
Low-Overhead Software Dynamic Translation

Technical Report CS-2001-18

Kevin Scott, Jack W. Davidson, and Kevin Skadron
Department of Computer Science

University of Virginia
Charlottesville, Virginia 22904

{kscott,jwd,skadron}@cs.virginia.edu

Abstract
Software dynamic translation (SDT) is a technology that allows programs to be modified as they
are running. The overhead of monitoring and modifying a running program’s instructions is often
substantial in SDT. As a result SDT can be impractically slow, especially in SDT systems that do
not or can not employ dynamic optimization to offset overhead. This is unfortunate since SDT has
obvious advantages in modern computing environments and interesting applications of SDT con-
tinue to emerge. In this paper we introduce two novel overhead reduction techniques that can
improve SDT performance by a factor of three even when no dynamic optimization is performed.
To demonstrate the effectiveness of our overhead reduction techniques, and to show the type of
useful tasks to which low-overhead, non-optimizing SDT systems might be put, we implemented
two dynamic safety checkers with SDT. These dynamic safety checkers perform useful tasks–pre-
venting buffer-overrun exploits and restricting system call usage in untrusted binaries. Further
their performance is similar to, and in some cases better than, state-of-the-art tools that perform
the same functions without SDT.

1 INTRODUCTION

Software dynamic translation (SDT) is a technology that allows programs to be modified as they

are running. SDT systems virtualize aspects of the host execution environment by interposing a

layer of software between program and CPU. This software layer mediates program execution by

dynamically examining and translating a program’s instructions before they are run on the host

CPU. Recent trends in research and commercial product deployment strongly indicate that SDT is

a viable technique for delivering adaptable, high-performance software into today’s rapidly

changing, heterogeneous, networked computing environment.

SDT is used to achieve distinct goals in a variety of research and commercial systems. One of

these goals is binary translation. Cross-platform SDT allows binaries to execute on non-native
1



platforms. This allows existing applications to run on different hardware than originally intended.

Binary translation makes introduction of new architectures practical and economically viable.

Some popular SDT systems that fall into this category are FX!32 (which translates IA-32 to

Alpha) [7], DAISY (which translates VLIW to PowerPC) [13], UQDBT (which translates IA-32

to SPARC) [19], and Transmeta’s Code Morphing technology (which translates IA-32 to VLIW)

[10].

Another goal of certain SDT systems is improved performance. Dynamic optimization of a

running program offers several advantages over compile-time optimization. Dynamic optimizers

use light-weight execution profile feedback to optimize frequent executed (hot) paths in the run-

ning program. Because they collect profile information while the program is running, dynamic

optimizers avoid training-effect problems suffered by static optimizers that use profiles collected

by (potentially non-representative) training runs. Furthermore, dynamic optimizers can continu-

ally monitor execution and reoptimize if the program makes a phase transition that creates new

hot paths. Finally, dynamic optimizers can perform profitable optimizations such as partial inlin-

ing of functions and conditional branch elimination that would be too expensive to perform stati-

cally. Some SDT systems that perform dynamic optimization are Dynamo (which optimizes PA-

RISC binaries) [4, 11], Vulcan (which optimizes IA-32 binaries) [17], Mojo (which optimizes IA-

32 binaries) [6], DBT (which optimizes PA-RISC binaries) [12], and Voss and Eigenmann’s

remote dynamic program optimization system (which optimizes SPARC binaries using a separate

thread for the optimizer) [20]. Some of the binary translators previously described also perform

some dynamic optimization (e.g., DAISY, FX!32, and Transmeta’s Code Morphing technology).

SDT is also a useful technique for providing virtualized execution environments. Such envi-

ronments provide a framework for architecture and operating systems experimentation as well as
2



migration of applications to different operating environments. The advantage of using SDT in this

application area is that the simulation of the virtual machine is fast—sequences of virtual machine

instructions are dynamically translated to sequences of host machine instructions. Examples of

this application of SDT are Embra (which virtualizes the MIPS instruction set running on IRIX)

[22], Shade (which runs on the SPARC and virtualizes both the SPARC and MIPS instruction

sets) [8], VMware (which virtualizes either Windows or Linux) [16], and Plex86 (which virtual-

izes Windows for execution under Linux) [1].

Most of the preceding applications of SDT can benefit from reductions of dynamic transla-

tion overhead. Reducing overhead improves overall application performance, allows SDT sys-

tems to implement additional functionality (e.g., additional optimizations, more detailed profiling,

etc.), and enables uses of SDT in new application areas. In this paper, we describe two novel tech-

niques for reducing the overhead of SDT. Using Strata, a framework we designed for building

SDT systems, we performed experiments to identify and measure sources of SDT overhead. We

observed that SDT overhead stems from just a few sources, specifically the handling of indirect

control transfers. Using our measurements as a guide, we implemented two novel techniques for

reducing SDT overhead associated with indirect control transfers. The resulting improvement in

overhead for non-optimizing SDT averages a factor of three across a broad-range of benchmark

programs, and in some cases completely eliminates the overhead of non-optimizing SDT.

To demonstrate that low-overhead SDT can be applied to new and interesting application

areas, we implemented two dynamic safety-checking applications. One safety checker prevents

buffer-overflow attacks. Another safety checker prevents unauthorized system calls. Both safety

checkers were implemented using Strata, a framework that we have designed for building effi-

cient SDT applications. Using our overhead reduction techniques, the performance of the safety
3



checkers is similar to, and in some cases better than, state-of-the-art tools that perform the same

functions without SDT.

This paper makes two important contributions. First we show that SDT overhead can be sub-

stantially reduced by careful handling of indirect control transfers. These overhead reduction

techniques are applicable to, and should improve the performance of, a wide variety of SDT sys-

tems, including dynamic optimizers. Second we show that useful and efficient applications can be

built with non-optimizing SDT when our overhead reduction techniques are used.

The remainder of the paper is organized as follows. Section 2 briefly describes the Strata

framework. Section 3 discusses SDT overhead. Section 4 discusses the SDT safety checkers that

we implemented. Section 5 discusses related work and Section 6 presents our summary and con-

clusions.

2 STRATA

Strata is an infrastructure for building software dynamic translators. To realize a specific dynamic

translator Strata basic services are extended to provide the desired functionality. The Strata basic

services implement a very simple dynamic translator that mediates execution of native application

binaries with no visible changes to application semantics, and no aggressive attempts to optimize

application performance.

Figure 1 shows the high-level architecture of Strata. Strata provides the functionality in the

prior description through a set of retargetable, extensible, SDT services. These services include

memory management, fragment cache management, application context management, a dynamic

linker, and a fetch/decode/translate engine.
4



Strata has two mechanisms for gaining control of an application. The application binary can

be rewritten to replace the call to main() with a call to a Strata entry point. Alternately, the pro-

grammer can manually initiate Strata mediation by placing a call to strata_start() in their

application. In either case, entry to Strata saves the application state, and invokes the Strata com-

ponent known as the fragment builder. The fragment builder takes the PC of the next instruction

that the program needs to execute, and if the instruction at that PC is not cached, the fragment

builder begins to form a sequence of code called a fragment. Strata attempts to make these frag-

ments as long as possible. To this end, Strata inlines unconditional PC-relative control transfers1

into the fragment being constructed. In this mode of operation, each fragment is terminated by a

conditional or indirect control transfer instruction2. However, since Strata needs to maintain con-

trol of program execution, the control transfer instruction is replaced with a trampoline that

arranges to return control to the Strata fragment builder. Once a fragment is fully formed, it is

placed in the fragment cache.

The transfers of control from Strata to the application and from the application back to Strata

are called context switches (see Figure 1). On context switch into Strata via a trampoline, the cur-

rent PC is looked up in a hash table to determine if there is a cached fragment corresponding to

the PC. If a cached fragment is found, a context switch back to the application occurs. As will be

discussed in Section 3, these context switches are a large component of SDT overhead.

1. On many architectures, including the SPARC, this includes unconditional branches and direct procedure calls.

2. The dynamic translator implementor may choose to override this default behavior and terminate fragments with
instructions other than conditional or indirect control transfers.
5



3 SOFTWARE DYNAMIC TRANSLATION OVERHEAD

Overhead in SDT systems can degrade overall system performance substantially. This is particu-

larly true of dynamic translators which do not perform code optimizations to offset dynamic

translation overhead. Overhead in software dynamic translators can come from time spent execut-

ing instructions not in the original program, from time lost due to the dynamic translator undoing

static optimizations, or from time spent mediating program execution. For cross-platform

dynamic translators, overhead may arise from inefficient translations between source and target

instruction sequences. This is a source of overhead that we will not be concerned with in this

paper since we are focusing on native SDT systems where the source and target architectures are

the same.

To characterize overhead in such an SDT, we conducted a series of experiments to measure

where our SDT systems spend their time. Our experiments were conducted on an unloaded SUN

Figure 1. Architecture of Strata.

In
Cache?

Program
.text

Fragment Cache

End of
Fragment?

No

C
on

te
xt

S
w

itc
h 

(I
n)

Context
Switch (In)

Context
Switch (Out)

Yes

Client_Fetch

Fetch

Client_Translate

Translate

No

Yes

Next PC

Strata Fragment
Builder
6



400MHz UltraSPARC-II with 1GB of main memory. The basic Strata dynamic translator

described in Section 2 was used for all experiments. This basic translator does no optimization.

All experiments were performed using a 4MB fragment cache which is sufficiently large to hold

all executed fragments for each of the benchmarks. Benchmark programs from SPECint2K1 were

compiled with Sun’s C compiler version 5.0 with aggressive optimizations (-xO4) enabled. The

resulting binaries were executed under the control of a Strata dynamic translator. We used the

SPECint2K training inputs for all our measurement runs. [18]

In Strata’s basic mode of operation, a context switch occurs after each fragment executes. A

large portion of these context switches can be eliminated by linking fragments together as they

materialize into the fragment cache. For instance, when one or both of the destinations of a PC-

relative conditional branch materialize in the fragment cache, the conditional branch trampoline

can be rewritten to transfer control directly to the appropriate fragment cache locations rather than

performing a context switch and control transfer to the fragment builder.

Figure 2 shows the slowdown of our benchmark programs when executed under Strata with

and without fragment linking. Slowdowns are relative to the time to execute the application

directly on the host CPU. Without fragment linking, we observed very large slowdowns—an

average of 22.9x across all benchmarks. With fragment linking, the majority of context switches

due to executed conditional branches are eliminated. The resulting slowdowns are much lower,

but still impractically high—an average of 4.1x across all benchmarks,.

1. The benchmarks eon and crafty were not used in our experiments. We chose to eliminate these two programs since
eon is a C++ application and crafty requires 64-bit C longs, neither of which were supported by the compiler and
optimization settings used for the rest of the benchmarks.
7



The majority of the remaining overhead is due to the presence of indirect control transfer

instructions. Because the target of an indirect control transfer is only known when the branch exe-

cutes, Strata cannot link fragments ending in indirect control transfers to their targets. As a conse-

quence each fragment ending in an indirect control transfer must save the application context and

call the fragment builder with the computed branch-target address. The likelihood is very high

that the requested branch target is already in the fragment cache, so the builder can immediately

restore the application context and begin executing the target fragment. The time between reach-

ing the end of the indirect control transfer and beginning execution at the branch target averages

about 250 cycles on the SPARC platform that we used for our experiments. This is a large penalty

to pay in programs which execute large numbers of indirect control transfer instructions.

On the SPARC, indirect control transfers fall into two categories—function call returns and

other indirect branches. Figure 3 shows the number of context switches to Strata due to either

returns or other indirect branches. It is clear from this figure that the mix of indirect control trans-

fers is highly application dependent. In the benchmarks gzip, parser, vpr, and bzip2, almost all

indirect control transfers executed are returns with a few non-return indirect branches. In contrast

Figure 2. Slowdown with simple overhead reduction.

0

5

10

15

20

25

30

35

40

bz
ip

2

cc
1

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

S
lo

w
d

o
w

n

Fragment Linking Nothing
8



cc1, perlbmk, and gap execute a sizeable fraction of indirect control transfers that are not returns.

These applications contain many C switch statements that the Sun C compiler implements using

indirect branches through jump tables. In the remaining applications, mcf, vortex and twolf, most

control transfers are returns and a very small portion are indirect branches.

To improve Strata overhead beyond the gains achieved from fragment linking we must either

find a way to reduce the latency of individual context switches to Strata, or we must reduce the

overall number of switches due to indirect control transfers. The code which manages a context

switch is highly-tuned, hand-written assembler language. It is very unlikely that we can signifi-

cantly reduce execution time of this code below the current 250 cycles. However, we have devel-

oped two novel and highly effective techniques for reducing the number of context switches

forced by indirect control transfers.

3.1 Indirect Branch Translation Caching

The first technique that we propose for reducing the number of context switches due to indirect

control transfer is the indirect branch translation cache (IBTC). An IBTC is a small, direct-

Figure 3. Causes of context switching using fragment linking, and no other overhead reduction.

0%
10%
20%

30%
40%
50%
60%
70%
80%
90%

100%
gz

ip

vp
r

cc
1

m
cf

pa
rs

er

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

P
er

ce
n

t
o

f
T

o
ta

lS
w

it
ch

es

IBRANCH Sw itches Return Sw itches
9



mapped cache that maps branch-target addresses to their fragment cache locations. We can

choose to associate an IBTC with every indirect control transfer instruction or just with non-

return control transfer instructions. An IBTC in many respects is like the larger lookup table that

the fragment builder uses to locate fragments in the fragment cache. However, an IBTC is a much

simpler structure, and consequently much faster to consult. An IBTC lookup requires a few

instructions which can be inserted directly into the fragment, thereby avoiding a full context

switch.

The inserted code saves a portion of the application context and then looks up the computed

indirect branch target in the appropriate IBTC. If the branch target matches the tag in the IBTC

(i.e., a IBTC hit), then the IBTC entry contains the fragment cache address to which the branch

target has been mapped. The partial application context is restored, and control is transferred to

the branch target in the fragment cache. An IBTC hit requires about 15 cycles to execute, an order

of magnitude faster than a full context switch. On an IBTC miss, a full context switch is per-

formed and the Strata fragment builder is invoked. In addition to the normal action taken on a

context switch, the address that produced the miss replaces the old IBTC entry. Subsequent

branches to this location should hit in the IBTC.

Figure 4 shows the miss rates for various IBTC sizes. The left chart shows miss rates when

only non-return indirect control transfers are handled with IBTCs. The right chart shows miss

rates when all indirect control transfers are handled with IBTCs. When returns are included, the

higher volume of indirect control transfers result in capacity and conflict misses that push the

overall IBTC miss rate higher. Not surprisingly, miss rates are also higher when using smaller

IBTC sizes. Generally once IBTC size exceeds 256 entries improvements in miss rate begin to

level off for most programs.
10



The performance benefits from using an IBTC are substantial. In Figure 5, the white bar

shows application slowdowns when using fragment linking and 512-entry IBTCs to handle all

indirect control transfers, including returns (the other results contained in Figure 5 will be dis-

cussed in Section 3.2). The average slowdown across all benchmarks is 1.7x which is signifi-

cantly better than the average 4.1x slowdown observed with fragment linking alone. As we would

expect, the largest slowdowns are observed in programs with large numbers of frequently exe-

cuted switches such as perlbmk, cc1, and gap.

3.2 Fast Returns

Even though the IBTC mechanism yields low miss rates, due to the large percentage of executed

returns (see Figure 3) and the overhead of the inserted instructions to do the IBTC lookup, han-

dling returns is still a significant source of application slowdown. Reducing IBTC-related over-

head by handling returns using a lower cost method is desirable.

We can eliminate the overhead of IBTC lookups for returns and just execute the return

instruction directly by rewriting calls to use their fragment cache return addresses, rather than

Figure 4. IBTC miss rate per benchmark. The chart on the left shows IBTC miss rate when the IBTC handles non-
return indirect branches. The chart on the right shows IBTC miss rate when it must handle all indirect branches,
including returns.

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

bz
ip

2

cc
1

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

512 256 64 16 4

0%

5%

10%

15%

20%

25%

30%

35%

bz
ip

2

cc
1

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

512 256 64 16 4
11



their normal text segment return addresses. Thus, when the return executes it jumps to the proper

location in the fragment cache. This technique is safe if the application does not modify the

caller’s return address before executing the callee’s return. While it is possible to write programs

that do modify the return address before executing the return, this is a violation of the SPARC

ABI that compilers and assembly language programmers avoid [21].

The bar labeled “Fast Returns” in Figure 5 shows the application slowdown with fragment

linking, no IBTC, and fast returns. The average slowdown across all benchmarks is about 1.8x

which is slightly higher than the slowdowns obtaining using IBTC alone. The reason for this

greater slowdown is that we are eliminating all return induced context switches, but context

switches for other indirect branches remain. In applications where a substantial portion of the

indirect control transfers are non-returns, those non-return indirect control transfers increase

Strata overhead significantly.

It is possible to combine fast returns with IBTC to further reduce overhead to remedy this sit-

uation. The bar labeled “Fast Returns + IBTC” in Figure 5 shows the slowdowns using fragment

linking, fast returns, and 512 entry IBTCs for non-return indirect branches. The slowdowns, aver-

Figure 5. Strata overhead with three combinations of aggressive overhead reduction techniques.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

bz
ip

2

cc
1

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

S
lo

w
d

o
w

n

Fast Returns + IBTC Fast Returns IBTC
12



aging 1.3x, are lower than either fast returns or IBTC alone and represent our best effort so far in

reducing Strata overhead. As we shall show in Section 4, these overhead reduction techniques

allow us to implement two novel dynamic safety checkers whose performance is significantly bet-

ter than one proposed approach to safety checking, and on par with another recently published

approach. This level of performance is achieved even though both safety checkers are simple

extensions to Strata.

3.3 Software Dynamic Translation Memory Overhead

In addition to execution time overhead, a program run under SDT may suffer increased memory

utilization. This increased memory utilization is due to the fragment cache, the dynamic transla-

tor’s data memory, and the translator’s own code. Figure 6 shows the increase in maximum resi-

dent set size when an application is run with Strata’s best overhead reduction techniques and a 4

megabyte fragment cache. We chose to use maximum resident set size as the measure of memory

overhead since it reflects actual memory reference patterns of the executed program. For many of

the benchmark applications, maximum resident set size is increased only slightly. For others,

especially cc1 and twolf, the maximum resident set size is increased by more than 40 percent. In

these applications, this higher overhead is due to IBTC lookup instructions in frequently executed

non-return indirect branch trampolines. For modern desktop and server systems with large memo-

ries, this increase in memory utilization, while large relative to the program without Strata, is

small relative to available memory. For other platforms, such as mobile devices, which have

smaller available memories, this increased memory utilization may be an issue that must be

addressed.
13



4 APPLICATIONS OF SOFTWARE DYNAMIC TRANSLATION

To demonstrate the effectiveness of our overhead reduction techniques in a real application

domain, we used Strata to implement two different dynamic safety checkers.

4.1 Preventing Buffer-overflow attacks

A major problem in securing computer systems is the undetected presence of buffer-overflow vul-

nerabilities in software. Buffer overflow vulnerabilities allow malicious entities to insert nearly-

arbitrary code into a program [15]. The inserted code is subsequently executed by the program,

most often to ill effect. The most popular exploit for buffer overflow vulnerabilities are so-called

“stack-smashing” attacks, where the buffer overflowed is allocated on the program stack. These

attacks typically write a sequence of instructions onto the stack and then arrange for the address of

the inserted code to overwrite a return address on the stack. This is accomplished by passing a

carefully crafted source buffer to a function such as C’s strcpy() that does not check to see if

the stack-resident destination buffer is sufficiently large to hold the source buffer.

Figure 6. Increase in maximum resident set size when benchmark programs are run under Strata with a 4M fragment
cache.

0%

10%

20%

30%

40%

50%

60%

70%

80%

bz
ip

2

cc
1

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

%
In

cr
ea

se
in

R
es

id
en

t
S

et
S

iz
e

14



When the attacked function returns, rather than transferring control to the caller, the mali-

cious code is executed. The consequences of buffer overflow vulnerabilities are usually most seri-

ous when the affected program is privileged, a circumstance that allows the attacker to gain

privileged access to the machine and its resources.

Implementing a Strata dynamic translator that eliminates all buffer overrun exploits without

requiring access to source is trivial. We simply extend the fetch routine in the fetch/decode/trans-

late engine (see Figure 1) to compare the PC of fetched instructions against the current stack and

heap boundaries1. If the PC is inside the stack or heap regions, then a buffer has been overflowed

and the program is on the verge of executing malicious code. At this point it is a simple matter for

Strata to terminate the application or perform some other appropriate action.

A Strata-based dynamic translator that can prevent buffer overflow exploits in progress is no

doubt useful. However, if the run-time overhead of such a tool is excessively high, then the appli-

cability of this technique in real systems may be limited. Because this particular translator is such

a trivial extension to Strata, and performs no code improving transformations of its own, the over-

head of this technique is very nearly the overhead of the base Strata system.

Figure 7 shows the slowdown of our safety checker applications. The column labeled “Base”

shows the slowdown of the base Strata with the best overhead reduction settings—512 entry

IBTCs for non-return control transfers, fast returns, and fragment linking. The column labeled

“Buffer” shows the slowdown of the Strata-based buffer-overflow detection tool. The slowdown

for this safety checker averages 1.37x across all benchmarks. This slowdown is significantly

lower than Cowan, Pu, et al’s Memguard technique, which is equivalent in power to our tool, yet

1. Locating and keeping track of stack and heap boundaries during program execution is a simple matter on many
systems.
15



averages slowdowns of anywhere from 54x to 1743x on synthetic microbenchmarks [9]. Our

safety checker compares favorably to Baratloo, Singh, et al’s libverify [5]. They report slow-

downs of 1.15x. However, their technique is substantially more complex than our simple exten-

sions to Strata.

4.2 Preventing unauthorized system calls

The second Strata-based safety checker that we implemented prevents unauthorized system calls

in untrusted binaries. Such safety checkers are increasingly important in the era of ubiquitous net-

working where binary progams are downloaded from untrusted sources and executed. These

binary programs may potentially contain code, malicious or otherwise, that misappropriates sys-

tem resources through execution of system calls. In fact programs containing buffer overflow vul-

nerabilities fall into this category: most buffer-overflow exploits execute unauthorized system

calls.

Figure 7. Slowdown of Strata-based dynamic translators. The bar labeled “Base” is the slowdown of the base Strata
system with best overhead reduction. The bar labeled “Buffer” is the slowdown of the buffer-overflow monitor with
best overhead reduction. The bar labeled “Syscall” is the slowdown of the system-call monitor with best overhead
reduction.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

bz
ip

2

cc
1

ga
p

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

S
lo

w
d

o
w

n

Base Buffer Syscall
16



Strata can be used to implement a dynamic translator that enforces a predefined system call

utilization policy. For example, the policy may specify that an untrusted program may not open

network sockets, or may only write to particular file descriptors, or may not perform an exec().

Like the buffer overflow safety checker, policy enforcement is easily accomplished in Strata

through a simple modification of the translation facility in the fetch/decode/translation engine.

The translator inserts code before each system call that checks system call parameters for adher-

ence to the policy. If the policy is violated, the offending system call is not executed, and the pro-

gram may be terminated or other appropriate action taken.

As was the case with buffer overflow safety checker, if the overhead of the system call policy

safety checker is excessively high, then the applicability of this technique in real systems may be

limited. In Figure 7, the column labeled “Syscall” shows the slowdown of the system call policy

safety checker. The policy enforced by this safety checker is that the application may not perform

an exec() system call. This policy is sufficiently powerful to prevent two known stack-smashing

attacks on privileged Solaris programs [2, 3]. With our aggressive overhead reduction techniques

in place, the slowdowns of this safety checker averages 1.32x. Again, software dynamic safety

checking compares favorably in complexity and overhead to existing techniques of equivalent

power.

5 RELATED WORK

Overhead is a major issue in many SDT systems and a number of overhead reduction techniques

have previously been discussed in the literature. For example, the Shade simulator [8] and the

Embra emulator [22] use a technique called chaining to link together cache-resident code frag-
17



ments to bypass translation lookups. This technique is identical to Strata’s fragment linking and is

simple but effective overhead reduction technique.

A different approach is used by the dynamic optimizer proposed by Voss and Eigenmann

[20]. Their dynamic optimizer achieves low overhead on multiprocessors by running the dynamic

optimizer concurrently with the application but on a different CPU. One disadvantage of their

approach is the requirement of a second CPU on which to run the optimizer thread. The overhead

of their approach was also evaluated using a single microbenchmark. Overheads on realistic

benchmarks have yet to be published.

As in Strata, indirect branches cause difficulties for dynamic optimizers. Consequently both

Dynamo [4] and DBT [oracle paper] convert indirect branches to chains of conditional branches

to improve program performance. These chains of conditional branches are in a sense a simple

cache for indirect branch targets. But rather than eliminate context switches as the IBTC does, the

conditional branch chains remove indirect branch penalties and increase available ILP by permit-

ting speculative execution. Since the conditional branch chains must be kept relatively short to

maintain any increases in performance, an indirect branch typically terminates the conditional

branch chain to handle the case when none of the conditional branch comparisons actually match

the branch-target address. In the case of programs containing switch statements with large num-

bers of frequently executed cases, e.g., cc1 and perlbmk, the conditional branch comparisons will

frequently not match the branch-target address resulting in a context switch. In Strata, the IBTC

addresses this problem by accommodating a large number of indirect branch targets for each indi-

rect branch. In our approach fewer context switches are performed, while their approach yields

superior pipeline performance when the branch target is one of the few in the conditional branch

chain.
18



Many researchers have studied the problem of buffer overrun vulnerabilities and the more

general problem of restricting application resource utilization. Evans and Larochelle have pro-

posed a technique for statically detecting many buffer overrun vulnerabilities through analysis of

C source code [15]. Their approach has the obvious advantage of no run-time overhead. However,

their approach does require program source. Further, static analyzers cannot detect all possible

buffer overrun vulnerabilities because the problem is undecidable. The Strata buffer overflow

safety checker, on the other hand, does not require program source code and prevents all buffer

overflow exploits.

Cowan, et al. have proposed techniques for dynamically eliminating stack smashing attacks

by detecting malicious alterations of function return addresses or by preventing those malicious

alterations [9]. Their StackGuard technique can eliminate some, but not all, stack-smashing

attacks through a specially modified compiler that uses a alternate procedure calling convention.

In contrast, the Strata buffer overflow safety checker does not require source code and it elimi-

nates all stack-smashing attacks. The overhead of StackGuard appears to be lower than the Strata

buffer overflow safety checker. However, the overhead of both tools is low enough to be practi-

cal.

Their more powerful MemGuard technique completely eliminates stack-smashing opportuni-

ties by using OS facilities to write protect procedure return addresses during procedure activa-

tions. This approach incurs substantial overheads, often yielding orders of magnitude slowdowns

in program execution. In contrast, our safety checker has significantly lower overhead with the

same preventive power.
19



The libverify library of Baratloo, et al. prevents stack-smashing attacks by dynamically

maintaining a stack of so-called “canary” words in parallel with the normal procedure activation

stack [5]. When a procedure returns, the canary word on the parallel stack is compared with the

canary word on the activation stack. If the two are different, the system concludes that a buffer

overflow has occurred. The libverify library employs dynamic translation to insert the code to

implement the parallel stack and canary-word comparisons at program load time. The overhead of

libverify is reported to be around 15%. While the overhead of the Strata buffer overflow safety

checker is slightly higher than libverify, it prevents the same class of buffer-overflow exploits.

The implementation of our buffer overflow safety checker is also less complex than libverify,

requiring less than 10 lines of code to implement in Strata, as opposed to libverify’s many hun-

dreds of lines.

The Janus project proposed a sand-boxing technique that enforces a predefined system call

utilization policy [14]. System calls are dynamically intercepted using an OS system call trace

facility. Their system is transparent and performs sand-boxing at very low overhead. They report

lower overheads than our Strata-based safety checkers. To achieve low overhead, however, their

system refrains from monitoring frequently executed system calls (e.g., write()). Furthermore,

they rely on a nonstandard, low overhead system call tracing facility. In contrast, our Strata-based

system call policy safety checker does not rely on special OS system call tracing facilities and it

incurs no additional performance penalty when monitoring frequently executed system calls.

6 SUMMARY

Because software dynamic translation continues to play a significant role in modern systems,

techniques that can improve the performance of SDT are very useful. In this paper we have dem-
20



onstrated two such techniques that can improve the performance of SDT systems. These tech-

niques are particularly effective in systems that perform no dynamic optimization. Our overhead

reduction techniques reduce the penalties associated with indirect control transfer handling in

SDT systems. One technique, the indirect branch translation cache (IBTC), allows us to reduce

the cost of determining an indirect control transfer’s fragment cache location by two orders of

magnitude. The resulting improvement in overhead averages a factor 2.4. Another technique, fast

returns, completely eliminates the overhead associated with the indirect control transfers that are

used to return from function calls. When these two techniques are combined, overhead is reduced

by an average factor of 3 across all benchmarks studied, and in some cases SDT overhead is com-

pletely eliminated.

Low overhead in non-optimizing SDT systems may enable and make practical the use of

SDT technology in many new areas. To demonstrate this, we used our Strata SDT framework to

implement two safety checkers that perform two very useful functions. The first safety checker

prevents buffer-overflow attacks, and the second prevents untrusted binaries from making unau-

thorized system calls. Both safety checkers were implemented in Strata with a few dozen lines of

code. Using our overhead reduction techniques, the safety checkers achieved performance compa-

rable with or superior to state-of-the-art safety checkers that do not use SDT.

7 REFERENCES

[1] Plex86. http://www.plex86.org.

[2] The solaris eject buffer-overrun exploit. http://www.insecure.org/sploits/
solaris.eject.html.

[3] The solaris ufsdump buffer-overrun exploit. http://www.insecure.org/sploits/
Solaris.ufsdump.ufsrestore.html.

[4] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transparent
dynamic optimization system. In SIGPLAN ’00 Conference on Programming Lan-
guage Design and Implementation, pages 1–12, 2000.
21



[5] Arash Baratloo, Navjot Singh, and Timothy Tsai. Transparent run-time defense
against stack smashing attacks. In Proceedings of the USENIX Annual Technical
Conference, June 2000.

[6] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David Gillies. Mojo: A dynamic
optimization system. In Proceedings of the ACM Workshop on Feedback-Directed
and Dynamic Optimization FDDO-3, 2000.

[7] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Rubin, Tony
Tye, S. Bharadwaj Yadavalli, and John Yates. FX!32: A profile-directed binary
translator. IEEE Micro, 18(2):56–64, Marchslash April 1998. Presented at Hot
Chips IX, Stanford University, Stanford, California, August 24–26, 1997.

[8] Bob Cmelik and David Keppel. Shade: A fast instruction-set simulator for execu-
tion profiling. In Proceedings of the 1994 ACM SIGMETRICS Conference on the
Measurement and Modeling of Computer Systems, pages 128–137, May 1994.

[9] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Peat Bakke, Steve Beattie,
Aaron Grier, Perry Wagle, , and Qian Zhang. Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In Proceedings of the 1998
USENIX Security Symposium, 1998.

[10] David R. Ditzel. Transmeta’s Crusoe: Cool chips for mobile computing. In IEEE,
editor, Hot Chips 12: Stanford University, Stanford, California, August 13–15,
2000, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2000. IEEE
Computer Society Press.

[11] Evelyn Duesterwald and Vasanth Bala. Software profiling for hot path prediction:
Less is more. In Proceedings of the 9th Internationl Conference on Architectural
Support for Programming Languages and Operating Systems, pages 202–211,
November 2000.

[12] K. Ebcioglu, E. Altman, S. Sathaye, and M. Gschwind. Optimizations and oracle
parallelism with dynamic translation. pages 284–295.

[13] Kemal Ebcioglu and Erik Altman. DAISY: Dynamic compilation for 100% archi-
tectural compatibility. In 24th Annual International Symposium on Computer
Architecture, pages 26–37, 1997.

[14] Ian Goldberg, David Wagner, Randi Thomas, and Eric Brewer. A secure environ-
ment for untrusted helper applications: Confining the wily hacker. In Proceedings
of the 1996 USENIX Security Symposium, 1996.

[15] David Larochelle and David Evans. Statically detecting likely buffer overflow vul-
nerabilities. In Proceedings of the 2001 USENIX Security Symposium, 2001.

[16] Mendel Rosenblum. VMware’s Virtual Platform: A virtual machine monitor for
commodity PCs. In IEEE, editor, Hot Chips 11: Stanford University, Stanford, Cal-
ifornia, August 15–17, 1999, 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, 1999. IEEE Computer Society Press.

[17] Amitabh Srivastava, Andrew Edwards, and Hoi Vo. Vulcan: Binary translation in
a distributed environment. Technical Report MSR-TR-2001-50, Microsoft
Research, April 2001.
22



[18] Standard Performance Evaluation Corporation. SPEC CPU2000 Benchmarks.
http://www.specbench.org/osg/cpu2000.

[19] David Ung and Cristina Cifuentes. Machine-adaptable dynamic binary translation.
In Proceedings of the ACM Workshop on Dynamic Optimization Dynamo ’00, 2000.

[20] Michael Voss and Rudolf Eigenmann. A framework for remote dynamic program
optimization. In Proceedings of the ACM Workshop on Dynamic Optimization
Dynamo ’00, 2000.

[21] David L. Weaver and Tom Germond. The SPARC Architecture Manual Version 9.
Prentice-Hall PTR, Upper Saddle River, NJ 07458, USA, 1994.

[22] Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible machine simu-
lation. In Proceedings of the ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, pages 68–79, May 1996.
23


