
Design Issues and Tradeoffs for Write Buffers

Kevin Skadron and Douglas W. Clark
Department of Computer Science

Princeton Universityfskadron, dougg@cs.princeton.edu

Abstract
Processors with write-through caches typically require a write

buffer to hide the write latency to the next level of memory hierar-
chy and to reduce write traffic. A write buffer can cause processor
stalls when it is full, when it contends with a cache miss for access
to the next level of the hierarchy, and when it contains the fresh-
est copy of data needed by a load. This paper uses instruction-
level simulation of SPEC92 benchmarks to investigate how differ-
ent write buffer depths, retirement policies, and load-hazard poli-
cies affect these three types of write-buffer stalls. Deeper buffers
with adequate headroom, lazier retirement policies, and the abil-
ity to read data directly from the write buffer combine to substan-
tially reduce write-buffer-induced stalls.

1 Introduction
Processor speeds continue to increase much faster than mem-

ory speeds, threatening application performance with increasing
stall time for both reads and writes. Current processors attempt
to bridge the gap with a variety of old and new techniques: mul-
tiple levels of caches, non-blocking loads, prefetching, and write
buffers are just a few examples. With a few exceptions, published
work in this area focuses on improving the performance of read
operations. Since poor write behavior can substantially penalize
performance and writes manifestly differ from reads, work to im-
prove memory hierarchy performance must include write-specific
techniques. We address some performance issues that arise in the
design of processor write buffers.

In a system with a write-through first-level cache, a write
buffer has two essential functions: it absorbs processor writes
(store instructions) at a rate faster than the next-level cache could,
thereby preventing processor stalls; and it aggregates writes to the
same cache block, thereby reducing traffic to the next-level cache.
These design objectives are unfortunately in conflict. The first
function is best fulfilled when the buffer is empty, but the second
is best fulfilled when it is full of recently-written blocks. Good
write buffer designs achieve a balance between these functions.

This paper considers write buffer designs for systems with at
least two levels of cache. Many processors place the first-level
(L1) cache on-chip to get the fastest possible hit times, so cycle
time plays an important role in the L1 design. This means that

Copyright c 1997 IEEE. Published in the Proceedings of the Third Inter-
national Symposium on High Performance Computer Architecture, Febru-
ary 1-5, 1997 in San Antonio, Texas, USA. Personal use of this material
is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from the IEEE.
Contact: Manager, Copyrights and Permissions / IEEE Service Center /
445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Tele-
phone: + Intl. 908-562-3966.

L1s often use write-through [15]. The DEC Alpha 21064 [9],
21164 [10], and the SUN UltraSPARC-I [13] all use small, on-
chip, write-through, L1s. The large second-level (L2) cache usu-
ally uses write-back to minimize main memory traffic. Figure 1
shows a typical system with a small, on-chip, write-through L1, a
coalescing write buffer, and an off-chip L2.

Real write buffers can cause stalls where an ideal buffer would
not: the buffer can overflow, for example, or cause contention for
L2. By separately measuring all the ways in which a write buffer
causes stalls, we introduce a framework for analyzing write buffer
design. We then identify the benefits and tradeoffs that result from
varying several write buffer parameters and policies. Our results,
which extend some preliminary work [23], show how write buffer
performance depends on these design details.

Literature on write buffers typically appears as part of work
focusing on other aspects of memory system design, and so little
detailed analysis of write buffer issues is available. Anderson et
al. [1], Chen [5], and Nagle et al. [21] find that write buffers con-
tribute significantly to memory stalls, but do not consider alterna-
tive buffer designs. Chen and Baer [6] and Chen and Somani [4]
discuss the benefits of read-bypassing write buffers. Jouppi [15]
considers cache write policies and discusses some write-buffer is-
sues, especially the policy for writing blocks to L2 (or main mem-
ory). He also considers a write cache, a write buffer organized as
a small, fully associative cache with LRU replacement. Instead
of merely buffering writes to memory, the write cache waits until

WB

L2 Cache

L1 D−cache

CPU

L1 I−cache

memory

Figure 1: Gross structure of a typical system with two levels of
cache. The second level is typically off-chip. We assume a write-
through L1 and a coalescing write buffer. The diagram shows a
write buffer in which two writes—black boxes—have merged into
a single cache line.



Parameter Value Hit time Miss time

Issue 1-way
Instruction latency 1 cycle, in the absence of memory stalls
L1 D-cache 8K, direct-mapped, 32B line, write-through, write-around 1 7 read, 1 write
L1 I-cache perfect 1 na
L2 cache perfect, write back 6 na (but see Sec. 4)

Table 1: Summary of the machine model. The 1-cycle L1 miss time assumes no write buffer overflow.

Parameter Description Baseline value

Depth The number of entries in the write buffer 4
Width How many words of data a write buffer entry contains—always 4 words (32B)

1 for non-coalescing buffers
Retirement Order Which entry is retired when a retirement occurs FIFO
Retirement Policy When the front entry (FIFO order) in the write buffer is retired. retire-at-2

Based on occupancy in this work
Load-Hazard When an L1 load miss hits in the write buffer, dictates how the flush-full
Policy load obtains its data from the write buffer
L2 Priority Whether reads or writes have priority at L2 Read-bypassing, but underway writes are

not preempted

Table 2: Summary of the baseline write buffer model. Experiments focus on depth, retirement policy, and load-hazard policy.

it must evict one of its entries before writing that data to the next
level. Bray and Flynn [3] also examine write caches. Gonçalves
and Appel [12] study the effects of cache write policy and write
buffer configuration on their implementation of the ML language.
They find performance of ML programs to be quite sensitive to
these design choices. Mowry [20] briefly considers combining a
write buffer with a prefetch buffer, but finds little benefit.

A few papers focus more directly on write buffer issues. Smith
[24] describes a queuing model for write-through and presents a
number of trace-based statistics about write behavior and write
buffer depth. Bianchini et al. [2], Dahlgren and Stenström [8],
Gharachorloo et al. [11], Mounes-Toussi and Lilja [19], and
Veenstra and Fowler [27] discuss write buffers and write caches
in the multiprocessor context. Finally, Chu and Gottipati [7] con-
sider gross write buffer performance. They examine several write
buffer configurations for write-through and write-back uniproces-
sor systems using trace-driven simulation, and find that even a sin-
gle word of buffering yields a substantial gain in performance.

2 Models, Methods, and Definitions
2.1 Machine Model

We simulate a simple, single-issue machine, with all instruc-
tions taking 1 cycle for execution. The memory system adds stall
cycles of various kinds. The blocking cache hierarchy has two
levels, and inter-cache datapaths are a cache line wide. The 8
K-byte, direct-mapped, write-through L1 data cache has 32-byte
lines and uses write-around on write misses. We assume the L1
instruction cache and the write-back, unified L2 never miss (but
see Section 4).

Hits in L1 take a single cycle. Write misses, which as men-
tioned do not allocate in L1, also take a single cycle unless the
write buffer is full. L2 has a fixed latency of 6 cycles, similar to
the Alpha 21164 [10] and SUN UltraSPARC [13]. In the absence
of contention, then, L1 load misses take a total of 7 cycles (1+6)
and writing a write-buffer block to L2 takes 6 cycles, regardless of
whether the entry being written is full or not. Table 1 summarizes
our machine model and the assumed parameters.

This simple model lets us isolate and reason about write buffer
effects without the complications of a detailed, low-level model.
Trends are intuitive and tradeoffs are clear. Assuming perfect
instruction and second-level caches avoids artifacts that specific
sizes and organizations might introduce. The price for these sim-
plifications, of course, is that we cannot make absolute quantita-
tive claims. Section 4 explores the model design-space beyond
this simple baseline configuration.

2.2 Write Buffer Model
We model a coalescing write buffer of multiple entries, where

each entry holds one or more address-aligned words—typically
one cache block. Each entry needs an address tag. The write
buffer compares these tags in parallel with the address of the in-
coming store instruction; on a hit, the store merges into the match-
ing entry, and turns on the appropriate word valid bit. On a miss,
the store allocates a new entry. If the store finds no entries avail-
able, it blocks until the write buffer retires an entry to L2. Each
entry needs valid bits at the granularity of the smallest writable da-
tum. The DEC Alphas we consider write only 4- or 8-byte words,
but new Alphas and most other machines can write quantities as
small as a byte.

The write buffer tries to ensure an adequate supply of free en-
tries by retiring entries according to some policy. To retire an en-
try, the write buffer arbitrates for access to L2, writes those words
which are valid, and then marks the entry free. Stores cannot nor-
mally merge into an entry that is being retired. Stores can, how-
ever, update other buffer entries while a retirement takes place.

Retirement order—typically FIFO—determines which entry
gets retired. Retirement policy determines when to retire that en-
try. The Alpha 21064 and 21164 retire the oldest entry if 2 or
more entries are valid. A lone entry in the write buffer may re-
main until it becomes too old—this occurs after 256 cycles in the
21064 [9] and after 64 cycles in the 21164 [10]. Waiting until 2 or
more entries are valid before retiring means that sequential writes
can achieve maximal coalescing: the most recently allocated entry
cannot be retired until a new entry is allocated. We call the entry

2



1
2
3
4

1,2,3,4 1,2,3 (none)3, maybe 1

Flush−Full Flush−Partial Flush−Item−Only Read−from−WB

Figure 2: A 4-deep write buffer, in which an L1 load miss has hit the third (gray) entry. The figure shows which entries are flushed by
each policy we consider.

Name Description How Measured

Buffer-full stall The write buffer is full and the store cannot merge Number of cycles the store must wait for a free entry
L2-read-access stall The write buffer occupies L2 Number of cycles the load must wait to access L2
Load-hazard stall The cache line needed by an L1 load miss is active Number of cycles spent handling the load hazard be-

in the write buffer fore the load miss can be serviced

Table 3: Summary of write-buffer-induced stalls

that triggers retirement—the second entry in this case—the high-
water mark, and name the retirement policy according to the high
water mark, so the Alphas use retire-at-2. Given a sufficiently
deep buffer, retirement can be lazier (or less eager): a 12-deep or
16-deep buffer, for example, could implement retire-at-4, retire-
at-8, etc. Lazier retirement keeps entries in the write buffer longer
to allow more opportunities for coalescing.

Retirement policy need not be based on occupancy; Jouppi
[15] considers a buffer that retires entries at a fixed rate. He finds
that in order to avoid overflow, an 8-deep, cache-line-wide buffer
must retire entries at a rate too rapid to achieve much coalescing.
Occupancy-based policies are not much more complicated than
fixed-rate policies, and should always perform better: the buffer
can retain a suitable number of entries for coalescing purposes, but
can retire entries at the maximum possible rate when occupancy
rises above the high-water mark, provided the high-water mark is
not too high. Our experiments retire entries based only on occu-
pancy.

The maximum rate at which the write buffer can retire entries
depends on the write buffer’s priority in arbitrating for L2, and
on the write bandwidth at L2. Chen and Baer [6], Chen and So-
mani [4], and Hennessy and Patterson [22] all describe the ben-
efits of read-bypassing write buffers: L1 load misses, which are
more urgent, may bypass write buffer entries waiting to retire.
With read-bypassing, L1 load misses can tie up L2 and delay write
buffer retires, making overflow more likely if stores appear among
the loads. The UltraSPARC-I [13] uses read-bypassing until the
buffer becomes too full, at which point the write buffer gets prior-
ity for L2. Like the Alphas [9, 10], we use straight read-bypassing
and we assume that write transactions already underway to L2
cannot be interrupted.

Read-bypassing write buffers raise two correctness is-
sues. Reordering of loads and stores—which also occurs with
coalescing—may violate multiprocessor consistency require-
ments, so current architectures include barrier instructions for
ensuring needed ordering properties. (Exceptions don’t cause
a problem with reordering, because a store only writes its data
once it cannot raise an exception.) Allowing loads to bypass
the write buffer also means that an L1 load miss may need data
from the write buffer. In such a case, reading from L2 would
yield stale data. We will call this a load hazard. A load hazard
occurs even if the word needed by the read miss does not reside
in the buffer, but some other portion of that cache line is active:
because the version of the line contained by L2 holds some stale

words, filling L1 must somehow retrieve those active words from
write buffer; otherwise, the fill into L1 would obtain stale data.

Flushing the write buffer on every load miss solves the load
hazard problem, but at substantial cost. (We use the term “retire-
ment” to describe an autonomous decision by the write buffer to
transfer an entry to L2, and “flushing” to describe a transfer forced
by some external event, like a load hazard.) Since the write buffer
already has comparators, an L1 load miss can check the write
buffer, and take action only on a hit. When a load hazard does oc-
cur, a variety of options exist. We consider four load-hazard poli-
cies. Flush-full flushes the entire write buffer when the miss hits in
the buffer; the Alpha 21064 uses this policy [9]. Flush-partial, the
21164’s policy [10], saves some work by flushing entries in FIFO
order only as far as necessary to purge the hit entry. Flush-item-
only, which Chu and Gottipati [7] suggest but do not study, saves
even more work by flushing only the hit entry. If a different entry
is already being retired when the load hazard occurs, we assume
this transaction completes first. Finally, read-from-WB allows the
load miss to read its data directly from the write buffer without al-
tering the buffer’s contents, avoiding an L2 access in the process
(no L1 fill occurs).

Figure 2 summarizes the policies, showing how many entries
each policy retires. Note that under read-from-WB a load miss can
find its cache line active in the write buffer, but find the needed
word invalid. This situation requires an L1 fill, which for correct-
ness must merge the incoming line from L2 with the active words
from the write buffer.

We assume that under read-from-WB the write buffer and L1
data cache are probed simultaneously, and the data is returned
from the appropriate location. Our simulations consequently
charge the same amount of time for an L1 hit and a write buffer
hit (i.e., the correct word is not in L1 but is in the write buffer).
When the correct block resides in the write buffer but the needed
word does not, our simulations charge an L2 access, but no extra
cycles are charged for merging the data from L2 with those words
that are valid in the write buffer.

As a baseline model, we choose a 4-deep, cache-line-wide
(32B), read-bypassing write buffer that uses retire-at-2 and flush-
full. This closely resembles the Alpha 21064’s write buffer [9],
lacking only that system’s policy of periodic retirement of old en-
tries. The 21164 has a similar buffer that is 6 entries deep and uses
flush-partial [10]. Table 2 summarizes some write buffer param-
eters and our baseline model.

3



2.3 Write-Buffer-Induced Stalls
Three types of stalls can be blamed on the write buffer. Buffer-

full stalls occur when the processor executes a store, the write
buffer is full, and the store cannot merge with any current entry.
The store must stall until a buffer entry is available. An L2-read-
access stall occurs when a load miss in the L1 data cache encoun-
ters a delay in reading from L2 because the write buffer is cur-
rently writing to L2. The load stalls for two reasons, first until
the write buffer transaction completes, and second until the load’s
own read from L2 completes. We count only the first as an L2-
read-access stall, and charge the second to the miss itself. Finally,
a load-hazard stall occurs when an L1 load miss finds its data in
the write buffer; if the data is not read directly out of the write
buffer, the load stalls until the write buffer flushes the necessary
entries. Here again, we do not charge the subsequent L2 read time
as part of the load-hazard stall, since it should be attributed to the
miss instead. In our system model, any stall cycles the write buffer
causes must fall into one of these three categories. Note that only
the first type delays a store instruction; we find that write buffers
often delay loads more than stores.

We separately measure cycles spent on buffer-full, L2-read-
access, and load-hazard stalls. (Of course we also simulate and
count other sources of memory hierarchy stalls, notably the time
for L1 cache misses.) Table 3 summarizes the sources of write-
buffer-induced stalls and how we attribute cycles to each. Catego-
rizing write-buffer-induced stall cycles directly and clearly shows
the impact of write buffer performance and how much each type
of stall contributes. This information helps the designer target
design changes: if the chief problem is buffer-full stalls, for ex-
ample, then deeper buffers should help, while if L2-read-access
stalls are a problem, then finding some way to achieve more co-
alescing is worthwhile. Categorizing stalls also makes it easier
to see the tradeoffs associated with varying write buffer design
parameters—for example, it shows that making the write buffer
deeper reduces buffer-full stalls, but increases in other types of
stalls consume part of that gain.

This detailed approach yields better information than gross
measures like memory stall CPI or indirect metrics like reduc-
tion in write traffic. By counting all stalls, we in effect measure
the write buffer against a perfect buffer that never overflows and
never delays loads. This represents a lower bound, the best per-
formance a write buffer configuration can achieve. Chu and Got-
tipati [7] also compare their results to an ideal buffer, but instead
measure average cycles per memory reference. They also iden-
tify the same three types of write-buffer-induced stalls, but do not
measure them.

2.4 Simulation Framework and Benchmarks
We simulate a set of SPEC92 benchmarks with an instruction-

level simulator based on Digital’s ATOM system [25]. ATOM in-
struments DEC Alpha executables for OSF. It performs binary-
to-binary translation, instrumenting an executable with calls
into user-supplied analysis routines. The benchmarks are stat-
ically compiled and linked using cc -migrate with -O5
-ifo1 optimization for C programs, and f77 with -fast2
for Fortran programs. Some C programs use -unsigned,
-ansi alias, or -assume aligned objects and doduc1Inter-file-optimization2Sets -O4 as well as assume noaccuracy sensitive, -align
dcommons, and -math library fast

Benchmark Input Pct. Loads Pct. Stores

cc1 stmt.i 20.2 10.5
compress ref 22.7 8.6
uncompress ref 22.6 8.4
espresso tial.in 19.6 5.1
li 8-queens 28.4 16.2
sc loada3 27.2 11.4
cholsky na 30.5 12.8
doduc short 22.4 6.8
fft na 21.2 21.0
fpppp short 33.8 12.7
gmtry na 35.7 12.4
hydro2d short 21.9 8.7
mdljdp2 short 14.5 7.6
mdljsp2 short 21.1 6.0
su2cor short 24.3 11.0
tomcatv na 27.5 8.0
wave5 na 20.8 13.9

Table 4: Summary of the SPEC92 benchmarks used. For bench-
mark descriptions, see SPEC’s Web site [26]. Except for mdljsp2
and wave5, the floating-point benchmarks are double-precision.
Cholsky, fft, and gmtry are kernels from the nasa7 benchmark.

uses -automatic and -align records. Table 4 briefly de-
scribes each benchmark and shows the inputs our experiments
use.

We chose benchmarks which suffer some degree of write-
buffer-induced stalls in order to show how varying the write buffer
configuration affects performance. Some SPEC92 benchmarks—
ear, ora, alvinn, and eqntott—suffer virtually no write-buffer
stalls in the baseline model, and are not included. We do include
one such “uninteresting” benchmark, espresso, to show that some
configurations produce substantially worse performance. Spice
and swm256 presented instrumentation difficulties, and are also
omitted. Operating system activity is omitted as well. Of course,
we can make no claim for any special representativeness of these
benchmarks; they are simply SPEC92 programs.

3 Results and Analysis
This section reports and discusses the performance of different

write buffer configurations. We focus on buffer depth, retirement
policy, and load-hazard policy. Our general method, once we have
presented performance data for the baseline write buffer, is to vary
one parameter at a time and examine the results. We do not try to
find the “best” structure for our particular machine model; rather
we explore the relationships among the parameters and how they
affect the three types of stalls.

3.1 Baseline Performance
Figure 3 shows the benchmarks’ performance with the base-

line write buffer. The figure shows four bars for each benchmark;
the first three bars (gray) show the percentage of execution time
spent on L2 read-access, buffer-full, and load-hazard stalls respec-
tively, and the fourth bar (black) shows their sum, the total time
spent on write-buffer-induced stalls.

Some benchmarks, like espresso, stall little, but others—
especially the floating-point programs—experience substantial
stalls. Nine of the benchmarks, including the three NASA kernels,
spend 5% or more of their time on write-buffer-induced stalls. The

4



es
pr

es
so

 

co
m

pr
es

s 

un
co

m
pr

es
s sc
 

cc
1 li 

do
du

c 

hy
dr

o2
d 

m
dl

js
p2

 

to
m

ca
tv

 

fp
pp

p 

m
dl

jd
p2

 

w
av

e5
 

su
2c

or
 

fft
 

ch
ol

sk
y 

gm
tr

y 

0

2

4

6

8

10

12

S
ta

ll 
cy

cl
es

, a
s 

%
 o

f t
ot

al
 ti

m
e

Write-Buffer-Induced Stall Cycles, Base Model

0

2

4

6

8

10

12

4-deep, retire-at-2, flush-full

R F L T R F L T R F L T R F L T R F L T R F L T R F L T R F L T R F L T R F L T R F L T R F L T R F L T R F L T R F L T R F L T R F L T

R : L2-read-access
F : Buffer-full
L : Load-hazard
T : Total

Figure 3: Performance of the baseline write buffer configuration, a 4-deep, cache-line-wide buffer using retire-at-2 and flush-full. The
benchmarks are presented in three groups: SPECint92, SPECfp92, and NASA kernels. Within these groups, benchmarks are shown in
order of stall behavior.

es
pr

es
so

 

co
m

pr
es

s 

un
co

m
pr

es
s sc
 

cc
1 li 

do
du

c 

hy
dr

o2
d 

m
dl

js
p2

 

to
m

ca
tv

 

fp
pp

p 

m
dl

jd
p2

 

w
av

e5
 

su
2c

or
 

fft
 

ch
ol

sk
y 

gm
tr

y 

0

2

4

6

8

10

12

14

16

18

20

22

S
ta

ll 
cy

cl
es

, a
s 

%
 o

f t
ot

al
 ti

m
e

Stall Cycles as a Function of Depth, Base Model, depth = 2-12

0

2

4

6

8

10

12

14

16

18

20

22
retire-at-2, flush-full

2468 t z 2468 t z 2468 t z 2468 t z 2468 t z 2468 t z 2468 t z 2468 t z 2468 t z 2468 t z 2468 t z 2468 t z 2468 t z 2468 t z 2468 t z 2468 t z 2468 t z

2 : 2-deep
4 : 4-deep
6 : 6-deep
8 : 8-deep
t : 10-deep
z : 12-deep

0

2

4

6

8

10

12

14

16

18

20

22

Buffer-full
Load-hazard
L2-read-access

Figure 4: Performance with different buffer depths.

es
pr

es
so

 

co
m

pr
es

s 

un
co

m
pr

es
s sc
 

cc
1 li 

do
du

c 

hy
dr

o2
d 

m
dl

js
p2

 

to
m

ca
tv

 

fp
pp

p 

m
dl

jd
p2

 

w
av

e5
 

su
2c

or
 

fft
 

ch
ol

sk
y 

gm
tr

y 

0

2

4

6

8

10

12

14

16

S
ta

ll 
cy

cl
es

, a
s 

%
 o

f t
ot

al
 ti

m
e

Stall Cycles as a Function of Retirement Policy, retire-at-2 thru 10

0

2

4

6

8

10

12

14

16

12-deep, flush-full

a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e

a : retire-at-2
b : retire-at-4
c : retire-at-6
d : retire-at-8
e : retire-at-10

0

2

4

6

8

10

12

14

16
Buffer-full
Load-hazard
L2-read-access

Figure 5: Performance of a 12-deep, flush-full buffer with different retirement policies.

5



Benchmark L1 hit rate WB hit rate
compress 82.52% 38.81%
uncompress 92.10% 21.22%
espresso 94.73% 45.65%
cc1 93.33% 47.46%
li 91.96% 41.40%
sc 91.00% 61.73%
cholsky 48.77% 32.29%
doduc 88.89% 46.65%
fft 57.14% 50.93%
fpppp 89.88% 35.13%
gmtry 43.23% 9.76%
hydro2d 84.29% 44.68%
mdljdp2 85.11% 7.79%
mdljsp2 96.84% 7.41%
su2cor 45.82% 23.56%
tomcatv 63.93% 30.05%
wave5 89.44% 39.32%

Table 5: L1 hit rate (loads) and write buffer hit rate (stores) in
baseline model.

incidence of buffer-full and L2-read-access stalls depends partly
on a program’s locality. Poor locality in L1 leads to L2-read-
access stalls when misses contend with write buffer retirements.
Su2cor and the NASA kernels especially show this behavior. Poor
locality in the write buffer leads to buffer-full stalls when non-
adjacent stores try to allocate too many buffer entries. Mdljsp2
and mdljdp2 are good examples. Table 5 shows the hit rates for
the L1 cache (loads only) and write buffer (stores only).

In some cases, obvious transformations can substantially im-
prove cache performance. For example, gmtry and cholsky both
have low L1 and write buffer hit rates. They traverse their ar-
rays in column-major instead of row-major order, the “wrong” or-
der for Fortran, which stores successive column elements sequen-
tially. A loop interchange for gmtry and an array transposition
for cholsky solve the problem—see Table 6. In fact, the new ver-
sions suffer almost no write-buffer-induced stalls under the base-
line model.

In [16], Lebeck and Wood describe some general techniques
for improving cache behavior, such as loop interchange and loop
fusion. In addition to the above improvements to gmtry and chol-
sky, they obtain good speedups for several other SPEC92 bench-
marks, notably tomcatv. But they also point out that tuning cache
performance is difficult. Most programs are not as easily analyzed
as the NASA kernels—finding opportunities for improvement of-
ten requires cache profiling [16, 17], and even then conflict misses
can make cache behavior vary from input to input. We therefore
focus on simple changes to the write buffer itself, and not on com-
piler techniques or application-specific modifications. Results are
for the SPEC benchmarks as shipped, without cache optimiza-
tions.

3.2 Buffer Depth
Figure 4 shows how write buffer performance improves as

the baseline buffer’s depth varies from 2 entries to 12 entries,
with all else held constant. Note that because this and all sub-
sequent graphs compare different configurations, each configura-
tion is represented by a single bar. Within a bar, the black seg-
ment shows L2 read-access stall cycles as a percentage of execu-
tion time, the white shows load-hazard stall cycles, and the grey

Original kernels After
transformations

Benchmark L1 cache WB L1 cache WB
hit rate hit rate hit rate hit rate

gmtry 43.2% 9.8% 88.5% 72.2%
cholsky 48.8% 32.3% 82.1% 73.5%

Table 6: L1 cache and write buffer performance of two NASA
kernels, before and after transformations to achieve column-major
array traversal in inner loops [16].

shows buffer-full stall cycles.
The deeper the buffer, the more room for bursts of stores. For

most benchmarks, buffer-full stalls cycles fall below 0.2% by the
time a depth of 8 is reached. Wave5 requires 10 entries to reach
that level. The NASA kernels have almost no buffer-full stalls,
except in a 2-entry buffer, so extra depth has little effect for them.
Size-2 buffers perform poorly because under retire-at-2, retire-
ment does not begin until the buffer is full. An actual buffer this
small would use more eager retirement.

Deepening the buffer only causes a slight rise in L2 read-
access and load-hazard stalls. L2 read-access stalls rise because
buffer-full stalls happen less frequently, so more entries retire dur-
ing non-stalled execution; this raises contention for L2. Load-
hazard stalls rise because the average occupancy of the buffer
is higher; this raises the probability of a load hazard. These ef-
fects are small in comparison to the gains from making the buffer
deeper.

3.3 Retirement Policy
Deepening the buffer does more than reduce buffer-full stalls;

it also facilitates lazier retirement. Lazier retirement keeps entries
in the buffer longer, providing more opportunities for coalescing.
If stores were strictly sequential, retire-at-2 would be sufficient:
stores would only hit in the most recently created entry.

To evaluate the benefits of different retirement policies, we
consider a 12-deep buffer with five different retirement policies:
retire-at-2 through retire-at-10. Figure 5 shows the results. For
almost every benchmark (not including the idiosyncratic chol-
sky and gmtry), lazier retirement has two effects, both due to the
longer presence of more blocks in the buffer. First, L2-read-access
stalls decrease, because more coalescing makes retirements less
frequent (stores are not strictly sequential). Second, load-hazard
stalls increase, both because more loads hit in the buffer, and be-
cause the cost of each hit—a flush of all occupied blocks—rises.
In the buffer configurations of Figure 5, the full flush causes the
second effect to overwhelm the first. The next subsection shows
that alternatives to flush-full reduce load-hazard stall time.

Figure 5 shows a third effect. Despite using a 12-deep buffer,
buffer-full stalls reappear for some benchmarks when using retire-
at-8 or retire-at-10—even though Figure 4 suggested that a 12-
deep buffer is big enough for these benchmarks to entirely avoid
buffer-full stalls. The problem is that, for many benchmarks,
retire-at-10 and to some extent retire-at-8 do not leave adequate
headroom—once the high-water mark is reached, not enough en-
tries remain available. These data suggest that no matter what the
retirement policy, the buffer needs at least 4 to 6 entries above the
high-water mark to avoid buffer-full stalls for these benchmarks.

3.4 Load-Hazard Policy
Figure 6 shows the effects of different load-hazard policies for

6



es
pr

es
so

 

co
m

pr
es

s 

un
co

m
pr

es
s sc
 

cc
1 li 

do
du

c 

hy
dr

o2
d 

m
dl

js
p2

 

to
m

ca
tv

 

fp
pp

p 

m
dl

jd
p2

 

w
av

e5
 

su
2c

or
 

fft
 

ch
ol

sk
y 

gm
tr

y 

0

2

4

6

8

10

12

14

16

S
ta

ll 
cy

cl
es

, a
s 

%
 o

f t
ot

al
 ti

m
e

Stalls as a Function of Load-Hazard Policy

0

2

4

6

8

10

12

14

16

12-deep, retire-at-10

BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R

B : Baseline+
F : Flush-full
P : Flush-partial
I : Flush-item-only
R : Read-from-WB

0

2

4

6

8

10

12

14

16
Buffer-full
Load-hazard
L2-read-access

Figure 6: Performance of a 12-deep, retire-at-10 buffer with different load-hazard policies. The first bar for each benchmark, “Baseline+”,
shows performance for a 12-deep, retire-at-2 buffer with flush-full for comparison.

es
pr

es
so

 

co
m

pr
es

s 

un
co

m
pr

es
s sc
 

cc
1 li 

do
du

c 

hy
dr

o2
d 

m
dl

js
p2

 

to
m

ca
tv

 

fp
pp

p 

m
dl

jd
p2

 

w
av

e5
 

su
2c

or
 

fft
 

ch
ol

sk
y 

gm
tr

y 

0

2

4

6

8

10

12

14

16

S
ta

ll 
cy

cl
es

, a
s 

%
 o

f t
ot

al
 ti

m
e

Stalls as a Function of Load-Hazard Policy

0

2

4

6

8

10

12

14

16

12-deep, retire-at-8

BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R BFP I R

B : Baseline+
F : Flush-full
P : Flush-partial
I : Flush-item-only
R : Read-from-WB

0

2

4

6

8

10

12

14

16
Buffer-full
Load-hazard
L2-read-access

Figure 7: Performance of a 12-deep, retire-at-8 buffer with different load-hazard policies. “Baseline+” is the same as in the previous
figure.

es
pr

es
so

 

co
m

pr
es

s 

un
co

m
pr

es
s sc
 

cc
1 li 

do
du

c 

hy
dr

o2
d 

m
dl

js
p2

 

to
m

ca
tv

 

fp
pp

p 

m
dl

jd
p2

 

w
av

e5
 

su
2c

or
 

fft
 

ch
ol

sk
y 

gm
tr

y 

0

2

4

6

8

10

12

14

S
ta

ll 
cy

cl
es

, a
s 

%
 o

f t
ot

al
 ti

m
e

Stall Cycles as a Function of Retirement Policy with Flush-Partial

0

2

4

6

8

10

12

14

retire-at-2 thru 6, headroom fixed at 6 entries

B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c

B : Baseline+
a : retire-at-2
b : retire-at-4
c : retire-at-6

0

2

4

6

8

10

12

14
Buffer-full
Load-hazard
L2-read-access

Figure 8: Finding the best configuration for flush-partial.

7



es
pr

es
so

 

co
m

pr
es

s 

un
co

m
pr

es
s sc
 

cc
1 li 

do
du

c 

hy
dr

o2
d 

m
dl

js
p2

 

to
m

ca
tv

 

fp
pp

p 

m
dl

jd
p2

 

w
av

e5
 

su
2c

or
 

fft
 

ch
ol

sk
y 

gm
tr

y 

0

2

4

6

8

10

12

14

S
ta

ll 
cy

cl
es

, a
s 

%
 o

f t
ot

al
 ti

m
e

Stall Cycles as a Function of Retirement Policy with Flush-Item-Only

0

2

4

6

8

10

12

14
retire-at-2 thru 6, headroom fixed at 6 entries

B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c B a b c

B : Baseline+
a : retire-at-2
b : retire-at-4
c : retire-at-6

0

2

4

6

8

10

12

14

Buffer-full
Load-hazard
L2-read-access

Figure 9: Finding the best configuration for flush-item-only.

a 12-deep buffer with retire-at-10. We choose this low-headroom
configuration to expose the interaction between load-hazard pol-
icy and headroom; we just saw that a retire-at-10 write buffer does
not have enough headroom and so incurs some buffer-full stalls.
The first bar for each benchmark, “baseline+”, appears for com-
parison. It shows performance for a 12-deep, retire-at-2 buffer
with flush-full—just a baseline buffer with more entries.

The policies introduced in Section 2.2 determine what happens
when an L1 load miss hits an entry in the write buffer: in flush-
full all active entries are flushed; in flush-partial the hit entry and
any older entries are flushed; in flush-item-only the hit entry alone
is flushed; and in read-from-WB the desired data is delivered to
the processor directly, with no flushing whatever. We say that this
progression of policies becomes more precise as fewer blocks are
flushed.

Increasing precision affects stalls in four ways: first, the du-
ration of load-hazard stalls decreases due to the smaller number
of flushed blocks; second, the number of load-hazard stalls in-
creases, because those blocks not flushed can trigger subsequent
load hazards; third, L2-read-access stalls increase, since those
blocks not flushed are ultimately written on retirement and con-
tention for L2 rises; and fourth, buffer-full stalls may rise, as more
blocks increase the buffer’s average occupancy. In the configura-
tion of Figure 6, the first effect strongly dominates the others for
all but the two pathological NASA kernels. More precise load-
hazard policies lead to many fewer load-hazard stall cycles.

More precise load-hazard policies further increase headroom
pressure. In the previous subsection, we saw that lazier, low-
headroom policies like retire-at-10 in a 12-deep, flush-full buffer
cause a moderate rise in buffer-full stalls. Figure 6 shows that
buffer-full stalls rise further with more precise flushing. The
higher average occupancy creates a greater need for adequate
headroom.

Figure 7 repeats the experiments of Figure 6, but with a some-
what more eager retirement policy, retire-at-8. The resulting
headroom of 4 blocks nearly eliminates buffer-full stalls. L2-read-
access stalls are the same or greater in Figure 7 than in Figure
6, due to less coalescing and hence more frequent retirements.
Load-hazard stalls are the same or fewer, due to the lower flush
cost of load hazards. Once again, more precise flushing increases

headroom pressure; for a few benchmarks, buffer-full stalls rise
slightly as the load-hazard policy moves from flush-full to read-
from-WB. Overall, the buffer structures of Figure 7 have some-
what better performance than those of Figure 6. Uncompress,
cholsky, and gmtry are exceptions.

These results suggest three conclusions. First, when using a
load-hazard policy other than read-from-WB, lazier retirement is
worse than eager retirement: we just saw that retire-at-8 outper-
forms retire-at-10, and that retire-at-2 (even with flush-full, i.e.
baseline+) outperforms both. Second, the load-hazard policies
of intermediate precision—flush-partial and flush-item-only—are
not especially helpful. They don’t reduce load-hazard stalls
enough with lazier retirement, and they don’t help much with ea-
ger retirement because there are few load-hazard stalls to reduce.
(But there are a few exceptions, namely li, fpppp, su2cor, and fft.)
Third, when using read-from-WB, lazier retirement does help—
significantly. A 12-deep buffer with retire-at-8 and read-from-WB
is the best configuration so far.

3.5 Putting It All Together
The preceding results suggest that lazier retirement only helps

in conjunction with read-from-WB. This subsection gives a more
detailed picture of the tradeoffs between lazier retirement and
more precise load-hazard policies.

To show that retire-at-2 is indeed the best retirement policy for
flush-partial and flush-item-only requires experiments like the one
that produced Figure 5. Those experiments varied retirement pol-
icy, and showed that lazier retirement clearly hurts under flush-
full. Figures 8 and 9 show the consequences of different retire-
ment policies under flush-partial and flush-item-only. These ex-
periments are different in one important respect: we saw earlier
that write-buffer headroom matters more than simple depth, so
in these figures retirement policy varies while headroom remains
fixed at 6 entries—depth therefore varies, too.

Figure 8 shows that flush-partial behaves similarly to flush-
full. With any but the most eager retirement policy, load-hazard
stalls outweigh any gains from lazier retirement and greater depth.
Nevertheless, in a retire-at-2 (i.e., 8-deep) configuration, flush-
partial performs at least as well as flush-full because it does flush
fewer blocks, It provides better performance for several bench-
marks, especially li and fft.

8



Figure 9 shows mixed results for flush-item-only. In a
retire-at-2 configuration, flush-item-only performs about as well
as flush-partial. With lazier retirement, performance improves
slightly compared to baseline+ for some programs, and signifi-
cantly for a few. For others, however, performance changes barely
at all.

These results show that only the most eager retirement pol-
icy, retire-at-2, is viable for flush-full and flush-partial. For flush-
item-only, lazier retirement does help some programs.

With read-from-WB, lazier retirement always helps. Read-
from-WB simply eliminates load-hazard stalls, so any read-from-
WB configuration with adequate headroom must outperform a
similar configuration that needs to flush blocks. (Never flushing
means read-from-WB needs to retire more blocks, but flushing a
block is at least as expensive as retiring it.)

For these benchmarks we conclude that a write buffer should
use a deep, read-from-WB buffer with at least 4 to 6 entries of
headroom. If hardware exigencies make read-from-WB too dif-
ficult, flush-item-only may be an option, but a simple 6-deep or
8-deep, flush-full buffer using retire-at-2 may be better.

4 Cache effects
We next look at the sensitivity of write-buffer performance to

some size and latency parameters of the memory hierarchy com-
ponents.

4.1 L1 Caches
Several current machines—for example, the Alpha 21164 [10]

and the Pentium Pro [14]—have 8K, on-chip L1s like our model,
but future machines will probably use larger caches. Already, the
SUN UltraSPARC [13] has a 16K cache, and the MIPS R10000
[18] a 32K cache. What should happen to the write buffer as L1
size increases? We can identify three effects:

1. Fewer loads miss in L1, so fewer load misses hit in the write
buffer and fewer blocks are flushed to L2. This should mean
that buffer-full stalls increase, due to increased occupancy of
the buffer, but that load-hazard stalls decrease.

2. Fewer load misses means stores come closer together in
time. This increased rate of input to the write buffer should
lead to an increase in buffer-full stalls.

3. Fewer load misses means a decrease in the number of L2-
read-access stalls.

All three effects are evident in Figure 10, which shows write-
buffer performance for our baseline model as L1’s size increases
from 8K to 32K. The strongest effect is the drop in L2-read-access
stalls. The net result of increasing L1’s size is a small reduction
in total write-buffer stalls for most of the benchmarks and a large
reduction for a few.

Individual program idiosyncrasies are also evident. In fpppp,
load-hazard stalls vanish when the cache increases from 16K to
32K; we may infer that the loads causing the hazards at 16K al-
ways hit in a cache of size 32K. In fft, L2-read-access stalls in-
crease slightly as the cache grows. Its low hit rate remains almost
constant in this range of L1 size, but the L1 misses occur at dif-
ferent times and conflict more with retirements.

4.2 L2 Caches and Main Memory
L2 latency

Our experiments assumed a value of 6 cycles for L2 read and
write latency, a reasonable number for contemporary machines.

Benchmark L1 L2 hit rate
hit rate 128 K 512K 1 M

compress 82.52% 92.04% 99.98% 99.98%
uncompress 92.10% 98.67% 99.96% 99.96%
espresso 94.73% 99.96% 100.00% 100.00%
cc1 93.33% 99.31% 99.89% 99.98%
li 91.96% 99.18% 99.98% 99.98%
sc 90.98% 97.87% 99.99% 99.99%
cholsky 48.77% 87.00% 94.93% 98.40%
doduc 88.89% 99.97% 99.85% 99.97%
fft 57.14% 62.45% 99.79% 100.00%
fpppp 89.88% 99.87% 100.00% 100.00%
gmtry 43.21% 88.53% 92.80% 96.09%
hydro2d 84.26% 96.64% 99.77% 99.85%
mdljdp2 85.11% 98.77% 99.99% 99.99%
mdljsp2 96.84% 99.79% 100.00% 100.00%
su2cor 45.80% 90.32% 96.65% 98.62%
tomcatv 63.78% 75.10% 75.60% 91.39%
wave5 89.41% 98.25% 99.04% 99.11%

Table 7: L1 and L2 global miss rates. L1 miss rates shown are for
a 1M L2; some have declined slightly from Table 5 due to invali-
dations required to maintain strict inclusion.

Figure 11 shows that the impact of write-buffer-induced stalls in
our baseline model is quite sensitive to this parameter. When this
value is only 3 cycles, the write buffer does not significantly im-
pede performance—the speed of L2 is so close to that of L1 that
little opportunity for contention or buffer-full stalls arises. But as
latency grows from 3 to 6 to 10 cycles, write-buffer stall cycles
increase dramatically.

The reasons should be clear. If write-buffer retirements and
flushes take a longer time in L2, then all three types of stall
should increase: buffer-full stalls because the buffer empties more
slowly, load-hazard stalls because flushes take longer, and L2-
read-access because load misses must wait longer before they may
access L2.

L2 size
We have thus far assumed a perfect L2. If we substitute into

our baseline model L2 caches with a 6-cycle latency, realistic cur-
rent size—128K through 1M—and a main memory latency of 25
cycles, we get Figure 12. Many of the programs show little effect,
due to high hit rates in even the smallest L2s—see Table 7. Other
programs show the expected rise in write buffer stalls as L2 size
declines from the perfect model.

Several benchmarks in Figure 12, however, display a surpris-
ing decrease in L2-read-access stalls as L2 size is reduced. Table
7 provides one explanation for this: in these benchmarks, some
steps in L2 size cause big changes in hit rate. In a run with many
more 25-cycle L2 misses, the percentage contribution of write
buffer stalls to execution time can go down: the added L2 miss
times simply overwhelm the write buffer’s contribution. For ex-
ample, the big jump in misses in tomcatv when the cache goes
from 1M to 512K results in the peculiar results for that program in
Figure 12. Fft, cholsky, and gmtry display similar, if less striking,
behavior.

There is a second explanation for this apparent anomaly. When
the L2 miss rate jumps significantly, there are more opportunities
for the write buffer to retire entries during these L2 misses (our

9



es
pr

es
so

 

co
m

pr
es

s 

un
co

m
pr

es
s sc
 

cc
1 li 

do
du

c 

hy
dr

o2
d 

m
dl

js
p2

 

to
m

ca
tv

 

fp
pp

p 

m
dl

jd
p2

 

w
av

e5
 

su
2c

or
 

fft
 

ch
ol

sk
y 

gm
tr

y 

0

2

4

6

8

10

12

S
ta

ll 
cy

cl
es

, a
s 

%
 o

f t
ot

al
 ti

m
e

Stall Cycles as a Function of Cache Size

0

2

4

6

8

10

12

4-deep, retire-at-2, flush-full

A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C

A : 8k
B : 16k
C : 32k

0

2

4

6

8

10

12
Buffer-full
Load-hazard
L2-read-access

Figure 10: Performance with different L1 sizes.

es
pr

es
so

 

co
m

pr
es

s 

un
co

m
pr

es
s sc
 

cc
1 li 

do
du

c 

hy
dr

o2
d 

m
dl

js
p2

 

to
m

ca
tv

 

fp
pp

p 

m
dl

jd
p2

 

w
av

e5
 

su
2c

or
 

fft
 

ch
ol

sk
y 

gm
tr

y 

0

2

4

6

8

10

12

14

16

18

20

22

S
ta

ll 
cy

cl
es

, a
s 

%
 o

f t
ot

al
 ti

m
e

Stall Cycles as a Function of L2 Access Time

0

2

4

6

8

10

12

14

16

18

20

22
4-deep, retire-at-2, flush-full

3 6 10 3 6 10 3 6 10 3 6 10 3 6 10 3 6 10 3 6 10 3 6 10 3 6 10 3 6 10 3 6 10 3 6 10 3 6 10 3 6 10 3 6 10 3 6 10 3 6 10

3 : 3-cycles
6 : 6-cycles

10 : 10-cycles

0

2

4

6

8

10

12

14

16

18

20

22

Buffer-full
Load-hazard
L2-read-access

Figure 11: Performance under the baseline write buffer configuration, but with different values of L2 latency.

es
pr

es
so

 

co
m

pr
es

s 

un
co

m
pr

es
s sc
 

cc
1 li 

do
du

c 

hy
dr

o2
d 

m
dl

js
p2

 

to
m

ca
tv

 

fp
pp

p 

m
dl

jd
p2

 

w
av

e5
 

su
2c

or
 

fft
 

ch
ol

sk
y 

gm
tr

y 

0

2

4

6

8

10

12

14

S
ta

ll 
cy

cl
es

, a
s 

%
 o

f t
ot

al
 ti

m
e

Stall Cycles, Perfect and Real Caches

0

2

4

6

8

10

12

14

4-deep, retire-at-2, flush-full

P a b c P a b c P a b c P a b c P a b c P a b c P a b c P a b c P a b c P a b c P a b c P a b c P a b c P a b c P a b c P a b c P a b c

P : perfect-L2
a : 1M-L2
b : 512k-L2
c : 128k-L2

0

2

4

6

8

10

12

14
Buffer-full
Load-hazard
L2-read-access

Figure 12: Performance with perfect and real L2 caches of various sizes, and latency 6 cycles.

10



es
pr

es
so

 

co
m

pr
es

s 

un
co

m
pr

es
s sc
 

cc
1 li 

do
du

c 

hy
dr

o2
d 

m
dl

js
p2

 

to
m

ca
tv

 

fp
pp

p 

m
dl

jd
p2

 

w
av

e5
 

su
2c

or
 

fft
 

ch
ol

sk
y 

gm
tr

y 

0

2

4

6

8

10

12

14

S
ta

ll 
cy

cl
es

, a
s 

%
 o

f t
ot

al
 ti

m
e

Stall Cycles, perfect and real caches

0

2

4

6

8

10

12

14

4-deep, retire-at-2, flush-full

P a b P a b P a b P a b P a b P a b P a b P a b P a b P a b P a b P a b P a b P a b P a b P a b P a b

P : perfect-L2
a : 1M-L2,mm=25
b : 1M-L2,mm=50

0

2

4

6

8

10

12

14
Buffer-full
Load-hazard
L2-read-access

Figure 13: Performance with perfect and real L2 caches with different main-memory latencies.

simulations allow the write buffer to use L2 for retirements then).
These retirements cannot conflict with load accesses to L2. Both
explanations apply to tomcatv: the percentage effect mentioned
above exaggerates an absolute difference in the number of L2-
read-access stall cycles, which is greater for the 1M cache than
for the 512K cache.

Main memory latency
Figure 13 shows the differences between a perfect L2, a 1M L2

with memory latency of 25 cycles, and the same 1M cache with
memory latency of 50 cycles. Some benchmarks (e.g., uncom-
press, fpppp) show little effect, as Table 7 would lead us to ex-
pect. In others (e.g., hydro2d, tomcatv) the latency of main mem-
ory has a strong effect on write buffer performance. And in chol-
sky and gmtry, the effects discussed above in connection with L2
sizes result in a decrease in the percentage of cycles accounted for
by write-buffer stalls.

4.3 Other Effects
Machine organization features that we do not consider in these

experiments include the following:� Substituting a realistic instruction cache for the perfect one
used in the simulations has several effects. Stalls due to I-
cache misses allow the write buffer to finish retiring an en-
try if a retirement is underway, and the increase in program
runtime reduces the contribution of a given number of write-
buffer-induced stalls to total execution time. On the other
hand, L2-read-access stalls increase: contention for L2 rises
with a real I-cache. An I-cache miss may conflict with a
D-cache miss—this cannot be a write-buffer-induced stall
with blocking caches—or an I-cache miss may conflict with
a write buffer retire. The latter case might be counted as
a new category of write-buffer-induced stall: an L2-I-fetch
stall.� Our instruction-level simulation does not model stalls due
to pipeline data dependencies. Pipeline bubbles spread out
stores, so that the write buffer sees a lower store rate and is
less likely to overflow.� We assume datapaths that are a cache line wide, but current
machines like the Alphas [9, 10], the UltraSPARC [13], and

others have datapaths only half a cache line wide. Narrower
datapaths mean that write buffer retirements and flushes take
longer, increasing all three types of stalls.� When caches are non-blocking, L2 read-access and load-
hazard stalls can be overlapped with other computation, re-
ducing their impact on processor performance. But the abil-
ity to continue executing during cache misses means stores
arrive more quickly. Not only does the rate of stores rise,
but the possibility of overflow is exacerbated because con-
tinued execution increases the rate of loads and load misses.
The resulting increase in contention at L2 delays write buffer
retirements. This makes write buffer overflows more likely
and increases the duration of load-hazards.� Current machines have varying degrees of superscalarness.
The Alpha 21164 [10], for example, can issue 4 instructions
per cycle. All else being equal, as issue width increases,
store density increases. Write-buffer-induced stalls rise as
a result.� A final effect we did not examine is the possible extra cost
under read-from-WB of loads that hit the write buffer. We
have assumed that these can be just as fast as an L1 cache
hit. If hardware constraints prevent this, the read-from-WB
policy will generate short load-hazard stalls.

5 Conclusions
Write-through caches typically require a write buffer to hide

the write latency of the next level and reduce write traffic. An
empty write buffer is best for the first function, while a full one
is best for the second. In this paper we have explored several di-
mensions of the write-buffer design space in the context of a sim-
ple machine model, and have presented simulation results to show
how the three types of stalls attributable to write buffers are af-
fected by their design parameters, management policies, and the
characteristics of the caches.

We varied write buffer depth, retirement policy, load-hazard
policy, and several parameters of the first- and second-level
caches. Deeper buffers can essentially eliminate buffer-full stalls,
but the headroom—the amount of free space left in the buffer by
the retirement policy—matters more than the depth itself. Lazier
retirement proves effective at reducing stalls due to L2 contention,

11



but requires a more precise load-hazard policy to avoid losing the
gains to sharply increased load-hazard stalls. Among the different
load-hazard policies we consider—flush-full, flush-partial, flush-
item-only, and read-from-WB—all perform acceptably with eager
retirement, but only read-from-WB performs well with lazier re-
tirement. Among the cache parameters we explored, the one with
the strongest influence on write-buffer performance was the la-
tency of the second-level cache.

These results, together with our methodology, should serve
both as a guide to designers and architects and as a basis for fur-
ther research in this area.

Acknowledgements
This work was supported in part by NSF grant CCR-9423123

and in part by an NDSEG Graduate Fellowship. We gratefully ac-
knowledge helpful discussions with, and/or comments on drafts
of this paper from Pritpal Ahuja, Joel Emer, Kai Li, Margaret
Martonosi, Sally McKee, Anne Rogers, Rob Shillner, and J.P.
Singh. We also thank the referees for their suggestions.

References
[1] T. Anderson, H. Levy, B. Bershad, and E. Lazowska. The

interaction of architecture and operating system design. In
Proceedings of the Fourth Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 108–20, Apr. 1991.

[2] R. Bianchini, T. LeBlanc, and J. Veenstra. Eliminat-
ing useless messages in write-update protocols on scalable
multiprocessors. Technical Report TR-539, University of
Rochester Department of Computer Science, Nov. 1994.

[3] B. K. Bray and M. J. Flynn. Specialized Caches to Improve
Data Access Performance. PhD thesis, Stanford Computer
Systems Laboratory, May 1993.

[4] C.-H. Chen and A. K. Somani. A unified architectural trade-
off methodology. In Proceedings of the 21st Annual Interna-
tional Symposium on Computer Architecture, pages 348–57,
May 1994.

[5] J. B. Chen. Memory behavior of an X11 window system. In
Proceedings of the USENIX Winter 1994 Technical Confer-
ence, pages 189–200, 1994.

[6] T.-F. Chen and J.-L. Baer. Reducing memory latency via
non-blocking and prefetching caches. In Proceedings of the
Fifth Conference on Architectural Support for Programming
Languages and Operating Systems, pages 51–61, Oct. 1992.

[7] P. P. Chu and R. Gottipati. Write buffer design for on-chip
cache. In Proceedings of the International Conference on
Computer Design, pages 311–16, 1994.

[8] F. Dahlgren and P. Stenström. Using write caches to im-
prove performance of cache coherence protocols in shared-
memory multiprocessors. Journal of Parallel and Dis-
tributed Computing, 26(2):193–210, Apr. 1995.

[9] Digital Semiconductor. DECchip 21064/21064A Alpha AXP
Microprocessors: Hardware Reference Manual, Jun. 1994.

[10] Digital Semiconductor. Alpha 21164 Microprocessor:
Hardware Reference Manual, Apr. 1995.

[11] K. Gharachorloo, A. Gupta, and J. L. Hennessy. Per-
formance evaluation of memory consistency models for

shared-memory multiprocessors. In Proceedings of the
Fourth Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 245–57,
Apr. 1991.

[12] M. J. R. Gonçalves and A. W. Appel. Cache performance
of fast-allocating programs. In Proceedings of the Seventh
International Conference on Functional Programming and
Computer Architecture, pages 293–305, Jun. 1995.

[13] D. Greenley et al. UltraSPARC(TM): The next generation
superscalar 64-bit SPARC. In Proceedings of CompCon ’95,
pages 442–50, Mar. 1995.

[14] L. Gwennap. Intel’s P6 uses decoupled superscalar design.
Microprocessor Report, pages 9–15, Feb. 16, 1995.

[15] N. P. Jouppi. Cache write policies and performance. In
Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 191–201, May 1993.

[16] A. R. Lebeck and D. A. Wood. Cache profiling and the SPEC
benchmarks: A case study. IEEE Computer, pages 15–26,
Oct. 1994.

[17] M. Martonosi, A. Gupta, , and T. E. Anderson. Tuning mem-
ory performance in sequential and parallel programs. IEEE
Computer, pages 32–40, Apr. 1995.

[18] MIPS Technologies. MIPS R10000 Microprocessor User’s
Manual, Jun. 1995. Version 1.0.

[19] F. Mounes-Toussi and D. J. Lilja. Write buffer design for
cache-coherent shared-memory multiprocessors. In Pro-
ceedings of the International Conference on Computer De-
sign, pages 506–11, Oct. 1995.

[20] T. C. Mowry. Tolerating Latency Through Software-
Controlled Data Prefetching. PhD thesis, Stanford Com-
puter Systems Laboratory, Mar. 1994.

[21] D. Nagle, R. Uhlig, T. Mudge, and S. Sechrest. Optimal
allocation of on-chip memory for multiple-API operating
systems. In Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages 358–69, May
1994.

[22] D. A. Patterson and J. L. Hennessy. Computer Architecture:
A Quantitative Approach, pages 411–12. Morgan Kauf-
mann, San Francisco, 2nd edition, 1996.

[23] K. Skadron and D. W. Clark. Measuring the effects of retire-
ment and load-service policies on write buffer performance.
In Proceedings of the 1996 Workshop on Performance Anal-
ysis and its Impact on Design. IBM Austin Research Labo-
ratory, Austin, TX, Mar. 1996.

[24] A. J. Smith. Characterizing the storage process and its effect
on the update of main memory by write through. Journal of
the ACM, 26(1):6–27, Jan. 1979.

[25] A. Srivastava and A. Eustace. ATOM: A system for build-
ing customized program analysis tools. ACM SIGPLAN No-
tices, 29(6):196–205, Jun. 1994.

[26] Standard Performance Evaluation Corporation (SPEC).
URL: http://www.specbench.org/.

[27] J. E. Veenstra and R. J. Fowler. The prospects for on-line
hybrid coherency protocols on bus-based multiprocessors.
Technical Report TR-490, Univeristy of Rochester Depart-
ment of Computer Science, Feb. 1994.

12


