
A Characterization of the Rodinia Benchmark Suite

with Comparison to Contemporary CMP Workloads

Shuai Che Jeremy W. Sheaffer Michael Boyer

sc5nf@virginia.edu jws9c@cs.virginia.edu mwb7w@cs.virginia.edu

Lukasz G. Szafaryn Liang Wang Kevin Skadron

lgs9a@virginia.edu lw2aw@virginia.edu skadron@cs.virginia.edu

The University of Virginia

Department of Computer Science

Abstract—The recently released Rodinia benchmark suite
enables users to evaluate heterogeneous systems including both
accelerators, such as GPUs, and multicore CPUs. As Rodinia sees
higher levels of acceptance, it becomes important that researchers
understand this new set of benchmarks, especially in how they
differ from previous work. In this paper, we present recent
extensions to Rodinia and conduct a detailed characterization
of the Rodinia benchmarks (including performance results on an
NVIDIA GeForce GTX480, the first product released based on
the Fermi architecture). We also compare and contrast Rodinia
with Parsec to gain insights into the similarities and differences
of the two benchmark collections; we apply principal component
analysis to analyze the application space coverage of the two
suites. Our analysis shows that many of the workloads in Rodinia
and Parsec are complementary, capturing different aspects of
certain performance metrics.

I. INTRODUCTION

Computer systems are increasingly exposing a heteroge-

neous computing model consisting of accelerators—such as

graphics processors (GPUs), media processors, and even re-

configurable hardware like FPGAs—combined with one or

more conventional CPUs. GPUs, for instance, offer parallelism

at scales unachievable with other processors and afford about

an order of magnitude greater peak throughput than general-

purpose, multicore CPUs, while the CPUs offer high single-

thread performance and programmability.

A vision of heterogeneous computer systems that incor-

porate diverse accelerators and automatically select the best

computational unit for a particular task is widely shared among

researchers and many industry analysts; however, there are

no agreed-upon benchmarks to support the research needed

in the development of such a platform. There are many

benchmark suites for parallel computing on general-purpose

CPU architectures, but accelerators fall into a gap that is

not covered by current benchmark suites or benchmark de-

velopment. There is a dearth of publicly available code for

heterogeneous platforms.

The Rodinia benchmark suite [8], a set of free and open

benchmarks and associated methodologies, was developed

to address these concerns. The Rodinia applications are de-

signed for heterogeneous computing infrastructures, and, using

OpenMP and CUDA, target both GPUs and multicore CPUs.

The implementations for each distinct platform can also serve

as independent suites to evaluate multicore and manycore

architectures separately. The Rodinia suite is structured to span

a range of parallelism and compute patterns, providing re-

searchers with various feature options to identify architectural

bottlenecks and to fine tune hardware designs.

Several multithreaded benchmark suites for multicore CPUs,

including SPLASH-2 [35], Parsec [5], and SPEC OMP [29],

are available. Rodinia was developed to address the issues

of benchmarking heterogeneous systems, particularly those

including a GPU. There is growing support for use of the

Rodinia workloads [6], [8]–[10], [24], but there are some

important questions yet to be answered:

• How much do those Rodinia workloads which are de-

signed for heterogeneous platforms (those with GPU

accelerators) differ from those of other suites designed

for multicore CPUs?

• Do the workload designs of other suites demonstrate

overlapping or orthogonal features?

• How well do the chosen applications span the workload

space?

• How well can traditional, multithreaded CPU workloads

map onto GPU platforms?

A better understanding of these issues will not only expand

the knowledge of parallel benchmark construction, but could

also inform decisions on workload scheduling and partitioning

on different architectures and guide researchers to choose

appropriate benchmarks for their research as well.

In this paper we make the following contributions:

• We present important extensions to the Rodinia bench-

mark suite that have been added since its initial publica-

tion at IISWC 2009 [8].

• We conduct a more detailed characterization of the Ro-

dinia GPU workloads to aid researchers in understanding

the characteristics of Rodinia.

• We evaluate the Rodinia benchmarks on a recently re-

leased NVIDIA GTX480, which is based on the Fermi

architecture with traditional L1 and L2 caches, identifying

some bottlenecks of the new GPU architecture.

• We perform an application space study, comparing the

multithreaded CPU implementations of Rodinia with

those of Parsec, and evaluate the extent to which the

program selections of the two suites overlap.

• We present analysis and discussion of important, open

research topics, including the need for new parallel per-

formance metrics, for an effective application taxonomy,

and for a general application space study of multithreaded

workloads, and we discuss the challenges that make

porting existing suites difficult.

II. OVERVIEW OF RODINIA

As apposed to Parsec and SPLASH-2, which target ho-

mogeneous platforms, Rodinia workloads are selected and

designed for heterogeneous computing platforms including

both CPUs and devices such as GPUs and FPGAs [10].

Rodinia not only covers applications from emerging domains

such as bioinformatics, data mining, and image processing,

but also includes the accelerator implementations of impor-

tant, classical algorithms like LU decomposition and graph

traversal. The Berkeley Dwarf taxonomy [1] was initially used

as a guideline to choose applications for Rodinia in order to

avoid missing important parallel patterns. Table I illustrates

the Rodinia applications and their corresponding domains and

Dwarves.

The Rodinia benchmarks are currently implemented in

OpenMP and CUDA. As OpenCL provides an attractive

alternative to CUDA, we are producing OpenCL ports, as

well; these are not complete, nor as mature as the OpenMP

and CUDA implementations. OpenCL and CUDA use very

similar sets of abstractions, such that CUDA is sufficient for

the characterization and diversity analysis presented in this

paper. We expect that our reported results will transfer directly

to the OpenCL ports when they are complete.

Rodinia has some important features that differentiate it

from other benchmark suites:

• Rodinia implementations take advantage of non-

traditional memory hierarchies, like scratchpad and

texture units, for general purpose computation. Cell and

ClearSpeed are two examples in a trend to use other types

of memories as alternatives to hardware-managed cache.

This trend in turn requires benchmark development to

keep up with such an evolution.

• Rodinia provides multiple versions of some applications,

with successive layers of optimization, allowing designers

to evaluate the impact of multiple different implementa-

tions on their architecture or compiler designs.

• Rodinia’s applications adopt an “offloading” model which

assumes that accelerators use a memory space disjoint

from main memory.

• Rodinia provides a set of applications from which it may

be relatively hard for compilers to automatically generate

accelerator code.

A. Rodinia Extensions

Since the release of the first version of Rodinia [8], we have

been adding applications to enrich the workload set. The newly

added applications include Heartwall-Tracking, LU Decom-

position, MUMmer and Computational Fluid Dynamics. The

major criterion applied in selecting these applications was their

use of advanced data structures. These data structures allow

the applications to demonstrate new types of parallelism and

inter-thread communications not seen in other members of the

Rodinia suite.

LU Decomposition (LUD): LU Decomposition is an algo-

rithm to calculate the solutions of a set of linear equations.

The LUD kernel decomposes a matrix as the product of a

lower triangular matrix and an upper triangular matrix. This

application has many row-wise and column-wise interdepen-

dencies and requires significant optimization to achieve good

parallel performance.

Motivation for inclusion: LU Decomposition exhibits sig-

nificant inter-thread sharing and row and column dependen-

cies.

Heartwall Tracking (HW): The Heart Wall [31] appli-

cation tracks the changing shape of the walls of a mouse

heart over a sequence of 104 ultrasound images, each with a

resolution of 609×590 pixels. In its initial stage, the program

performs several image processing passes—edge detection,

SRAD despeckling (part of Rodinia), morphological transfor-

mation, and dilation—on the first image in the sequence in

order to detect partial shapes of inner and outer heart walls.

To reconstruct approximated, full shapes of heart walls for

tracking purposes, the application generates ellipses that are

superimposed over the image and sampled to mark points

on the heart walls. In its final stage, the program tracks

the changing shapes of the two heart walls by detecting the

movement of certain sample points throughout the sequence

of images.

Motivation for inclusion: Heartwall Tracking presents a

pattern of braided parallelism—a mixture of data and task

parallelism—which is absent from other Rodinia benchmarks.

The application is coarsely parallelized according to indepen-

dent tasks (TLP); each task is then finely parallelized accord-

ing to independent data operations (DLP). The processing of

a frame is implemented as a single GPU kernel in order to

successfully implement braided parallelism and avoid kernel

launch overhead. This structure requires the inclusion of some

non-parallel computation into the kernel, leading to a slight

warp under-utilization but overall greater performance.

Computational Fluid Dynamics (CFD): The CFD solver

is an unstructured-grid, finite-volume solver for the three-

dimensional Euler equations for compressible flow. Effective

GPU memory bandwidth is improved by reducing total global

memory accesses and overlapping redundant computation, as

well as by using an appropriate numbering scheme and data

2

TABLE I
RODINIA APPLICATIONS AND KERNELS (‘*’ DENOTES KERNEL).

Application Dwarf Domain Problem Sizes

Kmeans Dense Linear Algebra Data Mining 204800 data points, 34 features

Needleman-Wunsch (NW) Dynamic Programming Bioinformatics 2048×2048 data points

HotSpot* (HS) Structured Grid Physics Simulation 500×500 data points

Back Propagation* (BP) Unstructured Grid Pattern Recognition 65536 input nodes

SRAD* Structured Grid Image Processing 512×512 data points

Leukocyte Tracking (LC) Structured Grid Medical Imaging 219×640 pixels/frame

Breadth-First Search* (BFS) Graph Traversal Graph Algorithms 1000000 nodes

Stream Cluster* (SC) Dense Linear Algebra Data Mining 65536 points, 256 dimensions

MUMmer (MUM) Graph Traversal Bioinformatics 50000 25-character queries

CFD Solver (CFD) Unstructured Grid Fluid Dynamics 97k elements

LU Decomposition* (LUD) Dense Linear Algebra Linear Algebra 256×256 data points

Heart Wall Tracking (HW) Structured Grid Medical Imaging 609×590 pixels/frame

layout. The CFD solver is released with two versions: one

with precomputed fluxes, and the other with redundant flux

computations. CFD is an implementation of the work by

Corrigan et al. [11].

Motivation for inclusion: The CFD implementation applies

data layout optimizations to reduce uncoalesced memory ac-

cesses to GPU memory. It also provides both single-precision

and double-precision floating point implementations for the

GPU, which allows users to analyze the trade-off between

performance and computational precision. Also, computational

fluid dynamics is widely regarded as a very important scientific

workload.

MUMmerGPU (MUMmer): MUMmerGPU, developed by

Schatz et al. [28], is an high-throughput, parallel, pairwise,

local-sequence alignment program. It uses the GPU to si-

multaneously align multiple query sequences against a single

reference sequence stored as a suffix tree encoded with 2D

textures. The tree of the reference sequence is constructed on

the CPU using Ukkonen’s Algorithm [33] and transferred to

the GPU along with the query sequences. The query sequences

are then transfered to the GPU, and are aligned with the tree

on the GPU.

Motivation for inclusion: The working set and code size

of MUMmer is significantly larger than other benchmarks,

stressing memory systems. Additionally, the suffix tree im-

plementation presents the challenge of mapping Mummer’s

data structures to a GPU computational model while utilizing

efficient data layouts.

TABLE II
GPGPU-SIM CONFIGURATIONS.

Parameter Value Parameter Value

Clock Frequency 2 GHz No. of CTAs/Core 8

No. of SMs 28 Number of Registers/Core 16384

Warp Size 32 Shared Memory/Core 32 kB

SIMD pipeline width 32 Shared Memory Bank Conflict True

No. of Threads/Core 1024 No. of Memory Channels 8

III. CHARACTERIZATION OF RODINIA

In this section, we characterize Rodinia’s applications in

terms of instructions per cycle (IPC), memory instruction mix,

and warp divergence. Our analysis shows that the Rodinia

applications demonstrate good diversity, and the addition of

Fig. 1. IPCs are measured over 8-shader and 28-shader configurations.

new benchmarks enriches the application coverage of the suite

beyond that of the previous Rodinia release [8]. We also use

Rodinia to benchmark the NVIDIA GeForce GTX480 GPU

(Fermi) targeting each of L1 and shared memory as preferred

configurations.

A. Experiment Setup

To measure the execution characteristics of the Rodinia

GPU benchmarks, we use GPGPU-Sim [2] from the University

of British Columbia. GPGPU-Sim provides a detailed simula-

tion model of a contemporary GPU capable of running CUDA

and OpenCL workloads. Table II shows the parameters we

used to configure the simulator.

Our GPGPU-Sim simulations did not use an L2 cache.

Table I lists input details for the Rodinia applications we used

in the simulations. In the Fermi benchmarking experiments,

we use an NVIDIA GeForce GTX480 with 15 streaming

multiprocessors (SMs) with a total of 480 1.4 GHz streaming

processors (SPs), and a 768 kB L2. Each SM has a 64 kB,

configurable, on-chip memory that can be configured as 48

kB shared + 16 kB L1 or as 16 kB shared + 48 kB L1. We

use NVIDIA CUDA 2.2 for the GPGPU-Sim simulations (the

simulator currently supports up to CUDA 2.3); for the GTX

480 experiments, we use CUDA version 3.0.

B. GPU Benchmark Results

Figure 1 shows the IPCs of each of the Rodinia benchmarks

measured with 28-shader—the default configuration provided

3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BP BFS CFD HW HS KM LC LUD MUM NW SRAD SC

Shared Tex Const Param Global/Local

Fig. 2. Memory operation breakdown in terms of shared, texture, constant,
parameter, and local or global memory instructions. “Param” memory refers
to parameters passed through the GPU kernel call, which we always treat as
cache hits [2].

by the GPGPU-Sim package [2] with a SIMD width of 32—

and 8-shader configurations. The IPCs with the 28-shader

configuration range from less than 100 in MUMmer and

Needleman-Wunsch) to more than 700 in SRAD, HotSpot, and

Leukocyte. The highest IPCs are usually due to massive paral-

lelism, better usage of memory locality, and good algorithmic

optimization [6], [8], [24], [31]. Low IPC can be attributed to

any of myriad faults: there is limited parallelism per iteration

in Needleman-Wunsch due to the dependencies of processing

data elements in a diagonal strip manner [9]; the overhead

of the GPU’s global memory accesses dominates Breadth-

First Search; and some applications present many divergent

branches. The benchmarks show high scalability across 8

and 28 shaders, except for those like MUMmer and Breadth-

First Search, which are limited by the global memory access

bandwidth, and like LUD with significant row and column

dependencies.

Many Rodinia benchmarks take advantage of the GPU’s

specialized memory spaces by localizing data access patterns

and inter-thread communication within thread blocks to take

advantage of the SM’s per-block shared memory. For read-

only data structures, binding to cached constant or texture

memory to reap the benefits of caching can provide significant

performance improvements. Figure 2 shows a breakdown of

different types of memory accesses. Applications such as Back

Propagation, HotSpot, Needleman-Wunsch and StreamCluster

make extensive use of shared memory. The performances of

Kmeans, Leukocyte and MUMmer are improved by taking

advantage of texture memory. Differing from Kmeans and

Leukocyte, Heartwall uses constant memory to store large

numbers of parameters which cannot be readily fit into shared

memory.

Figure 3 shows warp occupancies [2]—the average number

of active threads over all issued warps—over the entire runtime

of the benchmarks. In a SIMT model [25], the cores will

achieve the best performance when the threads within a SIMT

group follow the same execution path. For example, because

it must determine whether or not neighboring nodes have

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BP BFS CFD HW HS KM LC LUD MUM NW SRAD SC

1--8 9--16 17--24 25--32

Fig. 3. Warp occupancies show the numbers of active threads in an issued
warp over the entire runtime of the benchmark [2].

0.8

1

1.2

1.4

1.6

1.8

2

BP BFS CFD HW HS KM LC LUD MUM NW SRAD SC

4 channels 6 channels 8 channels

Fig. 4. Memory bandwidth improvements while increasing the number of
memory channels. All data is normalized to the 4-channel case.

been visited, Breadth-First Search contains many control flow

operations; hence the high number of low occupancy warps.

SRAD does not have much control flow; what of it there is

deals with the loading and processing data elements lying on

the boundaries between data blocks. Heartwall must determine

the specific operations to execute on the various regions of

the image, but this requires a relatively small portion of the

calculation, and the rest of the computation executes with little

control flow.

For applications other than Breadth-First Search, SRAD, and

Heartwall, unfilled warps are not due to branch divergence.

Only some of the threads in Back Propagation are active, due

to the parallel reduction; assuming a 16-element sum reduc-

tion, the number of active threads during the four iterations

are 8, 4, 2 and 1. A similar situation occurs in Needleman-

Wunsch, where, in each thread-block, the number of active

threads is less than 16. MUMmer, in particular, experiences

severe performance penalties because more than 60% of its

warps have less than 5 active threads [2].

Figure 4 shows the bandwidth improvement as we increase

the number of memory channels from 4 to 8. The benchmarks

which benefit most from this change include Breadth-First

Search, CFD and MUMmer. LUD and HotSpot, which take

advantage of shared memory locality, benefit less from in-

creased memory channels. For Kmeans and Leukocyte, little

4

improvement occurs with additional channels because we bind

their main data structures to texture memory and make use of

use constant memory.

C. Incrementally Optimized Versions

One important distinguishing characteristic of Rodinia is

its support for multiple versions of individual benchmarks.

These incremental versions are useful tools for architects and

compiler developers because they allow analysis of the impact

of hardware and software design choices on problems that are

fundamentally the same but differ in certain specifics. Incre-

mental versions can be used by programmers and compiler

developers as “road maps” for similar problems, to aid them

in getting from unoptimized to optimized or to evaluate their

own optimizations.

We are preparing to release incremental code versions of

Leukocyte, LUD, Needleman-Wunsch and SRAD. Table III

shows sample characteristics of two different versions of

SRAD and Leukocyte. We apply more shared memory opti-

mization on the second version of SRAD, thus increasing the

IPC from 404 to 748. Similarly, the performance of Leukocyte

version 2 is improved by reducing the percentage of long

latency global memory accesses through the use of persistent

thread blocks. Boyer et al. provide a detailed study on the

optimization of Leukocyte [6].

TABLE III
INCREMENTALLY OPTIMIZED VERSIONS OF SRAD AND LEUKOCYTE.

Benchmarks Statistics

SRAD

Version 1
IPC: 404, BW Utilization: 26%

Shared: 9.7%, Global: 49.3% (Mem. inst. mix)

Version 2
IPC: 748, BW Utilization: 34%

Shared: 28.9%, Global: 51.9%

Leukocyte

Version 1
IPC: 656, BW Utilization: 8%

Const: 54.1%, Tex: 22.7%, Global: 7.7%

Version 2
IPC: 707, BW utilization: 3%

Const: 65.1%, Tex: 34.7%, Global: 0.0%

D. Fermi Evaluation

Unlike the earlier G80 and Tesla products, NVIDIA’s Fermi

architecture includes traditional L1 and L2 caches. Each SM

has 64 kB of on-chip memory that can be configured as 48

kB of shared memory and 16 kB of L1 (shared bias), the

default configuration) or as 16 kB of shared memory and

48 kB of L1 (L1 bias. CUDA provides a new API func-

tion, cudaFuncSetCacheConfig(), to select the desired

configuration [13]. A unified L2 cache handles all memory

requests for data loads and stores, as well as all texture fetches.

Figure 5 shows the results obtained measuring the perfor-

mance of the Rodinia CUDA implementations on an NVIDIA

GeForce GTX480 GPU with each memory configuration. We

compare to the results on a GTX280 GPU with 240 1.3 GHz

SPs and 1 GB of device memory. All the measurements are

kernel execution times normalized to the GTX280. Excepting

LUD and Leukocyte, the total workload size of all benchmarks

is larger than the aggregate L1 capacity.

The performances of MUMmer and BFS, which have large

numbers of global memory accesses, improve by 11.6% and

Fig. 5. Normalized kernel execution time of the GPU implementations on a
GTX 280 and a GTX 480 (Fermi). Two configurations (L1 and shared bias)
are used for the GTX 480 measurements.

16.7% respectively after switching the configuration from

shared bias to L1 bias. Many Rodinia applications, including

SRAD, Needleman-Wunsch and Leukocyte, which are designed

to utilize shared memory well, expectedly prefer the shared

bias setting. LU Decomposition and StreamCluster show very

little performance variation between the two configurations.

E. GPU Sensitivity Study

To help architects achieve a desirable design, it is necessary

to identify key architectural parameters and understand how

benchmarks respond to changes in those parameters. Yi et

al. [36] proposed using the Plackett-Burman (PB) design

approach to determine the effect of a parameter on a pro-

cessor’s performance. Given n architectural parameters, PB

requires only approximately 2n simulations instead of the 2
n

required for brute-force full coverage. The downside of the

PB methodology is its inability to effectively quantify the

effects of all the interactions; however, Yi et al. show that

if an interaction between parameters was significant, it was

significant only because each of its constituent parameters was

individually significant.

We use the PB approach to evaluate a subset of GPU

architectural parameters that are important to performance.

The parameters we choose include core clock rate (1.2 GHz–

1.5 GHz), SIMD width (16–32), shared memory size (16 kB–

32 kB), bank conflict (on or off), register file size (16384–

32768 registers), number of threads (1024–2048), memory

clock (800 MHz–1 GHz), number of memory channels (4–

8), and DRAM bus width (4–8 bytes). We use GPGPU-sim to

configure these parameters and evaluate the resulting changes

of total execution cycles with the 11-column PB matrix.

SIMD width and the number of memory channels have the

largest impacts on benchmark performance, often demonstrat-

ing more than an order of magnitude greater effect than other

parameters; however, different applications show different

characteristics. For instance, SRAD makes extensive uses of

the shared memory; for this application, the configurations of

shared memory and the number of memory channels have sim-

ilar impact on performance. Similarly, shared memory bank

5

conflict, SIMD-width, and memory bandwidth demonstrate

similar influence on performance for Needleman Wunsch. This

is attributable to the fact that the current implementation

processes diagonal strips on a 16× 16 shared memory block,

which leads to copious bank conflict and suggests that we have

space for further optimization. The applications, including

Leukocyte and HotSpot, which have better on-chip data locality

or utilize texture memory units, are impacted only modestly

by changes to the memory interfaces.

Note that some complex interactions between parameters

cannot be captured by Plackett-Burman. For example, the

number of thread blocks that can be issued is often limited

by another resource limitation of the GPU (the number of

registers or threads, or the shared memory size). It is possible

that once limited by one constraint, providing extra resources

for structures does not lead to any performance improvement;

this is a question we plan to explore in future work.

IV. RODINIA AND PARSEC

This section answers several important questions: 1) How

do workloads, like Rodinia, which are designed for heteroge-

neous platforms differ from those of other suites designed for

multicore CPUs, like Parsec? 2) How well do the chosen ap-

plications span the workload space? 3) What aspects of Parsec

and Rodinia are differentiating? We hope that examination of

these questions may facilitate the improvement of workload

construction for multicore CPU and accelerator performance

analysis.

How to perform fair comparisons between accelerator and

CPU workloads running on different architectures is an open

research question, and one which we cannot adequately

address in this paper. Among the difficulties in heteroge-

neous, parallel benchmarking are the questions of 1) algo-

rithm choice: How alike are the underlying algorithms of

two different implementations? 2) optimization: What does

it mean to compare the quantity and quality of optimization

across heterogeneous platforms? 3) effort: If performance is

not the sole concern, the next item on the list is probably

cost or programmer effort. How difficult is an application to

implement [8]–[10]?

The Rodinia OpenMP and CUDA implementations are

developed congruously, using same algorithms with similar

levels of optimization; we reserve formal evaluation of their

similarity for future work. We use the Rodinia OpenMP

implementations to compare with the Parsec benchmarks in

this study. We apply principal component analysis (PCA) to

identify distinctions and also to characterize the workloads

in terms of cache behavior, working set, and other, similar

performance metrics.

A. Comparison of Rodinia and Parsec

Parsec, a benchmark suite jointly developed by Princeton

University and Intel, has been gradually gaining popularity

among users of multithreaded workloads. The suite includes

some workloads from emerging application domains and uses

some state-of-the-art software techniques. Bienia et al. [4]

TABLE IV
COMPARISON BETWEEN PARSEC AND RODINIA.

Features↓ \ Suite→ Parsec Rodinia

Platform CPU CPU and GPU

Programming Model Pthreads, OpenMP, and TBB OpenMP and CUDA

Machine Model Shared Memory Shared Memory and Offloading

Application Domains Scientific, Engineering, Finance, Multimedia Scientific, Engineering, Data Mining

Application Count 3 Kernels and 9 Applications 6 Kernels and 6 Applications

Optimized for. . . Multicore Manycore and Accelerator

Incremental Versions No Yes

Memory Space HW Cache HW and SW Caches

Problem Sizes Small–Large Small–Large

Special SW Techniques SW Pipelining Ghost-zone and Persistent Thread Blocks

Synchronization Barriers, Locks, and Conditions Barriers

compare SPLASH-2 and Parsec to determine the extent of fea-

ture overlap, and conclude that the workloads have significant

differences. Many Parsec workloads have larger working sets

than those in SPLASH-2, useful in the face of the scientific

trend toward massive data growth. Other work compares the

communication characteristics of SPLASH-2 and Parsec [34]

and examines the behavior of Parsec on real hardware [3].

Table IV provides a high-level overview of the differing

design focuses of Parsec and Rodinia, while Table V provides

some more specific details on Parsec. In the previous sections,

we discussed several aspects of Rodinia which distinguish it

from other benchmark suites; here we provide some more

discussion on the topic, specifically with respect to Parsec.

Parsec provides a rich set of features that support fine-

grained parallelism (locks), languages (TBB, OpenMP, and

Pthreads), and large code bases. Rodinia currently focuses

only on OpenMP workloads for the CPU implementations.

The use of fine-grained parallelism in Rodinia, even in CPU

implementations, is restricted by our desire to maintain algo-

rithmic congruence with the CUDA ports given the fact that

CUDA supports only barrier synchronization within a thread

block [22] and global synchronization at kernel exit or when

using a global synchronization primitive. In the construction

of the Rodinia benchmark suite, we also consider Parsec

workloads. We include StreamCluster in Rodinia, but find that

those benchmarks relying on task pipelining, like Ferret, do

not port well unless each stage is also heavily parallelizable.

B. Methodology

To compare Rodinia and Parsec, we adopt the methodology

and metrics of Bienia et al. [4] in their SPLASH-2 and Parsec

comparison, so that the reported results are cross-comparable.

The points of comparison include instruction mix (including

ALU, branch, and memory instructions), working set (cache

misses per memory reference), and sharing behavior (the

fraction of cache lines shared, and the number of accesses

to shared lines per memory reference). Our experiments use

eight cache sizes, ranging from 128 kB to 16 MB, and measure

the sharing and the working set behavior. We adopt a similar

cache structure to that used by Bienia et al. as well, an 8-

core processor with a single cache shared by all cores. The

cache is 4-way associative with 64 byte lines. All programs

are compiled with gcc 4.2.1 with OpenMP or Pthreads.

All data is obtained with Pin [23]. Pin is a dynamic,

binary instrumentation tool that instruments an application that

executes on Intel processors. It provides an infrastructure for

6

TABLE V
PARSEC APPLICATIONS AND SIM-LARGE INPUT SIZES. [3], [4]

Application Application Domain Problem Size Description

Blackscholes Financial Analysis, Algebra 65,536 options Portfolio price calculation using Black-Scholes PDE

Bodytrack Computer Vision 4 frames, 4,000 particles Computer vision, tracks 3D pose of human body

Canneal Engineering 400,000 elements Synthetic chip design, routing

Dedup Enterprise Storage 184 MB Pipelined compression kernel

Facesim Animation 1 frame, 372,126 tetrahedrons Physics simulation, models a human face

Ferret Similarity Search 256 queries, 34,973 images Pipelined audio, image and video searches

Fluidanimate Animation 5 frames, 300,000 particles Physics simulation, animation of fluids

Freqmine Data Mining 990,000 transactions Data mining application

StreamCluster Data Mining 16,384 points per block, 1 block Kernel to solve the online clustering problem

Swaptions Financial Analysis 64 swaptions, 20,000 simulations Computes portfolio prices using Monte-Carlo simulation

Vips Media Processing 1 image, 26,625,500 pixels Image processing, image transformations

X264 Media Processing 128 frames, 640,360 pixels H.264 video encoder

writing program analysis tools, called Pin tools. Instruction

mix is obtained using the mix-mt tool provided with the Pin

package. We developed our own Pin tool, based on the cache

tool in Pin, with support for multithreaded workloads to collect

cache behavior characteristics.

C. Principal Component Analysis and Measuring Similarity

Principal components analysis (PCA) is a statistical, data

analysis technique that reduces a data set’s dimensionality and

removes correlation from the data set while controlling the

amount of information lost. PCA computes n new variables,

called principal components, which are linear combinations

of n original variables, such that all principal components are

uncorrelated. The first of the resulting orthogonal principal

components exhibits the largest variance, followed by the

second, followed by the third, and so on [15]. After performing

PCA, we cluster to find equivalence classes of programs

with similar characteristics. PCA has been widely applied

for benchmark comparison [4], [15], [18], [26] in similar

contexts; however, the question of how to perform more fair

and accurate evaluation and comparison of benchmarks is an

open one and beyond the scope of this paper.

To measure the similarity among benchmarks, we use

classical hierarchical clustering analysis. Similar approaches

have been used in other recent performance analysis work.

Clusters are formed in such a way that data objects in the same

cluster are very similar and data objects in different clusters

are very distinct. We use the MATLAB [32] statistics toolbox

to process the data for the collected characteristic values for all

the benchmarks. The algorithm involves finding the similarity

or dissimilarity between every pair of data objects in the data

set using distance functions and grouping the objects into

a binary, hierarchical cluster tree. Dendrograms are used to

illustrate our results.

V. ANALYSIS

Here we present the results of our principal component

analysis.

A. Hierarchical Clustering

Figure 6 shows the overlap of the two program collections.

In the figure, the magnitude of the link between any two nodes

(or clusters of nodes) quantifies the measure of dissimilarity

2468101214

facesim(P)

fluidanimate(P)

ferret(P)

dedup(P)

srad(R)

freqmine(P)

bfs(R)

raytrace(P)

x264(P)

bodytrack(P)

leukocyte(R)

kmeans(R)

cfd(R)

blackscholes(P)

vips(P)

hotspot(R)

swaptions(P)

lud(R)

canneal(P)

backprop(R)

nw(R)

streamcluster(R, P)

mummergpu(R)

heartwall(R)

Fig. 6. A dendrogram showing the similarity between the Parsec (P) and
Rodinia (R) workloads. The x axis represents the linkage distance in the PCA
coverage space, which has no obvious physical analog.

between those nodes; thus, Leukocyte and Bodytrack are fairly

similar, while Heartwall differs significantly from all other

compared benchmarks; and MUMmer and Swaptions, while

spatially close in the figure, are more dissimilar than HotSpot

and Facesim. From this dendrogram, it is evident that the two

benchmark suites cover similar application spaces, with most

clusters containing both Rodinia and Parsec applications. Also

note that the new applications added to Rodinia, namely CFD,

LUD,MUMmer, and Heartwall, enrich the original application

set, with the latter two significantly different from all others.

We also perform an analysis of some subsets of our char-

acteristics: instruction mix, cache miss rate, and data sharing

behavior. Instruction mix is an interesting metric because it

represents a set of fundamental program characteristics and

the utilization of various hardware components, while the

cache miss rate characterizes data locality and reuse, and an

application’s sharing behavior is important to multithreading

workloads and communications [4].

Figures 7, 8 and 9 show the instruction mix, working set and

sharing behaviors of the programs as is similarly shown in the

Parsec and SPASH-2 comparison [4]. In Figure 7, Parsec and

Rodinia demonstrate disparate behavior, with Breadth-First

Search, Back Propagation, and HotSpot from Rodinia, and

Raytrace, Ferret, Bodytrack, and StreamCluster from Parsec

7

−2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5 bfs

hotspot

backprop

cfd

ferret

raytrace

bodytrack

streamcluster

1st Principal Component

2
n
d
 P

ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

Fig. 7. The instruction mix plot using two PCA components for Parsec (dots)
and Rodinia (crosses).

tending to populate different areas in the space. In the working

set plot of Figure 8, there are several Parsec and Rodinia

benchmarks that are clear outliers from the main cluster;

MUMmer is a significant outlier, which correlates with its

high miss rates. The miss rates—given in cache misses per

memory reference—of all the benchmarks under a 4 MB cache

configuration are shown in Figure 10. Figure 9 shows similar

behavior—data sharing, now, rather than working set size—

with Heartwall significantly different from the rest. Looking

back at Figure 6, Heartwall and MUMmer are the most

disparate benchmarks in the suite; something which is backed

up by this series of figures.

As is evident from these figures, Rodinia clearly provides a

good workload mix for multicore CPUs. Additionally, Parsec

and Rodinia demonstrate features that complement with each

other, suggesting that researchers should consider both of

them, possibly as well as other benchmark suites, to ensure a

reasonable application coverage for their work.

B. Clustering Discussion

How well is the application space covered by the two

suites?

— Our clustering analysis shows that Parsec and Rodinia

cover similar application spaces. This does not imply that

using either or both of them is sufficient for research. Consider

the blank regions in the PCA coverage spaces of Figures 7, 8,

and 9; it is unclear whether these regions can be covered by

other real-world workloads or benchmark suites. This implies

that a thorough examination requires a comprehensive evalu-

ation and comparison of all the current multithreaded bench-

mark suites, including SPLASH-2 and various domain-specific

workloads, to establish a single set of workloads with sufficient

coverage and little redundancy. Previous work performs such

studies but only on single-threaded benchmarks [18], [26],

while this is an open problem in heterogeneous environments.

−2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

streamcluster

canneal

backprop

nw

mummer

1st Principal Component

2
n
d
 P

ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

Fig. 8. The working set plot using two PCA components for Parsec (dots)
and Rodinia (crosses).

−4 −2 0 2 4 6 8 10 12 14
−6

−4

−2

0

2

4

6

streamcluster

vips

swaptions

blackscholes

lud

heartwall

hotspot

1st Principal Component

2
n
d
 P

ri
n
c
ip

a
l
C

o
m

p
o
n
e
n
t

Fig. 9. The sharing plot using two PCA components for Parsec (dots) and
Rodinia (crosses).

The metrics evaluated in this work are important for mul-

tithreaded program behavior [4]. On the other hand, other

potentially important metrics may indicate other crucial differ-

ences between benchmarks. It is an area of ongoing research

to develop a set of metrics which are able to capture most

behaviors of multithreaded workloads. Host et al. [15] propose

a set of microarchitecture-independent workload characteris-

tics to profile single-threaded applications, and which are also

useful for performance prediction [16]. A set of metrics for

multithreaded workloads are needed.

Can the Parsec workloads be effectively mapped to het-

erogeneous platforms?

— Our clustering results indicate that, except for a few

8

Fig. 10. The miss rates of Rodinia and Parsec [4] benchmarks under a 4
Mb cache configuration.

outliers, the heterogeneous workloads we developed for Ro-

dinia are not fundamentally different from those of Parsec,

developed for multicore CPUs. This, however, does not imply

that since all the Rodinia benchmarks map well to the GPU

platform, the same will be true of the Parsec benchmarks. We

have found many challenges in the task of porting traditional,

multithreaded, CPU workloads onto heterogeneous platforms.

Some issues which make this less than straightforward:

• Library Modules: Application development depends

upon libraries and reuse for productivity and maintain-

ability. This poses a potentially large challenge in porting

CPU applications to accelerators. Though it is possible to

implement each library module on the GPU, for example,

the cost of maintaining modularity is the possibly resul-

tant overhead of GPU kernel call invocation and memory

transfer between the CPU and the GPU. To achieve better

performance for GPU applications, optimization some-

times requires cross-function algorithmic reorganization,

or the division of a logical function into multiple kernels.

• Synchronization: Many Parsec applications heavily rely

on fine-grained synchronization primitives, such as mu-

texes [5]. For some applications, like StreamCluster, it

is relatively easy to reorganize for the GPU, while for

others, it is non-trivial; especially in those applications

using the software pipelining model, including Dedup

and Ferret, which require significant algorithmic reorga-

nization. The difficulty in supporting these primitives is

directly attributable to the GPU’s limited synchronization

capabilities. On the GPU, synchronization within a thread

block is provided, and global synchronization is achieved

via a barrier primitive. The latest CUDA versions also

provide a primitive for an on-chip, global memory fence

which, unfortunately, requires restructuring of applica-

tions such that thread blocks are persistent during the

entire program execution. Locks across thread blocks are

non-trivial to implement, and performance benefits are

not guaranteed.

Are existing application classification taxonomies suffi-

cient to differentiate application characteristics?

Several approaches have been proposed for classifying

applications based on their memory access and execution pat-

terns, including the Berkeley Dwarves [1] and Intel’s Recog-

nition, Mining and Synthesis (RMS) [21]. Rodinia and Parsec

were designed with the Dwarves and RMS as guidelines,

respectively. Although these taxonomies are defined at a high

level of abstraction to provide useful guiding principals and to

allow users to effectively reason about program behavior, our

work, often with multiple instances of a single Dwarf, suggests

that the Dwarf taxonomy alone may not be sufficient to ensure

adequate diversity, and that some important behaviors may not

be captured by the Dwarves.

As shown in Figure 6, for Structured Grid applications,

stencil-type workloads, such as SRAD and Fluidanimate,

are quite similar. However, applications such as HotSpot,

Leukocyte, and Heartwall are located in different clusters,

with Heartwall significantly different from the others. Back

Propagation and CFD are both from the Unstructured Grid

Dwarf and show significant differences. The Graph Traversal

applications, MUMmer and Breadth-First Search, are also very

dissimilar.

Even applications from the same application domain are

quite different; for example, the two fluid dynamics applica-

tions, Parsec’s Fluidanimate and Rodinia’s CFD differ more

than Fluidanimate and Facesim, the latter members of different

Dwarves. Also, two data mining benchmarks, Kmeans and

StreamCluster, both of which rely on distance-based cluster-

ing, lie far apart in the binary clustering tree.

C. Instruction and Data Footprints

Fig. 11. The numbers of 64-byte instruction blocks touched during the
program execution.

Figures 11 and 12 illustrate the instruction and data foot-

prints of Parsec and Rodinia. The figures show the number

of 64-byte instruction blocks and 4 kB data blocks touched

during the entire program execution [18]. Figure 12 shows that

both Parsec and Rodinia use large working sets, but, with the

exception of MUMmer, Parsec applications tend to have larger

instruction footprints, or code sizes, than Rodinia workloads.

9

There is a related, open question in workload characteri-

zation, that of the difference between “big” applications and

“small” ones, or, in other words, between applications and

kernels. Better understanding this issue requires finding the

“building blocks” of the applications and a method to correlate

applications with constituent kernels. Carrington et al. [7]

did this in the HPC domain, but some more sophisticated

approaches are needed for higher prediction accuracy.

VI. RELATED WORK

The Parsec benchmark suite [5] includes emerging ap-

plications from finance, multimedia, and data mining. Par-

sec benchmarks utilize relatively large working sets and are

developed with state-of-the-art software techniques such as

software pipelining. Some earlier benchmark suites include

SPLASH-2 [35] and SPEC OMP2001 [29], consisting of

general-purpose workloads focusing on science, engineer-

ing, and graphics. BioParallel [17], ALPBench [20], and

MineBench [27] target specific application domains.

Parboil [30] and SHOC [12] are two efforts to benchmark

GPUs, but the former does not provide any diversity analysis

and the latter targets systems with multiple GPU nodes.

Bakhoda et al. developed GPGPU-Sim [2] and use it to

analyze various CUDA programs. Hong et al. developed an an-

alytical model to predict GPU performance [14] and proposed

metrics to represent degree of warp-level parallelism. Kerr et

al. proposed a set of metrics for GPU workloads [19] and use

these metrics to analyze the behavior of GPU programs. They

also use these metrics combined with PCA and regression

modeling to predict GPU performance. Rodinia is distinct

from these works primarily in that it is designed to provide

implementations with diverse parallel execution patterns, opti-

mizations, and software mappings, in addition to its ability to

compare platforms, a crucial capability for tackling the design

challenges of future parallel and heterogeneous systems.

Fig. 12. The number of 4 kB data blocks touched during the program
execution.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we performed a detailed characterization of

Rodinia, designed to let researchers better understand this col-

lection of benchmarks and to show that the new applications—

Heartwall, CFD, LUD, and Mummer—enrich the diversity of

Rodinia.

We also compared Rodinia with Parsec. Some important

differences we observe show the importance of measuring how

well existing suites span the design space and the importance

of using applications from different suites together.

Our experimental results show that Rodinia applications

demonstrate a good mixture of diversity in terms of both

basic program characteristics and how they stress accelerator

architectures. Our applications demonstrate multiple degrees

of data parallelism, branch divergence, and sensitivity to

memory constraints.

Directions for future work include:

• conducting more detailed characterizations on the Ro-

dinia GPU implementations, such as branch divergence

sensitivity, data sharing among threads, and the impact

of hardware thread scheduling mechanisms.

• identifying a set of metrics to quantify the extent to which

the same algorithm exhibits different properties when

implemented on different architectures.

• performing an application-space coverage study of exist-

ing multithreaded workloads.

• correlating program characteristics across the CPU and

the GPU, as well as across big applications and small

kernels.

• adding new features to the suite, including support for

OpenCL and simultaneous kernel execution.

ACKNOWLEDGEMENTS

This work is supported by NSF grant nos. IIS-0612049,

CNS-0916908 and CNS-0615277, a grant from the SRC

under task no. 1607, and grants from NVIDIA Research and

NEC labs. We would like to acknowledge George Mason Uni-

versity who allowed us to use their CFD application, and the

University of Maryland who contributed their MUMmerGPU

implementation.

REFERENCES

[1] K. Asanovic et al. The landscape of parallel computing research: A
view from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[2] A. Bakhoda, G. L. Yuan, W. L. Fung, H. Wong, and T. M. Aamodt.
Analyzing CUDA workloads using a detailed GPU simulator. In
Proceedings of 2009 IEEE International Symposium on Performance

Analysis of Systems and Software, April 2009.
[3] M. Bhadauria, V. M. Weaver, and S. A. McKee. Understanding PARSEC

performance on contemporary CMPs. In Proceedings of the IEEE

International Symposium on Workload Characterization, Oct 2009.
[4] C. Bienia, S. Kumar, and K. Li. PARSEC vs. SPLASH-2: A quan-

titative comparison of two multithreaded benchmark suites on chip-
multiprocessors. In Proceedings of the IEEE International Symposium

on Workload Characterization, Sep 2008.
[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark

suite: Characterization and architectural implications. In Proceedings

of the 17th International Conference on Parallel Architectures and

Compilation Techniques, Oct 2008.

10

[6] M. Boyer, D. Tarjan, S. T. Acton, and K. Skadron. Accelerating
Leukocyte tracking using CUDA: A case study in leveraging manycore
coprocessors. In Proceedings of the 23rd International Parallel and

Distributed Processing Symposium, May 2009.
[7] L. Carrington, M. Laurenzano, A. Snavely, R. Campbell, and L. Davis.

How well can simple metrics represent the performance of HPC ap-
plications? In Proceedings of the 2005 ACM/IEEE Conference on

Supercomputing, Nov 2005.
[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, Lee S-H, and

K. Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In Proceedings of the IEEE International Symposium on Workload

Characterization, Oct 2009.
[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron.

A performance study of general purpose applications on graphics
processors using CUDA. Journal of Parallel and Distributed Computing,
68(10):1370–1380, 2008.

[10] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach. Accelerating
compute intensive applications with GPUs and FPGAs. In Proceedings

of the 6th IEEE Symposium on Application Specific Processors, June
2008.

[11] Andrew Corrigan, Fernando Camelli, Rainald Löhner, and John Wallin.
Running unstructured grid cfd solvers on modern graphics hardware. In
19th AIAA Computational Fluid Dynamics Conference, June 2009.

[12] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter. The scalable HeterOgeneous
computing (SHOC) benchmark suite. In Proceedings of Third Workshop

on General-Purpose Computation on Graphics Processing Units, Mar
2010.

[13] NVIDIA CUDA Programming Guide. Web resource. http://developer.
nvidia.com/object/gpucomputing.html.

[14] S.P Hong and H.S Kim. An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness. In Proceedings of

the 36th International Symposium on Computer Architecture, June 2009.
[15] K. Hoste and L. Eeckhout. Microarchitecture-independent workload

characterization. IEEE Micro, 27(3):63–72, 2007.
[16] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and

K. De Bosschere. Performance prediction based on inherent program
similarity. In Proceedings of the 15th International Conference on

Parallel Architectures and Compilation Techniques, Sept 2006.
[17] A. Jaleel, M. Mattina, and B. Jacob. Last level cache (LLC) performance

of data mining workloads on a CMP - a case study of parallel bioinfor-
matics workloads. In Proceedings of the 12th International Symposium

on High-Performance Computer Architecture, Feb 2006.
[18] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John. Measuring

benchmark similarity using inherent program characteristics. IEEE

Transactions on Computers, 55(6):769–782, 2006.
[19] A. Kerr, G. Diamos, and S. Yalamanchili. A characterization and

analysis of PTX kernels. In Proceedings of the 2009 International

Symposium on Workload Characterization, Oct 2009.
[20] M. Li, R. Sasanka, S. V. Adve, Y. Chen, and E. Debes. The ALPBench

benchmark suite for complex multimedia applications. In Proceedings of

the 2005 IEEE International Symposium on Workload Characterization,
Oct 2005.

[21] B. Liang and P. Dubey. Recognition, mining and synthesis moves
computers to the era of Tera. Technology@Intel Magazine, Feb 2005.

[22] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla:
A unified graphics and computing architecture. IEEE Micro, 28(2):39–
55, 2008.

[23] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Janapa, and K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In Proceedings of the

2005 ACM SIGPLAN Conference on Programming Language Design

and Implementation, June 2005.
[24] J. Meng and K. Skadron. Performance modeling and automatic ghost

zone optimization for iterative stencil loops on GPUs. In Proceedings

of the 23rd Annual ACM International Conference on Supercomputing,
June 2009.

[25] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with CUDA. ACM Queue, 6(2):40–53, 2008.

[26] A. Phansalkar, A. Joshi, and L. K. John. Analysis of redundancy and
application balance in the SPEC CPU2006 benchmark suite. In Pro-

ceedings of the 34th International Symposium on Computer Architecture,
June 2007.

[27] J. Pisharath, Y. Liu, W. Liao, A. Choudhary, G. Memik, and J. Parhi.
NU-MineBench 2.0. Technical Report CUCIS-2005-08-01, Department
of Electrical and Computer Engineering, Northwestern University, Aug
2005.

[28] M. C. Schatz, C. Trapnell, A. L. Delcher, and A. Varshney. High-
throughput sequence alignment using graphics processing units. BMC

Bioinformatics, 8(1):474, 2007.
[29] The Standard Performance Evaluation Corporation (SPEC). Web re-

source. http://www.spec.org.
[30] Parboil Benchmark suite. Web resource. http://impact.crhc.illinois.edu/

parboil.php.
[31] L. G. Szafaryn, K. Skadron, and J. J. Saucerman. Experiences accel-

erating MATLAB systems biology applications. In Proceedings of the

Workshop on Biomedicine in Computing: Systems, Architectures, and

Circuits, June 2009.
[32] MATLAB Statistics Toolbox. Web resource. http://www.mathworks.

com.
[33] E. Ukkonen. On-line construction of suffix trees, 1995.
[34] N. B. Williams, C. Fensch, and S. Moore. A communication charac-

terization of SPLASH-2 and PARSEC. In Proceedings of the IEEE

International Symposium on Workload Characterization, Oct 2009.
[35] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-

2 programs: Characterization and methodological considerations. In
Proceedings of the 22nd Annual International Symposium on Computer

Architecture, June 1995.
[36] J. J. Yi, D. J. Lilja, and D. M. Hawkins. A statistically rigorous approach

for improving simulation methodology. In Proceedings of the Ninth

International Symposium on High Performance Computer Architecture,
Feb 2002.

11

