
Graphics Hardware (2007)

Timo Aila and Mark Segal (Editors)

A Hardware Redundancy and Recovery Mechanism for

Reliable Scientific Computation on Graphics Processors

Jeremy W. Sheaffer1 David P. Luebke2 Kevin Skadron1

1University of Virginia 2NVIDIA Research

Abstract

General purpose computation on graphics processors (GPGPU) has rapidly evolved since the introduction of

commodity programmable graphics hardware. With the appearance of GPGPU computation-oriented APIs such

as AMD’s Close to the Metal (CTM) and NVIDIA’s Compute Unified Device Architecture (CUDA), we begin to

see GPU vendors putting financial stakes into this non-graphics, one-time niche market. Major supercomputing

installations are building GPGPU clusters to take advantage of massively parallel floating point capabilities, and

Folding@Home has even released a GPU port of its protein folding distributed computation client. But in order for

GPGPU to truly become important to the supercomputing community, vendors will have to address the heretofore

unimportant reliability concerns of graphics processors. We present a hardware redundancy-based approach to

reliability for general purpose computation on GPUs that requires minimal change to existing GPU architectures.

Upon detecting an error, the system invokes an automatic recovery mechanism that only recomputes erroneous

results. Our results show that our technique imposes less than a 1.5× performance penalty and saves energy for

GPGPU but is completely transparent to general graphics and does not affect the performance of the games that

drive the market.

1. Introduction

Exponential device scaling has produced incredible ad-

vances in the capabilities of today’s computing infrastruc-

ture. Graphics processors have taken advantage of these

scaling trends to achieve dramatic increases in throughput.

Semiconductor devices, however, have now become so small

that they are vulnerable to transient faults caused by cosmic

and terrestrial radiation; and to noise due to crosstalk, di/dt

induced voltage droop, and parameter variations. As the im-

portance of these phenomena all grow exponentially with

decreased feature size or supply voltage [SABR04], the ‘free

lunch’ of Moore’s Law for graphics architects approaches its

end. Future designs must be more aware of such low-level

physical challenges.

1.1. The Case for Redundant GPUs

Graphics processors provide cheap, commodity access to

floating point throughput that until recently was only avail-

able in supercomputers. New GPGPU APIs like CUDA and

CTM ease the retargeting of traditional supercomputing ap-

plications, like cosmological n-body simulations and nu-

clear testing, to GPUs. Increased programmability will lead

to adoption, and in turn to the development of new super-

computing infrastructure built on GPU technology at much

higher performance per dollar than can be achieved with cur-

rent systems.

NVIDIA’s GeForce 8800 GTX GPU produces a theoreti-

cal maximum of 346 GFLOPS, almost double the through-

put of the fastest supercomputer in the world only a little

over a decade ago [TOP94]. With this kind of processing

power, even lower budget organizations are starting to look

toward GPUs as a platform for highly parallel, compute in-

tensive, vertical market applications with the aim of moving

batch processing online and away from more costly, cluster

based solutions. One example of a new market where GPUs

are starting to make inroads is that of radiology, where GPUs

are employed for medical image processing. This is a do-

main in which errors are often very costly, both in financial

terms and liability, and potentially also in human life. Erro-

neous computation can lead to death.

ECC in memory systems for these critical applications is

a necessity, but it is not sufficient. An error can occur in con-

Copyright c© 2007 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or class-

room use is granted without fee provided that copies are not made or distributed for

commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be hon-

ored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee. Re-

quest permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

GH 2007, San Diego, California, August 04 - 05, 2007

c© 2007 ACM 978-1-59593-625-7/07/0008 $ 5.00

mailto:permissions@acm.org


J. W. Sheaffer, D. P. Luebke & K. Skadron / A Hardware Redundancy and Recovery Mechanism for Reliable GPGPU

trol or logic that silently and undetectably corrupts compu-

tation outside of the auspices of any memory protections.

Transient errors in logic are not yet prevalent, but rates are

increasing exponentially with each generation and logic er-

rors are expected to become a significant concern in practice

within the next three to five years [SABR04].

To achieve reliability, logical structures must be protected

with redundancy. Possible ways to build a redundantly reli-

able GPU-based system include replicating the entire com-

putation (temporal redundancy) or using two GPUs (spatial

redundancy) and comparing the result. Both of these involve

a 2× overhead, either in time or space respectively, plus

comparison time, in the expected, no-error case. Architec-

tural solutions place the redundancy on-chip, but must an-

swer more complicated questions about what hardware will

fall within or without the sphere of replication, and how to

ensure that the likelihood of a silent data corruption is mini-

mized.

In this paper we explore the concept of the sphere of

replication—the set of hardware which must be copied or

replicated for parallel, redundant execution in a redundantly

reliable processor—as it applies to general purpose and sci-

entific computation on graphics hardware. We discuss the

array of possibilities for the sphere of replication and choose

one solution which uses the existing parallelism of the frag-

ment shader cores as redundantly parallel processors. This

paper shows how a commodity GPU architecture can be

modified in a few simple ways to create a dual purpose GPU

that loses no performance in graphics while providing redun-

dancy for reliable GPGPU. With dual issue of each fragment

from the rasterizer, our solution takes advantage of high

temporal locality of identical fragments, pushing up texture

cache hit rates and allowing computation to complete usu-

ally with less than 1.5× overhead, all while saving energy

when compared with a naïve reliable system. Furthermore,

we provide a simple mechanism for reissue of detected er-

rors that does not impact the critical path bandwidth of the

system.

1.2. Overview

A transient, single bit corruption in a microelectronic cir-

cuit is termed a soft error. Soft errors have long been an

important design constraint in general purpose processor de-

sign, especially in engineering reliable memory systems for

enterprise servers. The common wisdom is that this prob-

lem is a non-issue for graphics processors, and in previ-

ous work we showed that this common wisdom usually,

but not always, holds for GPUs in general graphics appli-

cations [SLS06]; however, soft error rates are projected to

continue their current trend of increasing at a rate of about

8% per technology generation [HKM∗03]—making soft er-

ror rates at 16-nm nearly 100 times that of the 180-nm

generation [Bor05]—and they are already causing notice-

able problems and real concerns for GPGPU developers.

The Folding@Home GPU client has now been in distribu-

tion for 6 months, running on approximately 500 GPUs.

Over this sample set, Folding@Home has shown a failure

rate of approximately 1% [Hou07]. This number may seem

high; however, note that Folding@Home users are compet-

ing to complete work units, thus many overclock their GPUs,

which certainly impacts reliability.

A soft error is distinguished from a hard error by its tran-

sient nature—a soft error is random, temporary, and unpre-

dictable. Soft errors are referred to by several names, includ-

ing transient fault, transient error, and single event upset

(SEU). While these are often used interchangeably, there are

subtle differences in meaning. ‘Soft error’ and ‘SEU’ have

classically referred only to radiation-induced transient faults,

which are not of great concern with respect to logic. ‘Tran-

sient fault’ and ‘transient error’ are more general terms that

include soft errors.

Not all errors are cause for concern. If errors do not matter

for architecturally correct execution (ACE)—in other words,

if they do not affect the final outcome of a computation—

they are harmless. An error might be harmless, for example,

if it strikes a storage location that is not currently in use (i.e.,

not ACE). The greatest worry of a user who desires reliabil-

ity is of a silent data corruption, or an error that corrupts a

result but gives no indication that anything is amiss.

The dominant metric for quantifying the chance of an er-

ror as a result of a transient fault is the Architectural Vulner-

ability Factor or AVF [MER05]. The AVF of a structure is

a fraction from zero to one which represents the likelihood

that a transient fault in that structure will lead to a computa-

tional error. AVF takes into account the total amount of time

that each bit can contribute to a computation, the total num-

ber of bits in the structure, and the size of the structure. More

formally, Architectural Vulnerability Factor is:

AVF =

∑b∈B tb

|B|×∆t
(1)

where B is the set of all bits in the structure, tb is the total

time that bit b is ACE, and ∆t is the total time necessary to

complete the computation.

In general-purpose computer systems, any ACE bit must

be assumed important. Even a single error in a low-order

bit in a commercial or scientific computation can invalidate

a computation. What makes graphics hardware unusual is

that most state on the graphics card—despite being tech-

nically ACE—can tolerate some degree of error. In graph-

ics domains, errors only matter if they affect the user’s per-

ceived experience. An error in a single pixel, for example,

may not be noticeable even if it changes the color from

white to black. Errors in other state may create more visi-

ble errors, but if those errors only last a single frame, the

harm is minor. These observations led to the development of

c© Association for Computing Machinery, Inc. 2007.



J. W. Sheaffer, D. P. Luebke & K. Skadron / A Hardware Redundancy and Recovery Mechanism for Reliable GPGPU

the Visual Vulnerability Spectrum for characterizing archi-

tectural vulnerability for graphics hardware under graphics

workloads [SLS06].

The Visual Vulnerability Spectrum makes it clear that full

protection of the graphics pipeline is neither necessary nor

desirable for reliable rendering; however, this observation

obviously does not apply to graphics hardware used in non-

visual applications, like GPGPU, where CPU error metrics

are applicable. Games are still the driving economic force

behind GPU development, but as the introduction of GPGPU

APIs like CTM and CUDA indicate and as is evident by

the work at various National Labs and other supercomput-

ing facilities to build supercomputers of commodity graphics

hardware, these GPGPU applications are now of sufficient

commercial value that it is worth thinking about what can

be done to make GPUs more reliable for scientific computa-

tion. Early adopters, like Folding@Home, are demonstrating

sufficiently high error rates that it may deter followers until

reliability can be assured.

2. CPU Reliability

CPU redundancy literature primarily focuses on minimiz-

ing the computation necessary for reliability with techniques

like Redundant Multithreading (RMT), where a primary

thread of computation fully computes a result and a sec-

ondary thread recomputes as little as possible while main-

taining reliability before both results are sent to a com-

parator. Recovery from detected logical errors is largely

untouched in the literature, with some notable excep-

tions [GSVP03, VPC02]. The concept of memoizing and

caching instructions and results so that repeated computation

can be bypassed is an important technique in redundancy

because it actually reduces the number of instructions exe-

cuted [PGS04], while more typical solutions do not.

The ways in which computational redundancy is used to

protect logic vary over a wide spectrum. At one end lies

triplicate replication in Triple Modular Redundancy, which

includes both redundancy and recovery in one package. In

a triple modularly redundant solution, all components are

replicated in triplicate, and a comparator accepts votes from

each module. This technique relies on the fact that there is a

very low probability of two or more of the computational

units succumbing to an error in the same calculation (by

way of a simultaneous two-bit error). Triple modular redun-

dancy is not unique in this reliance—in fact, all reliability

techniques rely on a low incidence of simultaneous two-bit

errors—it is simply more obvious about it.

Software solutions involve software creation of redundant

threads and use a software comparator. A major advantage

of a software only solution is the ease of comparison and re-

computation. Unfortunately, such solutions place the burden

of error detection and correction on the programmer. This

burden is further compounded by the fact that threads with

side effects are not so straightforwardly handled.

Hybrid hardware/software solutions use replicated hard-

ware for redundant computation with a software comparator.

This offers the financial advantage of not requiring any spe-

cialized hardware and imposing a very small overhead, but

still places heavy burdens on the programmer [RCV∗05].

Fully hardware solutions focus their efforts on reduc-

ing the temporal and spatial overhead of error detection.

Chip multiprocessors (CMPs) bring the idea of a Chip-level

Redundantly Threaded Processor or CRT, which provides

some minimal hardware support for redundant multithread-

ing on a CMP. A slightly more sophisticated approach is

found in Simultaneously and Redundantly Threaded Pro-

cessors or SRTs [RM00, MKR02], which take advantage of

hardware multithreading, but not of multiple cores.

There are several reasons why memoization [PGS04], or

caching multiply computed results for reuse in a reliable

store, is not suitable for application to graphics processors.

The most important of these is that it depends upon the ex-

istence of complex decode logic to cover the latency of a

cache access. This logic simply is neither present nor de-

sirable in current GPU architectures. Furthermore, the tech-

nique is engineered for temporally redundant computation,

but as is presented in Section 3, a reliable GPU solution is

far more likely to use spatial redundancy rather than tempo-

ral redundancy.

3. A Redundant GPU Architecture

The design of any reliable architecture requires the analysis

of several key design tradeoffs. Among these are:

• The employment of temporal or spatial redundancy in the

solution

• The size of the sphere of replication (in a spatially redun-

dant solution)

• The location of the comparison mechanism

• The datapath to signal an error or reissue a computation

In this section we explore these tradeoffs in more detail

3.1. Design Decisions

Implementing a reliable functional unit is not as straightfor-

ward as simply replicating computational structure. Figure 1

depicts a an example implementation of a reliable ALU. The

sphere of replication for this design fully encompasses two

ALUs and partially contains the operand latch and compara-

tor. The operand latch will protect the inputs with ECC, al-

lowing correction of single bit errors and providing a high

level of reliability for the inputs should the computation re-

quire a reissue. Within the sphere of replication, all datapaths

and logic hardware are fully redundant.

The comparator itself is necessarily outside of the sphere

of replication. To place it within would require that it be

replicated, then the results of the replicated comparators

c© Association for Computing Machinery, Inc. 2007.



J. W. Sheaffer, D. P. Luebke & K. Skadron / A Hardware Redundancy and Recovery Mechanism for Reliable GPGPU

C
M

P
R

A
L

U
A

L
U

OUT

TYPICAL (UNRELIABLE) ALU

OP1

OP2

FUNC

L
A

T
C

H

M
U

X

L
A

T
C

H

NOP OUT

SPHERE OF REPLICATION

Figure 1: A redundant ALU uses two parallel ALUs to calcu-

late a result and a comparator to verify that both ALUs have

come up with the same answer. The comparator result con-

trols both the input latch and a multiplexor which chooses

either the ALU result or a no-op result to be latched in the

output.

would require a third comparator which would need to be ei-

ther outside of the sphere of replication or itself replicated. . .

The comparator output controls the input latch, either allow-

ing new inputs to enter the ALU or causing the reissue of

a failed computation. The comparator output also controls

a multiplexor to select the appropriate output of the ALU:

either the result of the computation or a NOP result.

The architect of a reliable system must make efforts to

protect those logic units and data paths outside of the sphere

of replication. For instance, since the comparator unit and

its output data paths all fall outside of the set of replicated

structures, they are significantly more vulnerable than the

redundantly protected state and logic. Architectural and cir-

cuit level techniques, such as hardened transistors and care-

ful wire routing, can be employed to increase their reliability.

Figure 1 is in some ways a gross simplification. For in-

stance, it creates no backpressure to correctly handle new

inputs. The complexity in even this “simple” example serves

well to illustrate both the non-triviality of correctly imple-

menting a redundant functional unit and the space overhead

requirements of introducing new hardware into the pipeline

(indeed signal propagation delay increases, leading to a pos-

sible reduction in clock frequency, due to the new hardware

being placed in the critical path, are another concern).

3.1.1. Shader Redundancy

We implement a design for a redundantly reliable graphics

processor with the explicit intent that this reliability is in-

tended for GPGPU domains. We have previously shown that

the type and level of reliability described in this paper is

not necessary for general graphics [SLS06]. Specifically, we

provide a redundancy mechanism for the fragment engine,

other stages of the pipeline having small AVFs and therefore

being of little import to GPGPU applications. In addition

to providing a redundancy mechanism, we work under the

additional constraint that a solution should require a mini-

mal set of changes to existing hardware—we seek a solution

that is zero-cost in terms of the performance overhead when

processing graphics workloads and nearly zero-cost with re-

spect to die space sacrificed to implement the solution—this

means using existing logic and data paths whenever possi-

ble.

While the solution presented in this paper is specifically

aimed at redundancy in the fragment engine, it is straight-

forward to see how the ideas apply more generally to all

programmable stages in a unified shader architecture. The

extensions necessary to provide redundancy to vertex and

geometry shaders follow closely—though GPGPU APIs do

not make use of these units—as do the concepts that apply

to general multicore architectures.

Redundancy can be implemented over a range of struc-

tures, each involving different tradeoffs. Most of these have

important consequences that conflict with our goal of modi-

fying the existing architecture minimally. We choose to im-

plement our redundancy at the level the fragment shader

core; that is, data are replicated coming in to the fragment

array so that each element is computed twice. This solution

takes advantage of the already highly parallel shader cores to

implement execution of redundant computation without re-

quiring any new computational logic. A mechanism is nec-

essary to replicate the incoming fragments, whether this is

dual issue of individual fragments or replication of the ac-

tual fragments in the fragment queue. We choose to replicate

coming out of the rasterizer, again because this minimizes

the scope of the change. If shader cores are paired in a spa-

tially coherent way, it is plausible that core pairs could be

made to run in lockstep and share level-1 cache, minimizing

off-chip memory bandwidth requirements. Our implemen-

tation makes no efforts to ensure either spatial or temporal

locality; however, we show very promising cache and mem-

ory behavior in our results. Depending on implementation

details of the fragment array, it may be necessary to enforce

a policy governing allocation of data to shader cores.

Redundancy could be implemented at a finer granularity;

for instance, at the level of an ALU. Implementing redun-

dancy at the ALU level means replicating logical structure

within a shader unit. Not only would this constitute signifi-

cant change within each shader core, but unless scheduling

opportunities are created to effectively handle this computa-

tional bandwidth for general graphics shaders, it effectively

halves the shader throughput of the processor for general

graphics. Furthermore, as demonstrated in Figure 1, such

fine-grained redundancy is expensive in terms of hardware

overhead.

Quads (2× 2 arrays of fragments) and Warps (NVIDIA’s

term for a minimum set of threads for SIMD execution in

CUDA) both represent minimum SIMD execution blocks

c© Association for Computing Machinery, Inc. 2007.



J. W. Sheaffer, D. P. Luebke & K. Skadron / A Hardware Redundancy and Recovery Mechanism for Reliable GPGPU

in their respective domains. Implementing redundancy over

quads or warps is essentially equivalent to shader core redun-

dancy, the primary difference being the size of the replicated

computation blocks, i.e. pairs of quads or warps work in

parallel on replicated data instead of pairs of cores, compli-

cating the dual issue semantics and restricting its flexibility.

Again, a lockstepping and cache sharing mechanism might

be plausible here, but seem less likely than at the shader core,

as well as highly dependent on current hardware organiza-

tion.

A software solution might replicate the entire computa-

tion on the GPU by issuing it twice from the CPU. This re-

quires either active involvement of the programmer to ex-

plicitly write redundant code with a CPU side comparison,

or a compiler that generates code to perform a calculation

twice and compare the results in software. Clever solutions

can do this entirely on the GPU, for example, rendering to

a texture on the first pass, then comparing to the stored tex-

ture values on the second. Both computational and memory

bandwidth overhead are greater than 2× here, but this has

the advantage that it requires no hardware modifications.

The reliability of the communications network does come

into question, though, as a validated result still has a long

way to go before it hits memory, and additional error pro-

tection hardware may be necessary to protect validated com-

puted results in their registers and as they are communicated

from the shader core to memory.

Yet another solution involves dual GPUs. There are sev-

eral viable ways that one might use multiple GPUs to im-

plement redundancy, with or without hardware support. An

on-board solution places two or more GPUs on one board.

A comparator verifies the result of the two computations by

checking the contents of the output buffers in VRAM before

allowing the computation to be uploaded to the CPU. Multi-

board solutions would need to take advantage of a CPU-side

comparator, SLI or CrossFire based solutions, or solutions

that compare DVI output. This assumes driver support for

the multi-board GPU redundancy.

3.1.2. Comparators

The choice of the location of the comparator is highly depen-

dent on the choice of redundancy as discussed above. In gen-

eral, design choices should be based on the typical case, not

the exception. For this reason, it is inadvisable to include, as

an example, a comparator per shader unit. This would only

eat into (possibly unavailable) timing slack on the critical

path of the shader computation.

3.1.3. Datapath

With error detection in place, a mechanism to reissue erro-

neous computation must accompany it. This requires a dat-

apath to transport the inputs back to the beginning of the

compute stage. There are two suitable datapaths, applicable

with little to no modification (save signal decoding), already

extant on current or future AMD hardware. The first is the

datapath associated with the F-buffer [MP01]. The second is

the path necessary to implement a unified shader model ar-

chitecture, which is already present in NVIDIA’s G80 GPU,

AMD’s R600, and the AMD GPU in the XBox 360.

The F-buffer was originally devised as a mechanism to

easily enable multi-pass shader calculations when shader

complexity was crucially limited by the hardware. AMD

implemented the F-buffer in the R5XX hardware fam-

ily [HPS05], though this hardware was never exposed. It

is not publicly known at this writing whether NVIDIA has

ever implemented an F-buffer, nor whether AMD retains the

structure in R600. After each pass of a multi-pass shader

on an architecture with an F-buffer, data is written to the

F-buffer. At the beginning of the subsequent pass, data is

pulled from the F-buffer in rasterization order to be used in

the continuation of the computation. The complexities of the

F-buffer, including the ordering requirements, are not nec-

essary for the proposed work, only the datapath. Using the

F-buffer datapath, a path from VRAM to the top of the frag-

ment pipeline, fragments that are found to be erroneous by

the comparator can be returned to the fragment processor for

reissue.

A unified shader model architecture must have a datap-

ath from the back to the front of the unified shader pipeline.

This is necessary to carry transformed vertices to geome-

try processing input and to move processed geometry to be

rasterized. This suggests, in fact, that there are two such dat-

apaths, since the rasterizer is still specialized hardware. It is

less likely that these datapaths provide the necessary func-

tionality, but the specifics depend on the location of the com-

parator.

Other clever algorithms, Delay Streams [AMN03] being

a prime example, have proposed and could capitalize on a

similar datapath.

3.2. A Redundant Solution

Figure 2 depicts a block diagram of one possible solution

that fits within the constraints defined above. This architec-

ture makes use of the rasterizer as the first stage in the reli-

able pipeline. The rasterizer issues two copies of each frag-

ment into the fragment queue for processing by the fragment

cores. The fragment processor processes all fragments nor-

mally and passes them on to the raster operations unit (ROP).

ROP will write data to the framebuffer normally if the exist-

ing data at that location is in the cleared state—i.e. there is

no data in the framebuffer at that location—but will com-

pare all of the calculated results (color, depth, etc.) if data is

already present in the framebuffer. When any difference is

found between two calculated results that map to the same

framebuffer location, an error is signaled.

Reissue depends on a new structure we call the domain

buffer and minor augmentation of the rasterizer. The domain

c© Association for Computing Machinery, Inc. 2007.



J. W. Sheaffer, D. P. Luebke & K. Skadron / A Hardware Redundancy and Recovery Mechanism for Reliable GPGPU

F
R

A
G

M
E

N
T

P
R

O
C

E
S

S
IN

G

...

...

...

...

... ...

F
C

R
O

P

To FBVS G
P

D
B

R
A

S
T

E
R

IZ
E

R

F
C

F
C

F
C

F
C

F
C

F
C

F
C

F
C

F
C

F
C

F
C

SPHERE OF REPLICATION

Figure 2: Our proposed reliable GPGPU system. We add a

domain buffer to store data needed to set up the rasterizer

for the domain in the event of a reissue, augment the raster-

izer to produce two of each fragment and to handle reissue

requests from the domain buffer, and repurpose raster op-

erations as our comparator. In the figure, “VS” is the ver-

tex stream, “GP” is the geometry processor, “DB” is the

domain buffer, “FC” is a fragment core, and “FB” is the

framebuffer.

buffer sits between geometry processing and the rasterizer.

It stores the information necessary to set up the rasterizer to

produce fragments over the computational domain; for typ-

ical GPGPU applications, this is only two triangles, so the

domain buffer can be very small When ROP sends a reissue

signal, containing the fragment 〈x,y〉 for the offending data-

point, the domain buffer reissues the geometry and the error

location(s) to the rasterizer. The rasterizer applies a stencil to

reissue only those fragments which need to be recomputed.

In the case of NVIDIA CUDA, a direct compute environ-

ment which does not use the rasterizer for thread creation,

the Thread Execution Manager [NVI07] must be modified

to reissue an appropriate subset of the compute domain. We

leave issues related to CUDA and direct compute to future

work.

Recall Equation 1: AVF =

∑b∈B tb
|B|×∆t

. In a typical GPGPU

computation, the early stages of the pipeline (primarily ver-

tex and geometry processing) are very short (four vertices

and two triangles, respectively). As a result, each respective

tb is very small, leading to a small AVF for the structures,

thus they can be ignored without unduly impacting the reli-

ability of the solution. In the case of the rasterizer, however,

much of the state is potentially ACE for a significant por-

tion of the application. For this reason, rasterizer state should

probably be protected with ECC. We cannot make accurate

statements about the importance of protecting the rasterizer

without performing an ACE analysis on a simulator with

much more faithful rasterizer implementation than we cur-

rently have. Nonetheless, we believe that ECC on raster state

may be desired. If the rasterizer has a high AVF, it might be

necessary to replicate it, move it wholly inside the sphere

of replication, and move the double issue to the geometry

engine. All off-chip memory and busses must be fully pro-

tected with ECC.

3.2.1. Error-Correcting Codes

A redundant multithreading approach such as this protects

logic within the sphere of replication. Outside the sphere of

replication, memory and communication paths must be pro-

tected with ECC; this includes non-replicated caches, video

memory, and the PCI-E bus. Furthermore, no solution can

guarantee reliability. The goal of any implementation of a

reliable system is to reduce the likelihood of a silent data

corruption to a negligible value. Precisely what this value is

is highly dependent on the application.

4. Experiments and Results

We describe our simulation infrastructure and present results

of performance and power studies to evaluate our solution.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  2  4  6  8  10  12  14  16

A
v
e

ra
g

e
 T

e
x
tu

re
 C

a
c
h

e
 H

it
 R

a
te

 (
%

)

Texture Reads per Fragment

Texture Reads per Fragment vs. Texture Cache Hit Rate

Unreliable Base System
Redundantly Reliable System

Figure 3: On the x axis are memory operations per element,

with texture cache hit rate on y. Texture cache hit rate is

almost universally better in our reliable architecture than

in the baseline architecture, the only exception occurring in

the 16× 16 simulations, where the cache did not have suf-

ficient time to warm up. Cache misses are only counted if

they lead to a new memory transaction—e.g. misses on an

address that will be serviced by a pending memory fetch are

not counted—thus the difference in hit rates translates di-

rectly to memory bandwidth. These data are averaged over

all 16 cores. This graph shows the results over a 128× 128

domain, though all domains produced qualitatively similar

results.

4.1. Simulation

We implemented the solution depicted in Figure 2 in the

GPU simulation infrastructure developed by Bill Mark’s

group at the University of Texas, Austin [JLBM05]. This

system is built in SystemC [Sys05], using an event-based

model to drive a high-fidelity fragment engine simulation.

The fragment engine implements a useful subset of the

OpenGL NV_fragment_program extension [BK05], in-

cluding support for branching. Raster operations and the tex-

turing and memory systems are also implemented in some

c© Association for Computing Machinery, Inc. 2007.



J. W. Sheaffer, D. P. Luebke & K. Skadron / A Hardware Redundancy and Recovery Mechanism for Reliable GPGPU

detail, while the rest of the pipeline is purely functional.

All fragment program instructions require one cycle to com-

plete, save texturing operations which go through a cache to

memory.

The system is engineered with 16 fragment pipelines,

each SIMD Float4 with operand swizzling and masking.

Each pipeline has 16 thread contexts, which are serviced in

round-robin order, with context switches invoked on thread

block. Context switches are free as long as there is a runnable

thread on the core, else the core must block until a runnable

thread is available (a texture reference is serviced or a new

thread is instantiated on the core). Each fragment core is con-

nected to memory through a crossbar and cache. Crossbar

transactions are processed in two cycles—one cycle in and

one cycle out—as long as there is bandwidth available. If

there is no available bandwidth, the crossbar queues pend-

ing transactions. The queue size is set at 512 elements. The

texture caches are 16 kB, 8-way set associative with 64 byte

blocks and 256 element queues. Textures are stored in a 128

MB address space, swizzled via a Morton space-filling curve

for increased locality [Mor66]. Another crossbar provides a

path to raster ops. ROP accesses the framebuffer through an

identical interface to that of the fragment processors

We implemented our reliable GPU on top of this infras-

tructure by making the following changes:

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  2  4  6  8  10  12  14  16

A
v
e

ra
g

e
 C

o
re

 U
ti
liz

a
ti
o

n
 (

%
)

Texture Reads per Fragment

Texture Reads per Fragment vs. Core Utilization

Unreliable Base System
Redundantly Reliable System

Figure 4: On the x axis are memory operations per ele-

ment, with shader core utilization on y. Due to the increased

memory locality, core utilization is also better in the reli-

able architecture. These statistics are averaged over all 16

cores.The graph shows the results over a 128×128 domain,

though all domains produced qualitatively similar results.

Double issue from the rasterizer: The rasterizer imple-

mentation is functional only. Downstream from the raster-

izer is a queue to the fragment engine. The rasterizer is in-

voked every cycle and runs until this queue is full such that

it is never a computational bottleneck. In order to implement

double issue we only had to replicate each fragment created

by the rasterizer and place them into the input queue for

the fragment processors. An actual implementation would

require the functionality to turn this feature on for reliable

GPGPU operation and off for unreliable GPGPU or general

graphics.

Domain buffer: We implement our domain buffer as a

lookup-table containing already rasterized fragments. As the

rasterizer is not modeled faithfully, this solution creates less

room for error while not changing performance characteris-

tics. The domain buffer gets precedence over new geometry

going into the rasterizer.

Reissue path: The simulator does not contain any of the

datapaths discussed above for repurposing, so we imple-

mented this with a SystemC channel with a one cycle trans-

fer latency between ROP and the rasterizer (logically the do-

main buffer).

Comparators: The comparators are implemented in ROP.

We use full/empty bits on the framebuffer. If the location is

empty, we use the standard semantics and set the bit. When

the location is full, we issue reads on all channels (in this

simulator, that is 3 channels of color, plus depth) and com-

pare all components. These comparisons can be bitwise—it

is not necessary to do floating point compares—as any re-

sult that is not exactly, bitwise the same as the stored result

flags an error. Independent of the result of the comparisons,

the data is discarded; however, if it fails, the pixel’s frame-

buffer coordinates are sent over the reissue datapath to be

recalculated and the full/empty bit is reset to empty. We do

not impose delay to actually do the comparisons but do go

through cache to get to stored color data for the comparison,

thus accounting for that latency and bandwidth.

This solution as we have presented it so far assumes there

is no legitimate reason for any framebuffer location to be

written twice. This is largely a valid assumption, though

there are notable exceptions, such as the GPU database work

by Govindaraju et al [GLW∗04]. One way to get around this

problem is to modify the full/empty bit semantics such that

each write toggles the bit and with it the semantics of the

ROP operation. A third attempt to write a location will find

it empty and perform normal ROP operations. At the end of

the computation, all full/empty bits must be checked. Any bit

in the full state indicates an error and that domain element

must be reissued. This solution depends on geometry order-

ing requirements that are enforced by graphics APIs for cor-

rect color blending and on precedence of the domain buffer

over geometry processing. These requirements are probably

propagated into GPGPU APIs as an artifact of the underly-

ing architecture.

This solution also fails to account for scatter operations

which write to texture. We can potentially handle these by re-

quiring that all texture writes in the reliable mode go through

ROP, though that presents additional issues with respect to

ROP bandwidth. This is clearly a problem for direct com-

pute APIs. The details and evaluation are left to future work.

c© Association for Computing Machinery, Inc. 2007.



J. W. Sheaffer, D. P. Luebke & K. Skadron / A Hardware Redundancy and Recovery Mechanism for Reliable GPGPU

Memory� Domain� 162 322 642 1282 2562 5122

0 reads
Real Cache 1.70 1.38 1.38 1.41 1.30 1.21

Perfect Cache 1.70 1.38 1.38 1.41 1.30 1.21

1 read
Real Cache 1.72 1.33 1.24 1.22 1.25 1.21

Perfect Cache 1.72 1.41 1.44 1.43 1.49 1.31

2 reads
Real Cache 1.56 1.32 1.31 1.22 1.25 1.30

Perfect Cache 1.64 1.47 1.50 1.50 1.62 1.65

4 reads
Real Cache 1.75 1.41 1.30 1.22 1.28 1.31

Perfect Cache 1.73 1.58 1.57 1.62 1.81 2.13

8 reads
Real Cache 1.49 1.32 1.13 1.21 1.20 N/A

Perfect Cache 1.78 1.65 1.69 1.71 1.88 2.17

16 reads
Real Cache 1.50 1.22 1.20 1.36 1.57 N/A

Perfect Cache 1.86 1.74 1.76 1.85 2.02 2.22

Table 1: Summary of performance results. The data points

in this table are the normalized ratios of simulation cycle

counts in our reliable architecture to the baseline architec-

ture, or in other words, the overhead imposed by our reli-

ability implementation. The top number in each cell is the

normalized simulation time with a realistic cache simulation

(as described in 4.1). The bottom is the same value when the

caches are perfect and zero-latency (all memory references

take exactly one cycle). Simulation time made it impossible

to collect data for the cells marked “N/A”.

4.2. Experimental Results

We present results of a series of performance and power

studies comparing our reliable architecture with the baseline

unreliable system.

4.2.1. Performance

Memory Reads 0 1 2 4 8 16

Total Instructions 7 8 10 15 20 34

Table 2: Texture instructions and total instructions for each

stressmark.

We implemented our redundant system as described

above and verified the detection and correction implemen-

tations. We then simulated both our system and the unmodi-

fied baseline system over a series of workloads constituting

the cross of 16×16, 32×32, 64×64, 128×128, 256×256,

and 512× 512 computational domains and 0, 1, 2, 4, 8, and

16 memory reads per domain element simulating both real

and perfect caches. Our programs are designed to stress the

memory system, as memory behavior is an important and

interesting concern of all GPUs, but especially of one that

is designed to be reliable through redundancy. These stress-

marks issue two memory instructions then immediately use

them with a previous result via a MAD instruction, thus mak-

ing as many memory reads as is reasonably possible such

that all of the fetched results are actually used. They are

worst case benchmarks with respect to memory. Each stress-

mark completes with a sequence of 7 arithmetic instructions;

the same seven that are used in the 0-memory-reference

stressmark. Our simulations are designed to evaluate the per-

formance of our solution in the common case where there are

no errors, so we do not inject faults. More detail on the pro-

grams are listed in Table 2. Results of the 8 and 16 memory

reference simulations on the 512×512 domain could not be

obtained due to simulation time. Table 1 summarizes the re-

sults of this suite of experiments.

From the table we can see that in every case, save 16×16

with 4 memory references, the relative performance of the

reliable architecture to the baseline with a real cache is at

least as good as, and often much better than, that of the cor-

responding perfect cache simulation. Further evidence for

this appears in the plot in Figure 3. This suggests that our

solution benefits from improved memory locality with dual

issue. We do not understand why four instances of perfect

cache simulations show overheads greater than two; how-

ever, in these simulations, texture operations are equivalent

to ALU operations (in terms of timing), so we note that

these programs effectively performed an unrealistic num-

ber of consecutive ALU operations without a memory ref-

erence [HP03] (15, 20, or 34, as per Table 2). Data show

that the cores were poorly utilized in these instances. Fig-

ure 4 shows average core utilization for both architectures

(Utilization is measured by counting the number of cy-

cles that some shader has the core, even if this is a “re-

dundant shader”, and dividing by the total number of cy-

cles, thus naïvely we would expect the redundant and non-

redundant utilization to be about equal). The reliable archi-

tecture makes better use of computational resources in al-

most all cases, except when there is no texture activity.

4.2.2. Power

Memory� Domain� 162 322 642 1282 2562 5122

0 reads
Power 1.15 1.40 1.40 1.38 1.50 1.61

Energy 1.97 1.94 1.94 1.95 1.95 1.95

1 read
Power 1.14 1.44 1.54 1.56 1.54 1.59

Energy 1.97 1.93 1.92 1.93 1.94 1.94

2 reads
Power 1.24 1.45 1.46 1.56 1.53 1.49

Energy 1.94 1.92 1.92 1.91 1.93 1.94

4 reads
Power 1.12 1.37 1.47 1.56 1.50 1.47

Energy 1.96 1.93 1.91 1.91 1.92 1.93

8 reads
Power 1.27 1.43 1.63 1.54 1.56 N/A

Energy 1.90 1.90 1.85 1.87 1.88 N/A

16 reads
Power 1.27 1.52 1.54 1.37 1.21 N/A

Energy 1.91 1.87 1.86 1.86 1.90 N/A

Table 3: Relative power and energy of our redundantly re-

liable GPU to the baseline, unreliable GPU. The reliable

solution draws more power than the baseline system, which

is to be expected, considering its increased core utilization.

Note that in all cases our reliable solution uses less energy,

however, typically by about 10%, than would a software or

dual-gpu solution, which would require at least 2× energy.

We instrumented the simulator’s fragment engine with a

power model based on PowerTimer [BBS∗03]. PowerTimer

is an IBM power model, based on the Power 4 architecture.

We scaled the PowerTimer model to be more in line with

a modern GPU, built on a 90 nm process, running at 600

c© Association for Computing Machinery, Inc. 2007.



J. W. Sheaffer, D. P. Luebke & K. Skadron / A Hardware Redundancy and Recovery Mechanism for Reliable GPGPU

MHz at 1.45V and assumed 25% leakage current. We used

HP Labs CACTI [TTJ06] cache modeling tool with the cache

parameters described in Section 4.1 to create a cache power

model. CACTI allows computer architects to quickly and

easily analyze cache design tradeoffs with respect to area,

cycle and access times, and static and dynamic power. The

results of our power analysis appear in Table 3. Our solution

requires more power than the baseline, do to its improved

core utilization, but we are able to save about 10% more en-

ergy (power × time) than a naïve solution could.

5. Discussion

The issues discussed above and our proposed solution com-

bine to suggest an important concept: In a reliable multicore

architecture, the sphere of replication should be as large as

possible.

Traditional out-of-order processors are designed to max-

imize single thread performance, with much of the proces-

sor real-estate dedicated not to computation, but to support

structure, like branch predictors, that help the processor to

achieve this goal. Early work on reliability on these archi-

tectures recognizes that introducing hardware for redundant

computation is expensive. By comparison, comparator hard-

ware is cheap. For these reasons, it is desirable to keep the

sphere of replication small.

Conversely, in multicore architectures, where the compu-

tational cores are small, simple and already available, the

comparators become expensive (recall the costs in Figure 1).

Similarly, as the tiling of multicore architectures increases,

the applications written for them will likely come to resem-

ble fragment shaders more than they will Microsoft Word,

where the parallelism is primarily event-based as opposed to

the data parallelism in scientific, image processing and other

“traditional” GPGPU application domains. With fragment-

shader-like programs, recomputing one result is akin to re-

computing from a checkpoint in currently proposed solu-

tions but with much lower overhead. Given this, and the fact

that the larger the sphere of replication, the smaller the area

in which transient errors are undetectable, it follows that the

sphere of replication should encompass as much computa-

tional hardware as possible.

6. Conclusions and Future Work

We have presented a set of modifications to existing graphics

architectures to allow reliable performance in general pur-

pose computation domains. We have made efforts to lever-

age and repurpose existing hardware features as much as

possible, with the addition of a domain buffer as the only

new hardware, and minor repurposing of the rasterizer and

ROP units to achieve our goals. Because this solution does

not require any modification of the fragment array, does not

impact throughput for general graphics workloads, and re-

quires negligible new logic to implement the functionality,

and furthermore because the ideas presented in this paper

apply directly to unified shader architectures—our simula-

tion and testing was based on a more traditional graphics

pipeline—we believe that it is near optimal and should be

implemented in future GPUs. However, these techniques are

not so directly applicable to direct compute architectures like

G80 with CUDA, in which data go through neither the ras-

terizer nor ROP. This observation exposes an important place

for future work.

Our implementation demonstrates that a reliable GPU

built as described in this paper benefits greatly from

increased memory locality inherent in the double issue

method, allowing it to perform much better than the naïve

expected overhead of 2×. In fact, our simulations show a

measured overhead of less than 1.5× on most of our prob-

lem domains.

We also make an important observation about the sphere

of replication with respect to multicore architectures. When

designing a reliable processor based on a traditional, single

core architecture, engineers aim to make the sphere of repli-

cation as small as possible, in order to minimize the extra

costs implicit in replicating hardware. However in a multi-

core environment, it is desirable to make the sphere of repli-

cation as large as possible, because the redundant hardware

is already present, so in essence its cost is free, while the cost

of comparing results is expensive.

We proposed a solution to the problem of reliable write to

texture and by association to the more general memory op-

erations in CUDA in Section 4.1. Completing the details of

this solution and evaluating it poses a difficult and important

problem that must be solved. Detailed ACE analysis of raster

state can help to make a more informed decision with respect

to the rasterizer’s inclusion in the sphere of replication.

7. Acknowledgments

A portion of this work is built on top the GPU simula-

tion infrastructure developed by Greg Johnson, Chris Burns,

Alexander Joly, and William R. Mark at the University of

Texas, Austin. Their simulator is still under development,

and no papers specifically about the simulator have been

published yet, but a limited description appears in their 2005

Transactions of Graphics paper [JLBM05].

This work was supported in part by NSF grants CCF-

0429765, CCR-0306404, the Army Research Office under

grant no. W911NF-04-1-0288, a research grant from Intel

MRL, and an ATI graduate fellowship. We would like to ex-

tend out sincere thanks to the anonymous reviewers for their

detailed and helpful comments.

One reviewer made the insightful suggestion that the ras-

terizer stencil hardware could be employed for masking dur-

ing reissue. Our previous solution was far more complicated

in this respect.

c© Association for Computing Machinery, Inc. 2007.



J. W. Sheaffer, D. P. Luebke & K. Skadron / A Hardware Redundancy and Recovery Mechanism for Reliable GPGPU

References

[AMN03] AILA T., MIETTINEN V., NORDLUND P.: De-

lay Streams for Graphics Hardware. ACM Transactions

on Graphics 22, 3 (2003), 792–800.

[BBS∗03] BROOKS D., BOSE P., SRINIVASAN V.,

GSCHWIND M., EMMA P. G., ROSENFIELD M. G.:

New methodology for early-stage, microarchitecture-

level power-performance analysis of microprocessors.

IBM Journal of R & D 47, 5/6 (2003).

[BK05] BROWN P., KILGARD M. J.: NV_Fragment_-

Program, May 2005. http://www.opengl.org/registry/-

specs/NV/fragment_program.txt.

[Bor05] BORKAR S.: Designing Reliable Systems from

Unreliable Components: The Challenges of Transistor

Variability and Degradation. IEEE Micro 25, 6 (Nov./Dec.

2005), 10–16.

[GLW∗04] GOVINDARAJU N. K., LLOYD B., WANG W.,

LIN M., MANOCHA D.: Fast computation of database op-

erations using graphics processors. In SIGMOD ’04: Pro-

ceedings of the 2004 ACM SIGMOD international con-

ference on Management of data (New York, NY, USA,

2004), ACM Press, pp. 215–226.

[GSVP03] GOMAA M. A., SCARBROUGH C., VIJAYKU-

MAR T. N., POMERANZ I.: Transient-Fault Recovery for

Chip Multiprocessors. IEEE Micro 23, 6 (2003), 76–83.

[HKM∗03] HAZUCHA P., KARNIK T., MAIZ J., WAL-

STRA S., BLOECHEL B., TSCHANZ J., DERMER G.,

HARELAND S., ARMSTRONG P., BORKAR S.: Neu-

tron Soft Error Rate Measurements in a 90-nm CMOS

Process and Scaling Trends in SRAM from 0.25-µm to

90-nm Generation. In IEEE International Electron De-

vices Meeting 2003 Technical Digest (Dec. 2003), IEEE,

pp. 523–526.

[Hou07] HOUSTON M.: Personal communication, Mar.

2007. Stanford University and Folding@Home.

[HP03] HENNESSY J. L., PATTERSON D. A.: Com-

puter architecture: a quantitative approach, 3rd ed. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA,

2003.

[HPS05] HOUSTON M., PREETHAM A. J., SEGAL

M. A.: A Hardware F-Buffer Implementation. Tech. rep.,

Stanford University., 2005.

[JLBM05] JOHNSON G. S., LEE J., BURNS C. A.,

MARK W. R.: The Irregular Z-buffer: Hardware Accel-

eration for Irregular Data Structures. ACM Trans. Graph.

24, 4 (2005), 1462–1482.

[MER05] MUKHERJEE S. S., EMER J. S., REINHARDT

S. K.: The Soft Error Problem: An Architectural Per-

spective. In HPCA (2005), IEEE, IEEE Computer Soci-

ety, pp. 243–247.

[MKR02] MUKHERJEE S. S., KONTZ M., REINHARDT

S. K.: Detailed Design and Evaluation of Redundant

Multithreading Alternatives. In ISCA (2002), IEEE, IEEE

Computer Society, pp. 99–110.

[Mor66] MORTON G. M.: A computer oriented geodetic

data base and a new technique in file sequencing, 1966.

IBM Canada.

[MP01] MARK W. R., PROUDFOOT K.: The F-Buffer:

A Rasterization-Order FIFO Buffer for Multi-Pass Ren-

dering. In Proceedings of the SIGGRAPH/Eurographics

Graphics Hardware Workshop 2001 (2001).

[NVI07] NVIDIA: NVIDIA CUDA compute uni-

fied device architecture programming guide, 2007.

http://developer.download.nvidia.com/compute/cuda/08/-

NVIDIA_CUDA_Programming_Guide_0.8.pdf.

[PGS04] PARASHAR A., GURUMURTHI S., SIVASUBRA-

MANIAM A.: A Complexity-Effective Approach to ALU

Bandwidth Enhancement for Instruction-Level Temporal

Redundancy. In ISCA (2004), IEEE, IEEE Computer So-

ciety, pp. 376–386.

[RCV∗05] REIS G. A., CHANG J., VACHHARAJANI N.,

RANGAN R., AUGUST D. I., MUKHERJEE S. S.: De-

sign and Evaluation of Hybrid Fault-Detection Systems.

In ISCA (2005), pp. 148–159.

[RM00] REINHARDT S. K., MUKHERJEE S. S.: Tran-

sient fault detection via simultaneous multithreading. In

ISCA (2000), pp. 25–36.

[SABR04] SRINIVASAN J., ADVE S. V., BOSE P.,

RIVERS J. A.: The Impact of Technology Scaling on

Lifetime Reliability. In DSN (2004), IEEE, IEEE Com-

puter Society.

[SLS06] SHEAFFER J. W., LUEBKE D. P., SKADRON K.:

The Visual Vulnerability Spectrum: Characterizing Archi-

tectural Vulnerability for Graphics Hardware. In Proceed-

ings of Graphics Hardware 2006 (Sept. 2006).

[Sys05] SYSTEMC LANGUAGE REFERENCE MANUAL

WORKING GROUP: Draft standard SystemC lan-

guage reference manual (version 2.1), April 2005.

http://www.systemc.org/.

[TOP94] TOP500.ORG: June 1994|TOP500 Supercom-

puting Sites, June 1994. http://www.top500.org/lists/-

1994/06.

[TTJ06] TARJAN D., THOZIYOOR S., JOUPPI N. P.:

CACTI 4.0. Tech. Rep. HPL-2006-86, HP Laboratories

Palo Alto, June 2006.

[VPC02] VIJAYKUMAR T. N., POMERANZ I., CHENG

K.: Transient-fault recovery using simultaneous multi-

threading. In ISCA ’02: Proceedings of the 29th an-

nual international symposium on Computer architecture

(Washington, DC, USA, 2002), IEEE Computer Society,

pp. 87–98.

c© Association for Computing Machinery, Inc. 2007.


