UNIVERSITYs VIRGINIA

Implications of the Power Wall
In a Manycore Era

Sustaining Growth in Computing Performance

Kevin Skadron

LAVA/HotSpot Lab, Dept. of Computer Science
University of Virginia

Visiting Professor
NVIDIA Research

© 2007, Kevin Skadron

© 2007, Kevin Skadron

“Cooking-Aware” Computing?

-

il

© 2007, Kevin Skadron

Outline 1

« Summary of barriers to performance growth
« Barriers, implications
* Driving applications

 Which aspects of system performance will
most be in demand?

 Main body of talk
e How can these needs be met?

« What are the models of computing in the future
likely to look like?

 Role of power

© 2007, Kevin Skadron

Barriers to Performance Growth @

e Memory wall
e How to ramp up memory bandwidth as we ramp up #
cores
« Variability
« Within-die, core-to-core variations due to PVT
— DVS, RBB can’t completely eliminate
— Speed determined by worst core
— Or software must countenance variety of core speeds

« Reliability challenges

 Defects and errors of all types (including due to PVT
variations) more likely at Smaller feature sizes

« Making good progress on this front, must keep up
research

— Modular designs for flexible redundancy, soft error
detection and correction, etc.

— Decades of research on this topic to draw on

— Research needs to track most likely future manycore
architectures

— Need to get down power, performance cost

© 2007, Kevin Skadron

Barriers to Performance Growth

- Power wall, ILP wall, and slow frequency growth
combine to force multicore

Limited single-thread performance: slow growth but not
doubling every 18-24 mos.

No longer cost effective to dedicate increasing transistor
count to ILP extraction for single-thread performance

More aggressive ILP extraction techniques (kilo-
instruction, TRIPS, etc.) are promising but too late

—Too long, perhaps too risky to put into production
—Industry is already committed to multicore

— On-chip integration is a sweet spot

* Low intra-core communication is a paradigm shift for parallel
programming

Power wall will eventually constrain multicore too

—If power per core doesn’t scale down as number cores
scales up

* Programmability: parallel programming is hard

Major productivity concern

© 2007, Kevin Skadron

Why Do We Care?

. Important, long-term social concerns exhibit staggering opportunities,
computational demands

. Rapid performance growth is now a fundamental growth driver

for economic growth
for standard of living

. Examples

Medical discovery, diagnosis

— Example: cancer drug screening — maxed out multiple clusters across
UVA for months

— Example: leukocyte detection and tracking in video microscopy for
inflammation studies: minutes/frame
= no real-time feedback possible

Scientific discovery—massive data processing, modeling, simulation

— Energy issues and basic science supporting medicine (e.g. protein
folding) are of particular economic significance

Commercial: E-commerce, financial analysis,
communications/telepresence, multimedia, etc.

— Vitally important to the economy
Security, privacy, sensor nets, etc.

 Lots of parallelizable, scalable, big-$$$ and national-interest
applications

These will get us over the initial hump of developing a market and ethos for
parallel programming

© 2007, Kevin Skadron

Where We are Today

Nasty side effects of scaling
-

Voltage-
based
techniques

: N e
3 e i 2o _;frllﬁt_-_{t-.-: FIEM CORR 2L+
e [4 -_"-"l'..'th_"'

Excess hardware in the core, e.g. ILP discovery,
very deep pipelining 7

© 2007, Kevin Skadron

Big Picture

Multicore is a one-off (fortunately, a big one)
« The power wall is still there

« Can’t keep packing more and more |
conventional cores at current clock frequencies

At the same time, normal mortals can't
program massively parallel architectures

« How can application needs best be met?

« Must adopt new abstractions, supporting
architectures, new algorithms
Shift to multicore + new abstractions create
arare opportunity to transform hardware
and software

 Release hardware from the ISA death grip and
let it evolve with technology

© 2007, Kevin Skadron

Outline 2 (Rest of the Talk)

Technology trends (why multicore isn’t sufficient to
skirt the power wall)

Implications of the power wall for core architecture
+ research challenges
« TDP-scalable macro-architectures

Programmability challenges and implications

Where do we go from here?

« Need to invest heavily in higher-level abstractions for
parallel programming

« Ensure that new programming models are compatible
with expected multiple scenarios for HW evolution

« Explore scalable architectures
 Keep attacking the memory wall, etc.

The Power Wall

© 2007, Kevin Skadron

http://mraybould.wordpress.com/2007/05/28/if-you-are-mortar/

10

© 2007, Kevin Skadron

Moore’s Law and Dennard Scaling

Moore’s Law: transistor density doubles every N
years (currently N ~ 2)

Dennard Scaling

 Shrink feature size by k (typ. 0.7), hold electric field
constant

« Areascales by k?(1/2), C, V, delay reduce by k
« P=CV?’ = Pgoesdown by k?

We never saw this in practice

 Generally kept area constant, used doubled transistor
density to add more features, so C didn’t scale

« Aggressive pipelining, circuits, etc. to boost f beyond
“natural” rate

« Leakage
« Power and power density went up, not down
“Natural” frequency growth may slow even further

due to increasing parasitics, parameter variations,
etc.

 Projections I've seen suggest frequency growth of 15-
20%l/year, not clear if even this is sustainable

11

ACtuaI POWGF /CoreZDuo

© 2007, Kevin Skadron

Pentium®”// \
Pentium® Pro RENUIUMER

\O Pentium® Il

=3

2 Pentium® \

o

Pentium®
3 w/MMX tech.
=
1 ‘ ' l ; l :
L.5p Ip 0.8u 0.6p 0.35u 0.25p 0.18u 0.13p

Source: Intel

12

© 2007, Kevin Skadron

Why Multicore

Why multicore?
e Power wall + ILP wall = brick wall

 Continued scaling of feature sizes seems secure
for many generations

 Parallel programming more palatable on same
chip

 But the power wall is still there

© 2007, Kevin Skadron

Vdd Wall

 Vdd will scale slowly, if at all
e 2008-2011: 1.0V (ITRS 2006, high-perf)
e 2012-2014: 0.9V
o ...2020: 0.7V
« This is about 2.5%/yr
e To maintain suff. drive current, Vdd must be suff.
larger than Vit

« Lowering Vt, combined with short-channel effects, makes
leakage grow exponentially

 Vdd floor isn’t scaling either
« |ITRS allows only a 0.2-0.3V margin

 Doubtful that voltage domains solve this problem

. Fihr]e—grained domains difficult to route in high-power
chips

« Doesn’t help power density in high-perf/high-power
domains anyway

14

© 2007, Kevin Skadron

Power Wall Redux (fundamental limits)

Even if we generously assume C scales and frequency is flat
« P=CV2f=0.7(0.9752) (1) = 0.66
Power density goes up

« P/A=0.66/0.5=1.33

« And this is very optimistic, because C probably doesn’t scale so
well, so a more likely number is 1.5-1.75X

If we keep area dedicated to all the cores the same, total power
goes up by the same factor

But cooling capabilities aren’t scaling so fast

 ITRS holds max power fixed at 198 W for high-performance,
310mm2 die for 2007-2020

— This is a cooling, not a power-delivery constraint
e 104-137W at 140mm?2 for cost/performance (5% growth)

« Power density fixed at 0.64 W/mm? (high-performance),
up to 0.98 W/mm2 for cost-performance

« We are near affordable air cooling limits
Battery capacity isn’t scaling fast enough either
Also limited by max amperage of a household wall outlet!

15

© 2007, Kevin Skadron

Implications

« Single-core frequency scaling will be slow
« But beware Amdahl’'s Law

 Multi-core scalability faces the power wall soon

e |f multicore scaling slows down, the only way to improve
performance is with multiple chips/computers

— Multicore-driven adoption of parallel programming will
help in the multicomputer realm

— But long communication delays, memory-system
Issues make these harder to program, harder to scale

 Scalable, single-chip performance is the sweet spot
—Need to squeeze as much out of the chip as possible

16

What Power Efficiencies Need to Scale?

 Need to minimize power per bit of I/O and on-
chip communication

 This is important because the core no longer
dominates power as much

« And because there are so darn many cores

« Maximize reuse
 Avoid repeated roundtrips to L2 or main memory

« Try to keep producer-consumer chains on same
core or between nearby cores

 Requires dynamic load balancing
— Multithreading helps
o Software ordering for locality helps

e Need TDP-scalable cores

© 2007, Kevin Skadron

17

© 2007, Kevin Skadron

Low-Fat Cores

PClaes Oldenburg, Apple Core — Autumn
http://www.greenwicharts.org/pastshows.asp

18

Bl = research priority

L OW - Fat A r C h I tECt U re (What power efficiencies need to scale?)

Same single-threaded
performance

Make ILP cores more power-efficient, more low-power modes
. Running out of steam

Heterogeneous organization (same area): 1-2 ILP cores + scale up #simple cores

e Combines problems of high-power cores and multiplying number of cores (TDP +
hotspots) — esp. if we want the ILP core to be really fast, it is the thermal limiter

. Dynamic cores (composing powerful single-threaded cores out of “throughput
cores”) is a better way to support single-thread perf => retain homogeneous hardware

Heterogeneous organization (MCM)

. Let chip size scale down; achieve throughput scaling with multiple (possibly
heterogeneous) chips —tightly coupled

. Power costs for core-to-core communication, B/W limitations?
Specialized coprocessors or functional units

Special-purpose cores are way more energy efficient + spread a < .ly ou’

Only help for apps that can use them; dubious area efficier.. s

. Programmable coprocessors offer wider flexibility albeit lowe. effici “o-,,

© 2007, Kevin Skadron

Throughput focus

Amortize hardware in time (ie, multithreading) A \
. Exploit memory parallelism -- great throughput/W benefit. Lun s a point (AKX RE
becomes huge with multithreading)
e Can be l) transparent using demand fetch (e.g. Niagara, GPUSs), or 2) dR®$R
software-managed computation stages overlapped w/ DMA (e.g. Ce&i\
. Butél), thread count keeps growing, and _
(2), dynamic memory-access patterns are challenging
SIMD — amortize fetch/decode/etc. hardware in space
. Divergent code is a problem
. Only effective for limited application space???
) prof SIMD cores

— Maybe not, with proper abstraction layers and MIM

. Long-term scalability??? Simpler ALUS? 19

© 2007, Kevin Skadron

Refining the previous argument

« Mark Horowitz summarized my argument as
follows

Energy per op is a non-linear function

We were spending lots of E for modest extra
performance (ILP, extra frequency)

Right now we are scaling down E/op with
modest performance cost

—This lets us keep packing on more cores
within an acceptable power budget

Once we hit the optimum E/op, further
reductions in E/op will have a high cost in
performance

Not clear what to do next
—Are we stuck???

20

© 2007, Kevin Skadron

Thermal Considerations

Cooling is the main constraint

 Pick max Tj, typically 100-125C, based on reliability,
leakage tolerance, and ergonomics

« The most thermally efficient design maximizes TDP (and
hopefully throughput) under this constraint

— Hotspots hit Tj faster => thermal non-uniformity
represents alost opportunity

Seek thermally uniform macro-architectures

Multicore layout and “spatial filtering” give you an
extra lever

« The smaller a power dissipator, the more effectively it
spreads its heat

o EX: 2x2grid vs. 21x21 grid: 188W TDP vs. 220 W (17%)

(very preliminary result)
»Increase core density H vs. %
»Or raise Vdd, Vth, etc.

« Thinner dies, better packaging boost this effect

Seek architectures that minimize area of high
power density, maximize area in between,
and can be easily partitioned

21

© 2007, Kevin Skadron

TDP-Scalable Architectures

« Can we make conventional cores small enough?

« Which is better: more, specialized functional units,
more threads, VLIW, SIMD...?

« Example: SIMD

+
+
+

Amortizes fetch, decode, control, and register-access logic
Tends to better preserve memory-access locality

Space savings allow more ALUs or on-chip memory in
same area/total power

Tends to have nasty crossbars
Doesn’t deal well with threads that can’t stay in lockstep
e Multiple cores of limited SIMD width

 Work queues, conditional streams, etc. needed for
reconvergence

How to support single-thread performance?
- Processor for a single “thread” is typically pretty wimpy
Densely packed ALUs
e Can they be spread out?

22

© 2007, Kevin Skadron

Outline

« Programmability challenges and
iImplications

« Where do we go from here?

Need to invest heavily in higher-level
abstractions for parallel programming

Ensure that new programming models are
compatible with expected multiple scenarios
for HW evolution

Explore scalable architectures
Keep attacking the memory wall, etc.

23

If We BU”d It (multicore), W|” They COmE'?

e Claim: programmers who can do low-level parallel
programming are an elite minority

« We will never train the “average programmer” to write
highly parallel programs in C, Java, X10, Chapel, CUDA,

etc.
 People need to think about things sequentially

—Requiring programmers to reason about too many
iIndependent “things” won’t work
 Programmers are also put off by extensive setup, bookkeeping

—But it’s ok if the “things” are internally parallel

—Also a good model for dealing with heterogeneous
chips, networked ensembles, etc.

« Must develop APIs with higher-level abstractions

« We need this regardless of what the underlying
architecture is

« Butit also buys us more flexibility in the architecture
DirectX is a good case study
« Need more domain-specific languages/APIs

24

© 2007, Kevin Skadron
o

© 2007, Kevin Skadron

DirectX

High-level abstractions

Serial ordering among primitives
= implicit synchronization

No guarantees about ordering within primitives
=no fine-grained synchronization

Domain-specific APl is convenient for programmers and
provides lots of semantic information to middleware:
parallelism, load balancing, etc.

Domain-specific APl is convenient for hardware designers:
APl has evolved while underlying architectures have been
radically different from generation to generation and company
to company

Similar arguments apply to Matlab, SQL, Map-Reduce, etc.

I’'m not advocating any particular API, but these examples
show that high-level, domain-specific APIs are commercially
viable and effective in exposing parallelism

« Middleware (hopefully common) translates domain-specific

APls to general-purpose architecture that supports many
different app. domains

25

© 2007, Kevin Skadron

Where We are Today - Multicore

Programmability wall Power wall
4

The one
language
that will
rule them

N “1__-.{3:- % .F.I "
R :

£ 207
Fl — |~
. J A, e 4

g L.ﬂi e

Von Neumann model?

26

http://interactive.usc.edu/classes/ctin542-desianprod/archives/r2d2-01.ipa

© 2007, Kevin Skadron

HW Implications of Abstractions

 If we are developing high-level abstractions and supporting
middleware, low-level macro-architecture is less important

« Look at the dramatic changes in GPU architecture under
DirectX

 If middleware understands triangles/matrices/graphs/etc., it can
translate them to SIMD or anything else

« HW design should focus on:
— Reliability
— Scalability (power, bandwidth, etc.)

— Efficient support for important parallel primitives
» Scan, sort, shuffle, etc.
* Memory model
» SIMD: divergent code —work queues, conditional streams, etc.
 Efficient producer-consumer communication
* (These primitives might turn into new coprocessors or functional units)

« Analogy to the RISC revolution

« The primitive ops are the new ISA, and current ISAs become the
new microcode/micro-ops

« “ISA” supports the compiler/middleware, not the programmer
* Need to support legacy code (MPI, OpenMP, pthreads)

« Low-level APIs should work with these codes

« This will also allow programmers to “drill down” if they need to

27

© 2007, Kevin Skadron

Top Research Challenges

Develop domain-specific APIs and portable, common
middleware

« Make sure these primitives and APIs are compatible with multiple
hardware evolution scenarios (heterogeneous cores, SIMD, etc.)

 Use existing low-level APIs for now (CUDA, TBB, CTM)

« Need ecosystem of portable profilers, debuggers, etc.
Explore TDP-scalable manycore architectures, focus on
evolutionary strategies

« Can develop APIs and use them today!

— GPUs, Fusion, Larrabee, Cell, Niagara, etc.

— Radical architectures can teach us about limits, but unlikely to
gain market adoption due to engineering effort

« Need new research on how to simulate and evaluate these
architectures

 Need to understand which components in the core scale nicely in
power, which do not

On-chip and off-chip communication bandwidth, latency, and
power remain key challenges

Work with real programmers (not just real programs)
« Maximizes likelihood that outcome is practical
« Helps speed adoption

« Helps advance scientific discovery along the way .

© 2007, Kevin Skadron

Summary: Start Investing Now

e Both APIs and TDP-scalable architectures

« Can do alot with existing platforms and
APIls

e GPUs are especially attractive today as
massively parallel chips with mass market
economics and useful low-level APIs

 Nice integration with visualization

» Invest now, before programming practice and
hardware architectures become locked in!

 Need scalable macroarchitecture to put off
power wall as long as possible

29

© 2007, Kevin Skadron

Discussion

These are points that came up during Q&A

Runtime variations are a serious programmability
challenge

« True today: thermal throttling

« Worse tomorrow: too hard to predict thermal interactions

Real-time

 Need ways to predict performance on these multicore
systems

« Runtime variations, e.g. thermal throttling, make this
worse

—l don’t personally see an alternative to sacrificing
some peak perf

— But now we barely even have acceptable ways to
manage these runtime events deterministically in a

single core
Dusty deck — presents huge problem

30

© 2007, Kevin Skadron

Backup

Thanks to David Tarjan (UVA PhD student),
who helped me with many aspects of this
presentation

...and to the whole LAVA group, who served
as a sounding board for these ideas over
the last year

31

