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Abstract

A seminar that surveys state-of-the-art microprocessors of-
fers an excellent forum for students to see how computer ar-
chitecture techniques are employed in practice and for them to
gain a detailed knowledge of the state of the art in micropro-
cessor design. Princeton and the University of Virginia have
developed such a seminar, organized around student presenta-
tions and a substantial research project. The course can accom-
modate a range of students, from advanced undergraduates to
senior graduate students. The course can also be easily adapted
to a survey of embedded processors. This paper describes the
version taught at the University of Virginia and lessons learned
from the experience.

1. Introduction

An important component of studying computer archi-
tecture is seeing how concepts are applied in practice.
Although textbooks often present excellent case studies,
they typically break computer architecture down into dis-
crete topics, the case studies often illustrate only the con-
cepts from a given chapter, and textbooks are limited in
the extent to which they can explore a number of mi-
croprocessors in detail. Textbooks also often have diffi-
culty exposing interrelationships among different aspects
of the processor, and they typically omit the manufac-
turing and economic factors that influence processor de-
signs. In practice, decisions about the design of one pro-
cessor component frequently influence the design of the
rest of the processor, and manufacturing and economic
factors often weigh heavily in design decisions.
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Princeton and the University of Virginia (U.Va.) have
developed a seminar that compares and contrasts a num-
ber of state-of-the art microprocessors. The goal is not
only to consolidate students’ knowledge, but to expand
their knowledge beyond the level of an advanced com-
puter architecture course. This course was first taught
several years ago by Skadron’s advisor, Douglas W.
Clark, at Princeton University. This paper describes the
newest version of the course taught at U.Va. and lessons
learned from the experience.

This seminar also affords students the opportunity to
practice public speaking, the opportunity to gain experi-
ence in finding and interpreting technical documentation,
and the opportunity to conduct preliminary research. The
course can accommodate a variety of levels of knowl-
edge; for example, we have allowed undergraduate stu-
dents to participate in the seminar without diluting its
challenge to advanced students. While undergraduates
participate less than the more knowledgeable graduate
students and pursue less aggressive research projects,
they gain immensely by obtaining early exposure to ad-
vanced concepts and building interest in the area of com-
puter architecture. Because the course serves as rich
source of research ideas, we do recommend including a
substantial research project.

2. Course Overview

The course opens with a short period of lectures by
the instructor. The bulk of the course comprises two se-
quences of presentations, organized around the matrix
shown in Figure 1. The first sequence, comprising most
of the first half of the course, consists of detailed student
presentations of four or five state-of-the-art microproces-
sors and corresponds to the rows in the matrix. The sec-



ISA I-stream D-stream . . .
Alpha 21264 A B C D
Pentium III E F . . .
Athlon . . .
UltraSPARC-III . . .

Figure 1. Student-team matrix. The students (A, B, C, etc.) choose a processor and a “cross-cutting”
design theme for which they are responsible in their team presentations.

ond sequence, corresponding to the columns, comprises
the latter half of the course and consists of further student
presentations that explorecross-cuttingdesign themes.
Students sign up for a processor and a theme (in other
words, for a position in the matrix) at the beginning of
the course. Teams—both processor and theme—should
be balanced according to students’ interests, experience,
and maturity.

This “matrix format” is the core of the course’s orga-
nization. It permits each student to leverage the research
from the first presentation to prepare for the second pre-
sentation. Yet the two presentations’ very different fo-
cuses push the student to become an expert not only on
one microprocessor, but also on one cross-cutting theme
and its impact on different processors.

The course’s three phases are next described in more
detail.

2.1. Introductory Material

To help bring all students in the class to a common
level, the instructor spends 2–3 weeks lecturing, review-
ing advanced topics in computer architecture and ex-
plaining economic and manufacturing considerations that
may influence microprocessor design.

Although we have not done so, a test might be offered
at the end of this introductory phase. A test will help
the students cement the material from these lectures, and
will provide an additional component for the overall class
grade, which is otherwise based on presentations, partic-
ipation, and the research project.

Because some of the material in these lectures does not
appear in current textbooks, students are likely to ask for
handouts that cover the new concepts. This is especially
true if a test is required.

2.2. Microprocessor Presentations

The class is divided into teams, one per processor.
These teams consist of the rows in Figure 1 above. Each
team spends a week (about 2.5 class hours) presenting
in detail the instruction set and design of their assigned
processors. Students should include any available per-
formance data, like SPECcpu [23, 24] scores, branch-
prediction accuracies, and cache hit rates.

In the class, we surveyed four processors—in its most
recent version, we covered the Compaq Alpha 21264 [8,
13], the Intel Pentium III [5, 7], the AMD Athlon [3, 4],
and the Sun UltraSPARC-III [9, 21]. A set of embedded
processors could be substituted for a course emphasizing
issues in embedded-system design.

Each team member is responsible for one major area
of the microprocessor’s organization—the cross-cutting
themes. Their preparation in this area then serves as
a foundation for their work on their next presentation
that focuses on their cross-cutting theme of choice. The
themes we covered are:

Instruction set architecture. Material to cover in-
cludes novel instructions, new instructions, unusual
or absent addressing modes, branch delay slots, and
so forth.

Instruction stream. Material to cover includes
instruction-cache and branch-predictor organization
and effectiveness, and instruction-prefetch facilities.

Data stream.Material to cover includes data-cache or-
ganization and effectiveness, write-buffer and TLB
organization, prefetching facilities, load-store or-
dering constraints, and so forth.

Register renaming and instruction issue. Ma-
terial to cover includes renaming structures,
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reservation-station and instruction-window organi-
zation, functional-unit topology, instruction wake-
up, selection, and issue policies, the instruction-
commit procedure, and any noteworthy exception
handling (e.g., imprecise exceptions are the default
in the Alpha 21164 [6]).

Memory management. Material to cover includes
support for memory consistency, cache coherency,
inter-process communication, and context switch-
ing, as well as page-table organization and paging
policies.

For smaller classes, “memory management” can be
mostly omitted, and “register renaming and instruction
issue” can be folded into the other topics. Although stu-
dents are responsible for only one aspect of the processor,
we have found that preparing for the group presentation
leads them to become well-versed in most other aspects
as well.

Presentations are interactive, with the class encour-
aged to ask questions, and comment or speculate on de-
sign choices. Participation by the audience is an im-
portant component of the grade. Fortunately, students
rapidly become comfortable and pursue a lively back-
and-forth dialogue. The instructor serves chiefly as a
moderator.

In preparing for their presentation, students gather rel-
evant source material from the published literature, the
web, and inquiries made to manufacturers. Students
might find, for example, a hardware manual, a whitepa-
per describing the rationale behind some choices, arti-
cles from the trade press discussing the merits of differ-
ent processors, and papers from the research literature
describing advanced microarchitectural techniques em-
ployed by this processor.

The teams assemble the most useful material into a
book, which can be spiral- or velo-bound, and distribute
it to class members before the presentation. The book
should include a table of contents, an index of other liter-
ature that might be useful, and copies of the overheads
used in the team presentations. These books are out-
standing references: we find ourselves consulting them
regularly for details on these processors, and copies have
been in hot demand by other members of the faculty and
graduate-student body.

2.3. Cross-Cutting Theme Presentations

After the microprocessors have been presented, stu-
dents reassemble into new teams based on their chosen
theme—these teams represent the columns from the ma-
trix in Figure 1. In this phase, the students produce ad-
ditional booklets, tracking down any additional research
literature that describes the techniques used by the differ-
ent processors. They should also seek further literature
that describes relevant, recently-proposed techniques not
yet seen in any microprocessor. In their presentations,
they explore the technical, manufacturing, and economic
factors that led designers to make the often widely dis-
parate choices embodied in the different processors. The
design factors that generated the most discussion in our
most recent version of this course were:

� The choice of in-order execution by Sun for the
UltraSPARC-III, when the other processors we
studied, and indeed most high-performance micro-
processors, have chosen out-of-order implementa-
tions.

� The different processors’ widely varying
instruction-issue capabilities. The Pentium III, for
example, has just five instruction-issue ports, and
three are dedicated to processing loads and stores.
In contrast, the Athlon has nine ports. Nevertheless,
the two processors achieve remarkably similar per-
formance.

The Alpha 2126, with six issue ports, lies between
these extremes, but has the interesting feature of two
register-fileclusters. Its four integer pipelines are
statically divided between the two clusters, with two
pipelines and one copy of the register file forming
one cluster. Results write to their home cluster nor-
mally, but require an extra cycle to broadcast their
results to the other cluster. This means that instruc-
tions needing a result produced by the other cluster
may suffer a penalty.

� The benefit of architected branch-delay slots. Many
students were puzzled by the existence of delay
slots, since they create difficulties for multi-issue ar-
chitectures.

� The UltraSPARC-III’s novel treatment of writes.
Unlike the other processors in our survey, the
UltraSPARC-III uses a write-through first-level
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cache with an unusual write buffer organization
called a write cache [11]. It can be read di-
rectly [20]—rather than requiring some kind of
flush—when needed data still resides in the buffer.
The write cache is unusually large and associative
compared to a conventional write buffer, and fol-
lows an LRU rather than a FIFO writeback policy.

Although we have not yet done so, in future ver-
sions of the class we will require students to quantita-
tively evaluate some of the choices made by the dif-
ferent processors, using a simulation package like Sim-
pleScalar [1, 2, 22]. This constitutes an additional por-
tion of the assigned grade.

Evaluations might include a performance compari-
son of different branch-predictor, cache-hierarchy, or
functional-unit-topology organizations, a comparison of
in-order vs. out-of-order issue, or a comparison of differ-
ent instruction-window sizes or organizations. More am-
bitious projects might explore the tradeoffs among bet-
ter caching schemes, better compiler optimizations, and
larger instruction windows; or the impact of the instruc-
tion set on the compiler’s ability to generate efficient
code schedules.

2.4. Research Project

As the class proceeds, students choose a topic for a
final research project. They may work independently
or in teams. The topic should be tractable in the space
of a single semester, should be adapted to the student’s
level (undergraduates vs. senior graduate students), and
should be a topic that can provide the basis for future,
publication-quality research. In the most recent iteration
of this course, Skadron’s class of fifteen students pro-
duced a conference publication [16], a workshop publica-
tion [10], two technical reports [18, 25], and two eventual
senior theses that are currently being combined in prepa-
ration for a conference submission [12, 14]. Topics in-
cluded new branch prediction techniques, further evalua-
tion of existing branch-prediction techniques, efficacy of
confidence prediction, new disk-prefetching algorithms,
costs of result bypassing, and effectiveness of benchmark
sampling for simulation. The most novel projects, both
proposed in part by the students themselves, were:

� A paper exploringdifferential multithreading[10],
a technique for switching among multiple instruc-
tion streams in response to pipeline stall conditions.

By relying on the pipeline organization of an in-
order, single-issue processor as might be found in
various embedded-processing environments, differ-
ential multithreading provides an inexpensive way
to improve processor throughput at low cost.

� A paper describing a new software architecture for
bytecode interpreters [18]. This paper explores how
to take the techniques used by CPUs to exploit ILP
processors and translate them to the bytecode exe-
cution engine embodied in the interpreter software.
By using the fine-grained, low-cost multi-threading
supported by simultaneous multithreading [15] or
chip multiprocessing [17], the bytecode interpreter
can exploitbytecode-level parallelismor BLP.

Students found their project useful for different rea-
sons. Undergraduates found it useful as a first experience
with the sort of research they might conduct in graduate
school. Beginning graduate students found it useful as an
opportunity to explore whether research in computer ar-
chitecture interested them, and more advanced graduate
students found it a way to explore a new research idea.

If the instructor does not wish to guide research
projects, they can be replaced with simpler exercises—
perhaps like those mentioned in Section 2.3—or with a
final paper in which students describe how they would
design a processor and justify their choices with findings
from the published literature and with the outcome of the
class discussions.

2.5. Grading

In assigning the course grade, we chose to emphasize
the final paper and the presentations, as these comprised
the bulk of the students’ work. A significant portion of
the grade was also assigned to class participation, as a
way of encouraging active classroom discussion and de-
bate. We suggest a grading scheme like the following:

� final paper (35%)

� presentations (25%)

� participation (15%)

� initial test (10%)

� simulation-based evaluation of cross-cutting theme
(15%)

4



3. Benefits

The seminar has been very well received. Students en-
joyed it, faculty felt it make a significant contribution to
the graduate curriculum, and it will be added as a regu-
lar course offering at Virginia. In particular, students felt
that they benefited from:

� Seeing the diversity of design decisions embodied in
different processors (see Section 2.3 for examples).

� Gaining a detailed knowledge of most of the major
state-of-the art microprocessors. This becomes es-
pecially valuable in the long run, in choosing how to
conduct various future research projects, and when
writing papers, in relating research choices to the
current state of the art.

� Learning advanced concepts not covered in the core
graduate computer architecture course, and see-
ing them put into practice (e.g., various branch-
prediction and caching techniques).

� Seeing the impact of different instruction-set ar-
chitectures on design decisions. The need for IA-
32 processors to decode the CISC instructions into
RISC instructions and the consequent penalties (ex-
tra pipeline stages, longer branch misprediction
penalties) is the most obvious example. The deci-
sion by Alpha architects to add sub-word load and
store instructions after the first generation of the
21164 is another example.

Undergraduates also benefited from the exposure to
advanced computer architecture concepts and from the
opportunity to conduct research for their project. In our
experience, the undergraduates who have taken this semi-
nar do excellent projects. This not only helps them estab-
lish credentials for acceptance into top graduate schools,
but also helps prepare them for graduate-level research.

In addition, the books assembled by the student teams
serve as extremely useful references for years after the
course has been taught, the students get the opportunity
to pursue research in computer architecture, and some
students produce publication-quality results.

4. Lessons Learned

Start research project early. For many students, this
project will be their first substantial research project.

Many if not most projects also require using a simulation
package like SimpleScalar [1, 2, 22]. In order to have
time to produce useful work, it is vital to select a topic
within the first month and begin work right away. Unfor-
tunately, this means students will not be able to hear all
the processor presentations before choosing a topic, but
starting the project early seems more important.

Give students a menu of research projects. Less ad-
vanced students require substantial guidance in their
choice of project. Giving themcarte blancheleads to
many rounds of discussion before a topic can be found
that is suitable as well as feasible in one semester. De-
spite the success we experienced in letting students find
their own projects, we instead recommend that the in-
structor come up with a menu of research projects that
touch on the different cross-cutting themes. Students
who wish to pursue topics not on the menu can negoti-
ate their topic as necessary.

Require milestones. Students taking other classes
have a natural tendency to postpone long-range projects
in favor of more immediate homework. Indeed, some
students delay starting their project too long, and turn
in projects that are weak and/or late. Problems have
also been encountered when students misunderstand their
project.

To combat these problems, students should write a
project proposal and also turn in at least two interim re-
ports. These documents can be quite short. The goal is
to create milestones that require students to make steady
progress. The proposal need merely describe the problem
to be studied, the basic approach, and some milestones
for completed work. The first interim report should in-
dicate that the student has begun implementation (and
therefore understands and has gained some experience
with the research infrastructure to be used), and the sec-
ond report should indicate that the student has completed
most of the implementation, and should also include the
first portions of the final report (e.g., introduction and
motivation, approach, etc.).

Most of our students used SimpleScalar [1, 2, 22],
and we found it useful to provide concrete familiariza-
tion exercises designed to acquaint them with modifying
the code to obtain various measurements. These exer-
cises took the students on a tour of the code, required
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them to use a variety of the configuration and statistics-
gathering tools provided by SimpleScalar, and required
them to understand the code well enough to learn where
to instrument it to obtain various kinds of statistics.

Give immediate feedback on presentations.
Promptly returning a grade and a critique of each stu-
dent’s presentation permits the students to do a better job
with their second presentation. More importantly, it helps
them develop better presentation skills. Fortunately, most
of the presentations were outstanding; common problems
were chiefly restricted to formatting of the presentation
overheads.

The entire team can be assigned a single grade, or each
student can receive an individual grade.

Require rigor in cross-cutting-theme phase. The dis-
cussion of cross-cutting themes is prone to a great deal of
handwaving unless rigor is required. Requiring the stu-
dents to perform and present the results of some quan-
titative evaluations helps substantially (see Section 2.3).
Also important is requiring students to find relevant re-
search literature that describes new techniques employed
by the processors and literature describing new algo-
rithms that extend these techniques. Literature discussing
manufacturing and economic factors helps, too.

Everybody must participate. We have permitted stu-
dents to audit the course, but required everyone attend-
ing the seminar to participate in the student presentation
teams. This ensures widespread participation. At the be-
ginning of the sequence of presentations, it helps for the
instructor to ask questions and make observations. This
seems effective at provoking broad class participation.

Some students are shy. While class participation was
excellent overall, some students are shy or feel intimi-
dated by students who are more knowledgeable or more
outspoken. Even though these students often give excel-
lent presentations and do excellent work, if they partic-
ipate rarely, this harms their participation grade and can
have a non-trivial effect on their overall class grade. We
have not yet come up with a good solution for this prob-
lem, except to speak with students who tend to be quiet
and be supportive of their efforts. It also helps for the

instructor to treat naive questions with patience, in order
to establish an environment of trust.

Provide tools and base configurations. In order to
maximize the students’ productivity, the instructor needs
to provide infrastructure. This includes:

� Installing the simulation package used by most
students—we used SimpleScalar [1, 2, 22].

� Installing benchmarks—we used the SPEC95
benchmarks [24].

� Providing instructions on proper simulation (fast-
forward intervals, appropriate inputs, appropriate
measurement methodology) [19].

� Finding adequate computer time for all the students.
(We also required all simulations to be “niced”.)

� Providing graphing tools. Many students are famil-
iar with Excel, but are not familiar with how to as-
semble suitable graphs, so templates are useful. Stu-
dents using LaTeX may also be unaware of how to
include Excel figures in a LaTeX document, so the
instructor needs to provide instructions.

5. Conclusions

This paper has described a microprocessor survey
course that can accommodate a range of students, includ-
ing advanced undergraduates and senior graduate stu-
dents. The seminar is centered around student presen-
tations and a research project. During the first phase
of presentations, the organization of four or five high-
performance microprocessors are described in detail.
In the second phase, major cross-cutting design issues
are explored. The class examines the rationale behind
diverse design choices, the tradeoffs that drive these
choices, and new research that will affect these cross-
cutting issues. We have also provided a number of de-
tailed suggestions on how to best implement such a sem-
inar.
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