not allow for additional kinds of elements to be proto-

typed. Further, additional annotations cannot be added to

elements in ANML while maintaining support for current

tools. Although ANML could be easily extended to support

arbitrary automata, its use is licensed and controlled by Mi-

cron Technology. Therefore it is not a good choice for an

open automata language.

2.2 Becchi NFA Serialization Format
The tool chain associated with Becchi et al.’s publications

on accelerating �nite automata processing uses a simple

representation of NFAs [2]. The representation is based on

the theoretical de�nition of an NFA and therefore cannot

be easily extended to support more complex state machines.

Additionally, the language is custom, and there is no support

in general-purpose programming languages for reading and

manipulating these �les.

2.3 JFlap
JFlap [20] is a software package for experimenting with for-

mal languages and has an undocumented �le format. The

language, however, is not formally speci�ed and is targeted

for theoretical research. Therefore, state machine descrip-

tions are limited to theoretical models and do not support

architecture-oriented descriptions.

2.4 Dot
Dot [10] is the graph language associated with the GraphViz

graph visualization software. Dot is more general than a

state machine language, but the language is more targeted

to de�ning visual layouts than serializing state machines.

Additionally, Dot lacks su�cient parsers, and emitters for

this language are often custom for each application.

2.5 Regular Expressions
Regular expressions are another common option for repre-

senting a search pattern; however, these also su�er from

maintainability challenges. For many applications that can

bene�t from automata-based algorithms, such as particle

tracking [37], motif searches [22], and rule mining [35, 36],

the regular expression representing the search is non-intuitive

and may simply be an exhaustive enumeration of all possible

strings that should be matched. Additionally, programming

of regular expressions can be extremely error-prone due to

1
In a homogeneous NFA, all incoming transitions to any given state must

occur on the same input character.
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variations in regular expression syntax, which leads to high

rates of runtime exceptions [27].

3 MNRL: A New Automata Language
We have developed an open-source and extensible automata

representation language called MNRL. This language allows

for the topological speci�cation of a collection of �nite state

machines using JSON syntax [15]. JSON is programming

language-independent, but is supported by most common

general-purpose programming languages. Therefore, the for-

mat of MNRL allows for easy use in projects regardless of

the codebase’s primary language.

It is important to note that the MNRL format speci�es

the layout of a machine but does not specify how elements

behave, allowing for di�erent “styles” of state machines to

be represented. This includes traditional NFAs [25] and ho-

mogeneous NFAs [7].
2

The behavior of elements is left for

the execution engine to specify and implement (and allows

for MNRL to be an extremely �exible �le format). Therefore,

MNRL is similar in intent to the Uni�ed Modeling Language

(UML), which allows developers to describe and design soft-

ware systems while eliding implementation details [12].

In the remainder of this section, we provide an overview of

the MNRL language, describe a restricted nfaMNRL schema,

and present means for extending and using the language.

3.1 MNRL Format
A MNRL �le is a representation of a single MNRL network—a

collection of one or more state machines that are executed

in parallel using the same input. The �le contains an array

of MNRL nodes, which de�ne each element in the network.

A node consists of:

• A unique identi�er

• A node type (state, homogeneous state, up counter,

boolean, etc.)

• How the node is enabled

• Whether the node reports (generates an output signal)

when activated

• An array of input ports

– Each input port has a unique identi�er and a spec-

i�ed width (number of wires)

• An array of output ports

– Each output port has a unique identi�er and a

speci�ed width (number of wires)

– Each output port speci�es an array of connected

elements

• A collection of custom attributes, speci�c to each

element type

With this information, a developer is able to specify the

topological layout of the state machines within the network

2
In fact, MNRL is general enough to represent machines that are more

powerful than �nite automata (e.g. push-down automata, cellular automata,

and Turing machines).

1 {
2 "id": "0t_15l_5r",
3 "type": "hState",
4 "enable": "onActivateIn",
5 "report": true,
6 "inputDefs": [
7 {
8 "width": 1,
9 "portId": "i"

10 }
11 ],
12 "outputDefs": [
13 {
14 "width": 1,
15 "activate": [],
16 "portId": "o"
17 }
18 ],
19

20 "attributes": {
21 "reportId": 5,
22 "latched": false,
23 "symbolSet": "[\\xFF]"
24 }
25 }

Figure 1. Sample MNRL homogeneous hState Node. The

node is enabled (performs computation) only after an incom-

ing edge is active (line 4), and this node matches against the

input character \xFF (line 23). When this occurs, the node

generates a report signal (line 5). Lines 6-11 de�ne a single

input port for incoming edges. Lines 12-18 de�ne a single

output port for outgoing edges. The array on line 15 is empty,

indicating that there are no outgoing edges.

and to specify the sort of behavior the underlying execution

engine should assign to each node. The implementation of

behavior is not de�ned in the MNRL �le; instead, the compu-

tation engine that processes a MNRL network is responsible

for specifying the semantics for each node type. Therefore,

node types and execution engines are typically co-designed.

If the environments needs information (e.g. symbol sets for

matching against an input stream), this additional con�gura-

tion can be embedded in a MNRL node’s attributes. For the

standard node types, we have speci�ed additional attributes

to support their respective expected behaviors.

We provide the speci�cation of MNRL as a JSON schema [14],

which allows for validation of �le syntax. The MNRL schema

de�nes four node types: standard automata states (state), ho-

mogeneous automata states (hState), saturating up-counters

(upCounter), and combinatorial logic (boolean). Custom at-

tributes for each of these node types are described in Table 1.

Each of these node types also de�nes a reportId attribute,

3
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Table 1. Custom Attributes for MNRL Node Types

Node Type Attribute Required? Attribute Type Description

state symbolSet YES object Mapping from each output port name to a symbol set string repre-

senting the matched character set that enables the outgoing con-

nections from the given port

latched NO Boolean Determines whether a state remains enabled after the �rst enable

signal

hState symbolSet YES string Represents the matched character set that enables the outgoing

connections

latched NO Boolean Determines whether a state remains enabled after the �rst enable

signal

upCounter threshold YES number The internal value at which the counter enables outgoing connec-

tions

mode YES enum “trigger”: enable the outgoing connections for one clock cycle when

the threshold is reached

“high”: enable the outgoing connections for all subsequent clock

cycles while the internal value if at the threshold

“rollover”: similar to trigger, but also reset the internal value

boolean gateType YES enum Must be one of the following values: ‘and’, ‘or’, ‘nor’, ‘not’, or ‘nand’

Table 2. Modes for Enabling MNRL Nodes

Enable Mode Description

always The node is enabled on every cy-

cle

onActivateIn The node is enabled on the clock

cycle following a high signal to

an input port

onStartAndActivateIn The node is enabled on the �rst

clock cycle and then follows the

“onActivateIn” mode

onLast The node is only enabled for the

�nal clock cycle

which allows an additional string or integer to be associated

and returned with any reporting event during execution.

MNRL states and hStates map directly to notions of NFA

states and homogeneous NFA states. We provide upCounter

and boolean node types to maintain compatibility with Mi-

cron’s D480 Automata Processor [9]; however these element

types are general and similar elements have seen use in other

engines and automata styles [5, 8, 18, 39].

Additionally, the MNRL schema de�nes four valid modes

for enabling a node. These modes are described in Table 2.

An enabled node performs a prede�ned computation on a

given clock cycle. These modes are the same as those used

in common state machine engines, such as the AP [9] and

Intel Hyperscan [13].

3.2 nfaMNRL: A Simpli�ed Speci�cation
We also provide a minimal speci�cation, nfaMNRL, which

only supports NFA states and hStates. This speci�cation may

be used for applications that wish to only support traditional

�nite automata. nfaMNRL is valid with respect to the full

MNRL speci�cation. That is, any MNRL �le that validates

against the nfaMNRL spec will also validate against the

more general MNRL spec.

3.3 Extending the MNRL Schema
MNRL is designed to be extensible, enabling research on new,

custom automata and state machine functionality. To support

this, the MNRL schema is organized so that researchers can

quickly de�ne custom attributes for new node types. Because

custom node types become part of the JSON schema, proto-

type extensions to the MNRL format can still be statically

checked with minimal e�ort from the developer.
3

The MNRL

�le format could easily be extended to support additional

node types such as non-deterministic counters [5], jump

states [40], and stacks (to support push-down automata). Be-

cause MNRL supports variable-width ports, it is also possible

to represent elements that share more than a single bit of

data with elements downstream.

3.4 MNRL APIs in Python and C++
While common general-purpose programming languages

support the manipulation of MNRL �les directly through

3
One of the authors extended the schema to support �oating point compar-

isons. Total time to add support into both the Python and C++ APIs was

approximately two hours.
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JSON libraries, we provide open-source programmatic APIs

in Python and C++ for MNRL. These APIs perform additional

validation checks on MNRL �les for constraints that cannot

be captured by a JSON schema. For example, a homogeneous

hState can only have one input and one output port. Sup-

ported functionality includes: reading MNRL �les, writing

MNRL �les, creating MNRL networks programmatically, and

manipulating MNRL networks and nodes programmatically.

4 MNCaRT: Automata Analysis, Execution,
and Transformation

Our goal with the MNRL language is to enable the develop-

ment of a rich and vibrant ecosystem of compatible tools

for manipulating and executing state machines (especially

�nite automata). We are collecting these tools in an umbrella

repository, the MNRL Network Computation and Research

Testbed (or MNCaRT, pronounced “minecart”). As new tools

are developed, they will be added to MNCaRT. By keeping

tools catalogued in a single location, we hope to maintain

the interoperability of tools and reduce fracturing in the

ecosystem.

Figure 2 describes the interaction between tools provided

with MNCaRT. Our ecosystem supports work�ows begin-

ning with high-level languages, such as PCRE, and ending

with execution on CPUs, GPUs, and FPGAs. Through con-

version to ANML, we also support execution on Micron’s

D480 Automata Processor. In this section, we brie�y describe

to tools that make up the initial release of MNCaRT.

4.1 RAPID
RAPID is a high-level programming language and combined

imperative and declarative model for execution of sequential

pattern-matching applications [1]. This C-like language is

extended with three keywords to support parallel matching

of patterns against a single data stream as well as sliding

window pattern recognition. We have extended the RAPID

compiler to emit MNRL �les, allowing for high-level pro-

gramming within the MNCaRT ecosystem.

4.2 Hyperscan-Based Tools
Hyperscan [13] is an open-source, high-performance regular

expression processing library supported by Intel. We utilize

this tool’s PCRE parsing algorithms to provide a regular

expression to nfaMNRL compiler. Additionally, we have ex-

tended Hyperscan to support the compilation and execution

of nfaMNRL �les.

pcre2mnrl. Our regular expression compiler reads in a �le

of regular expressions separated by newlines and compiles

the given set of patterns to a single nfaMNRL �le. The line

number of each given PCRE pattern is used as the report

ID to allow for easy identi�cation of matched patterns in

processing output.

MNCaRT Ecosystem

PCRE RAPID

High-Level
Language

MNRL ANML*

State Machine
Representation

hscompile VASim ATR

Analysis
Compilation

Transformation

Hypercan

CPU

Engine

VASim

CPU

Engine

FPGA

Engine

GPU

DFA

Engine

Execution
Engine

*While ANML is not o�cially part of MNCaRT, we indicate where this
alternate representation falls within the MNCaRT ecosystem.

Figure 2. Tools supplied as part of MNCaRT. These fall into

three categories: front-end representations (both high-level

and representation languages), transformation and compila-

tion tools, and hardware and software execution engines.

hscompile. We provide an extension to Hyperscan that parses

nfaMNRL �les and compiles the �nite automata to a seri-

alized Hyperscan pattern database, allowing o�ine com-

pilation. Additionally, our tool serializes a mapping from

MNRL node IDs and report IDs to Hyperscan’s internal nam-

ing for each state machine element. This mapping enables

human-readable output when processing input data using

Hyperscan.

hsrun. Finally, we provide a tool for processing nfaMNRL

�les against an input stream using the Hyperscan execution

core. This tool deserializes the Hyperscan pattern database

and node mapping produced by hscompile. The tool then

scans the given input �le against the pattern database and

prints out human-readable reporting information containing

the MNRL node ID, report ID, and o�set in the input stream.

We also provide an output format that prints the total num-

ber of reports for each reporting node. If multiple compiled

nfaMNRL �les and/or input �les are passed to hsrun, the

tool will execute all pairings of the �les using a supplied

number of threads.

4.3 VASim
We have extended VASim [34] to support parsing of MNRL

�les. VASim is, to the best of our knowledge, the �rst exten-

sible, general-purpose framework that combines automata

simulation, optimization, transformation, and performance

modeling into one uni�ed and open source code base. This

5



Technical Report, May 2017, CS-2017-01 K. Angstadt et al.

framework enables easy prototyping, debugging, simulation,

and analysis of automata-based applications and architec-

tures. Additionally, VASim can parse Micron ANML �les,

allowing for conversion between this proprietary format

and MNRL.

The platform can support simulation and analysis of a

diverse set of �nite automata models, such as classical NFAs,

AP-style NFAs, JFAs [40], counting �nite automata [5], and

hybrid approaches [3].

VASim also provides a common codebase for applying

state-of-the-art optimizations, transformations, and static

and dynamic analyses to �nite automata. This platform al-

lows researchers to easily and quickly share new algorithms,

and perform fair apples-to-apples comparisons to prior work,

accelerating automata-processing research. We provide sev-

eral optimizations in the core of VASim, including common

pre�x merging [4] and a literal matching engine [13].

4.4 Automata-to-Routing
We extend the Automata-to-Routing (ATR) [33] framework

to support placement and routing of MNRL state machines.

Automata-to-routing utilizes the Versatile Place and Route

(VPR) tool to model hypothetical spatial automata-processing

architectures [6]. VPR is so �exible that it is capable of mod-

eling any spatial architecture that has a well-de�ned set

of spatial processing elements. We thus extend VASim to

emit VPR-readable circuits of MNRL networks. We also pro-

vide guidance to construct custom, parameterizable, spatial

architecture description �les to accept these custom state

machine circuits. ATR is thus capable of modeling spatial

architectures that are purpose-built to accept MNRL state

machines.

5 Conclusions
MNRL is a general and extensible format for representing

state machines. The language speci�cation and associated

tools are released with open-source licenses to promote col-

laboration and usage within both academia and industry.

MNRL is supported by general-purpose programming lan-

guages because it is based o� of the JSON format. Further, we

provide MNRL-speci�c APIs for Python and C++ to perform

more direct manipulation and validation of networks.

Additionally, we provide MNCaRT, a suite of tools for

analyzing, executing, and transforming MNRL networks. We

support execution of MNRL networks on CPUs, GPUs, and

FPGAs, and we provide a work�ow for execution on Micron’s

AP. Support for high-level pattern-matching languages, such

as PCRE and RAPID is also provided as part of MNCaRT. Fi-

nally, we allow for design space exploration through analysis

functionality in the VASim and ATR tools.

We hope that this new state machine language and accom-

panying software ecosystem will stimulate new e�orts to

develop e�cient and specialized automata processing appli-

cations.
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