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We introduce the hashed perceptron predictor, which merges the concepts behind the gshare,

path-based and perceptron branch predictors. This predictor can achieve superior accuracy to

a path-based and a global perceptron predictor, previously the most accurate dynamic branch

predictors known in the literature. We also show how such a predictor can be ahead pipelined to

yield one cycle effective latency. On the SPECint2000 set of benchmarks, the hashed perceptron

predictor improves accuracy by up to 15.6% over a MAC-RHSP and 27.2% over a path-based

neural predictor.

Categories and Subject Descriptors: C1.1 [Computer Systems Organization]: Procecessor

Architectures–Single Data Stream Architectures

General Terms: Performance
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1. INTRODUCTION

The trend in recent high-performance commercial microprocessors has been towards
ever deeper pipelines to enable ever higher clock speeds [Boggs et al. 2004; Hinton
et al. 2001], with the issue width staying about the same from earlier designs.
This trend increases pressure on the branch predictor from two sides. First, the
increasing branch misprediction penalty increases emphasis on the accuracy of the
branch predictor. Second, the decreasing cycle time makes it difficult to use large
tables or complicated logic to perform a branch prediction in one cycle.

A second major trend has been the emergence of power as a fundamental design
constraint on microprocessor design. The increasing use of computers in a mobile
setting has also put a premium on energy efficiency. Branch predictors have a
large degree of leverage on both factors. Improvements in the branch predictor,
a relatively small subunit of the whole processor, can lead to disproportionate
improvements for the whole processor in power and energy efficiency [Parikh et al.
2004].

Most branch predictors explored in the last ten years have been based on tables
of two-bit saturating counters. The perceptron predictor is a new kind of predictor
which is based on a simple neural network.
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Perceptrons have been shown to have superior accuracy at a given storage budget
in comparison to the best table-based predictors. Yet they need a large number
of small adders to operate every cycle they make a prediction, increasing both the
area of the predictor and the energy per prediction.

Previous perceptron predictors assign one weight per local, global or path branch
history bit. This means that the amount of storage and the number of adders
increases linearly with the number of history bits used to make a prediction. One
of the key insights of this paper is that the one-to-one ratio between weights and
number of history bits is not necessary. By assigning a weight not to a single branch
but a sequence of branches (a process we call hashed indexing), a perceptron can
work on multiple partial patterns making up the overall history.

Decoupling the number of weights from the number of history bits used to make
a prediction allows us to reduce the number of adders and tables almost arbitrarily.

Most large table-based and perceptron predictors cannot make a prediction in
a single cycle. The consequence has been that recent designs often use a small
one cycle predictor backed up by a larger and more accurate multi-cycle predictor.
This increases the complexity in the front end of the pipeline, without giving all
the benefits of the more accurate predictor.

Recently, it was proposed [Seznec et al. 1996; Ipek et al. 2005; Jiménez 2003;
Seznec and Fraboulet 2003] that a branch predictor could be ahead pipelined, using
older history or path information to start the branch prediction, with newer infor-
mation being injected as it became available. While there is a small decrease in
accuracy compared to the unpipelined version of the same predictor, the fact that
a large and accurate predictor can make a prediction with one or two cycles latency
more than compensates for this.

Using a different approach to reducing the effective latency of a branch predictor,
a pipelined implementation for the perceptron predictor [Jiménez 2003] was also
proposed. Hiding the latency of a perceptron predictor requires that such a pre-
dictor be heavily pipelined, leading to problems similar as those encountered when
designing modern hyperpipelined execution cores.

The main contributions of this paper are:

—We show that the one-to-one correlation of weights to number of history bits in
a perceptron is not necessary.

—A perceptron predictor using hashed indexing can perform equally well or better
than a global or path-based perceptron while having an order of magnitude fewer
adders.

—Combining multiple ways to index weights in a single perceptron improves accu-
racy over using only a single way.

—A perceptron can be ahead pipelined to reduce its effective latency to one cycle,
obviating the need for a complex overriding scheme.

This paper is organized as follows. Section 2 gives a short introduction to the
perceptron predictor and gives an overview of related work. Section 3 introduces
hashed indexing and explores its benefits. Section 4 talks about the impact of
delay on branch prediction and how it has been dealt with up to now, as well as
the complexity involved in such approaches. Section 5 shows how a perceptron
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Fig. 1. The global perceptron assigns weights to

each element of the branch history and makes its

prediction based on the dot-product of the weights

and the branch history plus a bias weight to repre-

sent the overall tendency of the branch. Note that

the branch history can be global, local or something

more complex.

predictor can be ahead pipelined to yield a one cycle effective latency. Section 6
shows several small improvements to the hashed perceptron which help improve
accuracy. Section 7 describes our simulation infrastructure, Section 8 compares the
accuracy and performance of the different predictors and Section 9 finally concludes.

2. THE PERCEPTRON PREDICTOR AND RELATED WORK

2.1 The Idea of the Perceptron

The perceptron is a very simple neural network. Each perceptron is a set of weights
which are trained to recognize patterns or correlations between their inputs and the
event to be predicted. A prediction is made by calculating the dot-product of the
weights and an input vector (see Figure 1). The sign of the dot-product is then
used as the prediction. In the context of a global perceptron [Jiménez and Lin
2001] branch predictor, each weight represents the correlation of one bit of history
(global, path or local) with the branch to be predicted. In hardware, each weight
is implemented as an n-bit signed integer stored in an SRAM array, where n is
typically 8 in the literature. The input vector consists of 1’s for taken and -1’s for
not taken branches. The dot-product can then be calculated using a Wallace-tree
adder [Cormen et al. 1990], with no multiplication circuits needed.

2.2 Related Work

The idea of the perceptron predictor was originally introduced by Vintan and Iri-
don [1999], and Jiménez and Lin showed in [2002] that the global perceptron could
be more accurate than any other then known global branch predictor. The orig-
inal Jiménez perceptron used a Wallace tree adder to compute the output of the
perceptron, but still incurred more than 4 cycles of latency.

The path-based perceptron [Jiménez 2003] hides most of the delay by fetching
weights and computing a running sum along the path leading up to each branch.
The critical delay of this predictor is thus the sum of the delay of a small SRAM
array, a mux and one small adder. It is estimated that a prediction would be
available in the second cycle after the address became available.

Seznec proposed several improvements to the original global perceptron in [Seznec
2003; 2004a]. In [2003] he introduced the concepts of redundantly representing the
global history and skewing the index functions for the weights to reduce aliasing.
In [2004a] he introduced the MAC-RHSP (multiply-add contribution redundant
history skewed perceptron) predictor. He also reduces the number of adders needed
by a factor of 4 (16 when using redundant history) over the normal global perceptron
predictor.
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In our terminology, the MAC-RHSP is similar to a global perceptron predictor
that uses a concatenation of address and history information ({mi,AcG,∅}) to fetch
its weights. However the MAC-RHSP fetches all weights which share the same
address bits from the tables, and then uses a 16-to-1 mux to select among them.
Our work was partly inspired by [Seznec 2004a] and the MAC representation is one
specific instance of an idea, which we generalize in the hashed perceptron.

The latency of the MAC-RHSP can be hidden from the rest of the pipeline by
starting the prediction early and computing all possible combinations of the last 4
branches in parallel. This requires 15 individual adders in addition to the 15-entry
adder tree which is required to calculate the rest of the dot-product. The hashed
perceptron only needs to calculate the two possible outcomes of the last branch in
parallel because of its lower latency and in general requires 2 to 3 times fewer adders
because it packs more branch history bits into fewer weights than the MAC-RHSP.

Ipek et al. [2005] investigated inverting the global perceptron. Theirs is not a
pipelined organization per se, but rather uses older history to allow prefetching
the weights from the SRAM arrays, hiding the associated latency. During fetch,
these prefetched weights are combined with an input consisting of newer history
and address bits, but this still incurs the delay of the Wallace-tree adder. There
is no need for this kind of inversion for a pipelined perceptron, since the critical
path is already reduced to a small SRAM array and a single adder. They also
looked at incorporating concepts from traditional caches, i.e. two-level caching of
the weights, pseudo-tagging the perceptrons and adding associativity to the weight
tables.

The recently proposed piecewise linear branch predictor [Jiménez 2004] improves
on the path-based perceptron by changing the mapping of each weight from the
address of a previous branch to a hash of a previous and the current branch address.
In our notation (see below) this would be a {mi,AhP,G} instead of a {mi,P,G}.
Additionally, the piecewise linear branch predictor uses local and global history
to make each prediction and dynamically adjusts the history length used. The
predictor also uses a bias table which is larger than the other weight tables and
some other features to reduce aliasing. The {mi,AhP,G} mapping used is very
similar to the {mi,PxP,∅} we introduce below, the only difference being that the
current branch address is used and a more elaborate hash function. However, the
{mi,AhP,G} mapping maintains the one-to-one mapping between branches and
weights, while {mi,P,G} maps two branches to one weight.

The O-GEHL predictor [Seznec 2004b] was introduced at the same time as the
piecewise linear predictor. It consists of the geometric history length (GEHL)
branch predictor augmented with dynamic history length fitting and dynamic thresh-
old fitting. The last two features are orthogonal to the techniques presented in this
work and could be applied to the hashed perceptron. The geometric history length
predictor is similar to the hashed perceptron in that it can use a very long history
with relatively few weights. Instead of segmenting the global history into multiple
parts like the hashed perceptron, it uses different hash functions to assign varying
number of history bits (the history lengths form a geometric series) to each weight.
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Fig. 2. When using gshare-style hashed indexing, weights are fetched by indexing into multiple
tables with the exclusive OR of a branch address and a subsection of the speculative global branch

history.

3. THE HASHED PERCEPTRON

3.1 A Taxonomy for Perceptron Predictors

A perceptron can written as: out =
∑

n

i=0 weights[index[i], i] · input[i]
ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.



6 · D. Tarjan and K. Skadron

Table I.

ind: index type type of information used for

weight selection W or input

vector IV

information combina-

tion method

si : single index A: branch address x: exclusive or’ed

mi : multiple indices G: global branch history c: concatenated
P: branch path history h: hashed (any non-

trivial hash function)

L: local branch history

∅: not used (set to constant 1)

Table II.

original mapping name name in our taxon-

omy

global perceptron {si,A,G}
local-global perceptron {si,A,GcL}
inverted global perceptron {si,G,GcA}
path-based neural {mi,P,G}

For any perceptron we can ask several questions:

—Is the same index used for all the weights or not, i.e. does it have a single index
or multiple indices?

—What kind of information is used as input to calculate the index/indices? How
about for the input vector? Are several kinds used?

—If more than one kind of information is used in either index or input vector, how
are they combined?

Table I lists possible answers to these questions. We can now write any percep-
tron indexing scheme in the form of a tuple:

{type of indexing used(ind),
type(s) of information used for Weight selection,
type(s) of information used for Input Vector}

To clarify this taxonomy, let us look at a few examples by filling in an empty
tuple { , , }:

The global perceptron [Jiménez and Lin 2002] uses the branch address (→ { ,A, })
as index for all the weights (→ {si,A, }) and uses the global branch history as input
vector (→ {si,A,G}).

The local/global perceptron differs from the global perceptron in that it concate-
nates global and local branch history (→ {si,A,GcL}).

The path-based neural predictor uses branch path history as index for its weights
(→ { ,P, }). Each weights uses the address of a different branch (→ {mi,P, })
and the input vector again consists of the global branch history (→ {mi,P,G}).

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.
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3.2 Hashed Indexing

Previous perceptron predictors used each weight to measure the correlation between
a single branch and the current prediction. This means that the number of tables
and adders grows linearly with the amount of history used to make a prediction.
It also means that the counters for each weight have to be large enough so that a
single weight is able to override many other weights.

There are two main insights behind hashed indexing:

—Multiple branches can be assigned to a single weight.

—The global branch/path history can be subdivided into multiple segments to per-
form a series of partial pattern matches instead of a single one as in a traditional
predictor.

The indexing scheme for the path-based neural predictor [Jiménez 2003] is that the
index for the ith weight is the pc of the ith prior branch modulo the number of
weights per table.

(past branch pc[0] = cur branch pc)

{mi, P,G}: index[i] = past branch pc[i] mod #weights

Assume we want to assign two branches to each weight, while keeping the number
of weights constant. One way is an analog of the gselect [McFarling 1993] approach,
concatenating the pc of the 2ith prior branch with the outcome of (2i+1)th prior
branch to form the index.

{mi, PcG, ∅} : index[i] = ((past branch pc[2i] ¿ 1)⊕history bit[2i+1]) mod #weights

Another approach uses the idea from Stark et al. [1998] to encode two branches in
a single index by shifting the second branch by one and XORing the two pc’s.

{mi, PxP, ∅} : index[i] = (past branch pc[2i] ⊕ (past branch pc[2i + 1] ¿ 1)) mod #weights

Instead of concatenating path information with global information, we can use
the idea behing the gshare predictor [McFarling 1993]. XORing a segment of the
global branch history with the pc allows us to assign log(#weights) branches to
a single weight. (For a given #weights per table each history segment contains
log(#weights) bits of global history.)

{mi, PxG, ∅} : index[i] = (history segment[i] ⊕ past branch pc[i]) mod #weights

Instead of using path history, we can just use the branch pc.

{mi,AxG, ∅} : index[i] = (history segment[i] ⊕ cur branch pc) mod #weights

3.3 Implications of Using Hashed Indexing

In all of the proposed mappings, multiple past branches are assigned to a single
weight. This breaks the clean symmetry with the input vector. For these mappings
the input vector is not used. This means that all the elements of the input vector
are set equal to a constant one.

A fundamental problem of the previous perceptron predictors in comparison to
two-level correlating predictors, such as the gshare predictor, was that they could
not reliably predict linearly inseparable branches[Jiménez and Lin 2002]. The most
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common example of linearly inseparable branches are branches which are dependent
on the exclusive OR of two previous branches.

Using hashed indexing, linearly inseparable branches which are mapped to the
same weight can be accurately predicted, because each table acts like a small gshare
predictor.

3.3.1 Computing Predictions and Training the Predictor. Below we show pseu-
docode for predicting a branch and updating the predictor for a multiple indices
perceptrons. Note that the mi-perceptron functions assume no input vectors.
Let

—h be the #tables

—history segment [] be an array of unsigned integers representing the global branch
history

—n be the number of weights per table

We show the algorithm for {mi,AxG,∅} as example of mi indexing:

function mi perceptron prediction(branch pc,history segment []:custom):{taken,not taken}
begin

index [0] := branch pc mod n

out := W[0,index [0]]
for j in 1 .. h do

index [j ] := (history segment[j-1 ] ⊕ branch pc) mod n

out := out + W[j,index [j ]]
end for
if out ≥ 0 then

prediction := taken

else
prediction := not taken

end if
end

The predictor is trained if the prediction was wrong or if the absolute value of
out was below the training threshold θ. The formula for θ is θ = b1.93 ∗ h + h/2c.
If no input vector is used (such is in {mi,AxG,∅}), all weights are incremented if the
outcome was taken and decremented otherwise. Note that saturating arithmetic
has to be used because of the limited number of bits with which each weight is
represented.

function mi perceptron update(index [],out :integer,prediction,outcome:{taken,not taken})
begin

if prediction 6= outcome or |out| ≤ θ then
for j in 0 .. h do

if outcome = taken then
W[j,index [j ]] := W[j,index [j ]] + 1

else
W[j,index [j ]] := W[j,index [j ]] − 1

end if
end for

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.
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Fig. 3. The number of tables and weights is varied from 4 to 64 at each size for all predictors. All
predictors improve with more weights/longer histories.

end if
end

3.4 Evaluating Hashed Indexing

The different mappings were evaluated for accuracy across a range of sizes and
number of tables by varying the number of tables at a given size. Note that for
clarity only the best mappings are shown.

The {si,A,G}, {mi,P,G} and {mi,PcG,∅} were the best at smaller sizes, as can
be seen in Figure 3. All of them improve with more tables and thus longer histo-
ries. Starting at 2KB the {mi,PcG,∅} needs fewer separate tables to reach a given
accuracy than the other two predictors. This shows that the {mi,PcG,∅} can take
advantage of the longer history over the {mi,P,G} at a given number of tables. Be-
cause the {mi,P,G} suffers from less aliasing than the {mi,PcG,∅} it outperforms
it at 1 and 2KB.

In Figure 4 it can be seen that at larger sizes and fewer tables the {mi,PxG,∅} and
{mi,AxG,∅} dominate. We include the {mi,PcG,∅} as a stand in for the {si,A,G}
and {mi,P,G} predictors, since it is the best predictor of all three when using
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Fig. 4. The number of tables and weights is varied from 4 to 64 at each size for all predictors.

{mi,AxG,∅} and {mi,PxG,∅} show the effects of aliasing and destructive interference at small sizes.

fewer tables. Interestingly, the {mi,PxG,∅} performs worse than the {mi,AxG,∅}.
It seems that the extra path information doesn’t give better correlation with the
branch to be predicted than simply using the branch address.

Both {mi,PxG,∅} and {mi,AxG,∅} suffer more from aliasing than the other pre-
dictors, as can be seen from their performance at small sizes. This makes intuitive
sense, since they are similar to gshare in how they access their tables. The {mi,P,G}
is similar to a bimodal predictor in indexing, and it is well known, that bimodal
predictors suffer less from aliasing than a simple gshare predictor, especially at
small sizes.

We can conclude that the {mi,P,G} and {mi,PxG,∅} are best at small sizes, while
the {mi,AxG,∅} is the best at larger sizes.
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3.5 Combining Multiple Mappings in One Predictor

Ideally we would like to combine the advantages of the different mappings in one
predictor. The solution to this problem is to combine multiple mappings in one
predictor. Different weights of the same perceptron are fetched using different
mappings, but are still trained as one perceptron.

The approach used in this work is to combine a short {mi,P,G} or {mi,PxP,∅}
perceptron (which both belong to the class of path-based neural predictors) with
an {mi,AxG,∅} perceptron. The reasoning behind this choice is as follows:

- Most branches are either highly biased or show very good correlation with a
branch in the very recent past. A short {si,A,G} or {mi,P,G} could predict these
kind of branches well.

- Some branches need path information to be accurately predicted. This fact, as
well as its superior accuracy, leads to the choice of {mi,P,G} over {si,A,G}.

- Some branches need as much global branch history as possible to be accurately
predicted. The {mi,AxG,∅} can use the most global history with the fewest weights
and is more accurate than {mi,PxG,∅}.

- To get a uniform design (no input vector) for the whole predictor, we use
{mi,P,∅} instead of {mi,P,G}.

3.6 Accuracy of a Multiple Mapping Perceptron

When using the multiple mappings as described above, there is a tradeoff at any
given size between the total number of tables and the size of each table. A second
tradeoff is between the two different mappings, that is to say how many weights
should be fetched using one mapping and how many using the other mapping. A
third tradeoff is whether/when to use {mi,P,∅} or {mi,PxP,∅}. In Figure 5 we
show some of the design space for all these tradeoffs.

Keeping the number of tables constant at 8, we want to find out what number of
weights should use path history as opposed to global branch history at any given
size. We also want to evaluate whether {mi,PxP,∅} or {mi,P,∅} is preferable.

In Figure 5 we show the results of this design space exploration.

We can see an overall improvement in accuracy with increasing hardware budgets.
At small overall sizes using {mi,P,∅} gives a clear advantage, while at larger sizes
{mi,PxP,∅} gives a slight advantage. The amount of path history needed decreases
with increasing size. While at 512 Bytes using 4 weights with path history is best,
using only 1 weight with path history is best from 32KB on upward.

Since the number of weights is kept constant at 8 in this experiment, the size of
all the tables doubles as the size of the predictor doubles. Larger tables help reduce
aliasing, which makes it easier for the predictor to identify different branches. Less
aliasing seems to reduce the need for path history to separate different branches.

We can draw several conclusions from Figures 3, 4 and 5:

- The hashed perceptron outperforms both its component mappings at all sizes.

- The optimal number of weights with path history varies.

- Using as much global history as possible improves accuracy at larger sizes.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.
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3.7 Advantages of a Hashed Perceptron

In total, a hashed perceptron with both {mi,AxG,∅} and {mi,P,∅} or {mi,PxP,∅}
mappings has several advantages, some new and some incorporated from previous
perceptrons:

—The hashed perceptron predictor can accurately predict some linearly inseparable
branches, something which traditional perceptron predictors cannot, as long as
they are mapped to the same weight.

—The chance that many weights with no correlation overpower a single weight
with good correlation is lessened, because the hashed perceptron predictor has
fewer weights for the same history length than a path-based({mi,P,G}) neural
predictor.

—Separate weights for the most recent branches allows the hashed perceptron to
distinguish between multiple paths leading up to a branch.

4. DELAY IN BRANCH PREDICTION

An ideal branch predictor uses all the information which is available at the end
of the previous cycle to make a prediction in the current cycle. In a table-based
branch predictor this would mean using a certain mix of address, path and history
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Table III. Amount of state to be checkpointed for each

type of predictor. x is the pipeline depth of each predictor

and w is the number of bits for each weight in the percep-

tron predictor.

predictor type Amount of state to be checkpointed in

bits

path-based

perceptron

∑
x

i=2
w + dlg(i)e bits

ahead

pipelined

perceptron

(w · x) +
∑

x

i=2
w + dlg(i)e bits

table-based 2x−1 − 1 bits for most significant bits

bits to index into a table and retrieve the state of a two-bit saturating counter (a
very simple finite state machine), from which the prediction is made.

4.1 Overriding Prediction Schemes

Because of the delay in accessing the SRAM arrays and going through whatever
logic is necessary, larger predictors often cannot produce a prediction in a single
cycle in order to direct fetch for the next cycle. This necessitates the use of a
small but fast single cycle predictor to make a preliminary prediction, which can be
overridden [Jiménez et al. 2000] several cycles later by the main predictor. Typically
this is either a simple bimodal predictor or, for architectures which do not use a
BTB, a next line predictor as is used by the Alpha EV6 and EV7 [Calder and
Grunwald 1995].

This arrangement complicates the design of the front of the pipeline in several
ways. Most obviously, it introduces a new kind of branch misprediction and ne-
cessitates additional circuitry to signal an overriding prediction to the rest of the
pipeline.

If the overriding disagrees with the preliminary predictor, the front of the pipeline
is usually flushed. Energy is wasted both by accessing and updating two different
predictors as well as the extra work done in the front of the pipeline.

4.2 Ahead-Pipelined Predictors

A solution to this problem was introduced in [Seznec et al. 1996] and expanded
upon in [Jiménez 2003], by ”ahead” pipelining the branch prediction process.

In an abstract sense, the prediction is begun with incomplete or old information
and newer information is injected into the ongoing process. This means that the
prediction can stretch over several cycles, with the only negative aspect being that
only a very limited amount of new information can be used for the prediction.

An ahead pipelined predictor obviates the need for a separate small and fast pre-
dictor, yet it introduces other complications. In the case of a branch misprediction,
the state of the processor has to be rolled back to a checkpoint. Because tradi-
tional predictors only needed one cycle, no information except for the PC (which
was stored anyway) and the history register(s) were needed.

4.3 Checkpointing Ahead-Pipelined Predictors

For an ahead pipelined predictor, all the information which is in flight has to be
checkpointed or the branch prediction pipeline would incur several cycles without a
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Table IV.

depth of

pipeline

Amount of state to be

checkpointed in bits

13 133

18 195

20 221

32 377

34 405

37 447

prediction being made in the case of a misprediction being detected. This would ef-
fectively lengthen the pipeline of the processor, increasing the branch misprediction
penalty.

This problem was briefly mentioned in [Seznec and Fraboulet 2003] in the context
of 2BCgskew predictor and it was noted that the need to recover in one cycle could
limit the pipeline length of the predictor. In a simple gshare the amount of state
grows exponentially with the depth of the branch predictor pipeline, if all the bits
of new history are used. Hashing the bits of new history down in some fashion of
course reduces the amount of state in flight.

For a pipelined perceptron, all partial sums in flight in the pipeline need to be
checkpointed. Each partial sum is the sum of k w-bit weights, and is thus w+log(n)
bits wide. See Table III for the formulas used to determine the total amount of
state to be checkpointed. Since the partial sums are distributed across the whole
predictor in pipeline latches, the checkpointing tables and associated circuitry must
also be distributed. The amount of state that needs to be checkpointed/restored and
the pipeline length determine the complexity and delay of the recovery mechanism.
Shortening the pipeline and/or reducing the amount of state to be checkpointed
per pipeline stage will reduce the complexity of the recovery mechanism.

It is obvious that a hashed perceptron, which has a much shorter pipeline than a
tuned global or path-based perceptron, is easier to design under such constraints.

5. AHEAD PIPELINING A PERCEPTRON PREDICTOR

To bring the latency of the pipelined path-based neural predictor down to a single
cycle, it is necessary to decouple the table access for reading the weights from the
adder. The idea, introduced in [Tarjan et al. 2004], is that using the address from
the cycle n − 1 to initiate the reading of weights for the branch prediction in cycle
n would allow a whole cycle for the table access, leaving the whole cycle when the
prediction is needed for the adder logic. We can use the same idea as was used
for the ahead pipelined table-based predictors to inject one more bit of information
(whether the previous branch was predicted taken or not taken) at the beginning
of cycle n. We thus read two weights, select one based on the prediction which
becomes available at the end of cycle n-1, and use this weight to calculate the
result for cycle n. While this means that one less bit of address information is used
to retrieve the weights, perceptrons are much less prone to the negative effects of
aliasing than table-based predictors.

Note that there is also the possibility that no branch needs to be predicted in a
certain cycle (We do not show the associated circuitry in Figure 6 for reasons of
clarity). In this case the pipeline does not advance. For this case the old partial

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.



Merging Perceptron and Gshare · 15

Pipeline Latch+


AdderSRAM-Array
+



+


+


addr(x)addr(x-1)

+


+


+


addr(x-1)addr(x-2)

88 88

8
8

8

8
8

88

8

Mux

Fetch branch(x) Fetch branch( x+1)

Pred for
branch(x)

Pred for
branch(x)

preliminary
pred for

branch(x)

Fetch branch(x) Fetch branch( x+1)

Pred for
branch(x+1)

possible
override

Fig. 6. (top)The

original proposal for

a pipelined percep-

tron uses the current

address in each cy-

cle to retrieve the

weights for the per-

ceptron. (bottom)

Our proposed design

uses addresses from

the previous cycle to

retrieve two weights

and then chooses
between the two at

the beginning of the

next cycle. Note that

the mux could be
moved ahead of the
pipeline latch if the
prediction is available

early enough in the
cycle.

sums need to be kept in an additional shadow latch, which loads its contents into
the normal pipeline latch if no signal from the BTB,RAS or from predecode bits is
received.

In the case of a branch misprediction, the pipeline has to be restored the same as
a normal path-based neural predictor. Because the predictor has to work at a one
cycle effective latency, additional measures have to be taken. One possibility is to
checkpoint not just the partial sums but also one of the two weights coming out of
the SRAM arrays on each prediction. Only the weights which were not selected need
be stored, because by definition, when a branch misprediction occurred, the wrong
direction was chosen initially. A second possibility is to also calculate the partial
sums along the not chosen path. This reduces the amount of state that needs to be
checkpointed to only the partial sums, but necessitates additional adders. A third
possibility is to only calculate the next prediction, for which no new information
is needed, and advance all partial sums by one stage. This would lead to one less
weight being added to the partial sums in the pipeline and a small loss in accuracy.
The difference between options two and three is fluid and the number of extra
adders, extra state to be checkpointed and any loss in accuracy can be weighed on
a case by case basis.

For our simulations we assumed the first option, and leave evaluation of the
second and third option for future work.
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5.1 Ahead Pipelining the Hashed and Path-Based Perceptrons

To minimize the impact of ahead pipelining on the path-based perceptron, we ahead
pipeline only the bias weight. This means that the sum of three small integers needs
to be calculated in the final cycle.

The hashed perceptron is a more complex case. The weights fetched using
{mi,AxG,∅} have to be handled in two different ways. For weights using only
older history, we simply move fetching them a couple of cycles ahead of the actual
branch. This means that a previous branch address has to be used for indexing the
weights. For the weight using the most recent history, ahead pipelining similar to
gshare.fast has to be used. All weights fetched using {mi,P,∅} or {mi,PxP,∅} can
be fetch normally.

6. IMPROVEMENTS TO THE HASHED PERCEPTRON

The traces made available for the First Championship Branch Prediction Work-
shop differ markedly from those of SpecInt 2000 [Loh 2005]. To adapt the hashed
perceptron to the CBP traces, we introduced several improvements:

—Sign bit splitting: To reduce destructive aliasing between branches with opposite
bias, the sign bits are stored in separate and larger tables from the rest of the
weights. Each weight now has two or four sign bits assigned to it. This improve-
ment is similar in spirit to the sharing of hysteresis bits [Seznec et al. 2003] or
the agree predictor [Sprangle et al. 1997].

—Static weight boosting: Many benchmarks need only the weight from one table
for an accurate prediction. The other weights have no good correlation with the
branch. These tables are almost always either the bias table or the table with the
most recent path or branch history. To increase the importance of these weights
without increasing the size of their counters, the value of all weights from these
tables is doubled when the output is computed.

—Head-splitting and tail-sharing: The basic insight, which has also been used in
[Loh 2004; Jiménez 2004], is that older history is less important than more recent
history or bias weights. This lead us to increase the size of the bias weight table
by 1.75 and cutting the size of the three tables with the oldest history in half.

—using {mi,AxPxPxP,∅} instead of {mi,PxP,∅}

—Smaller counters: We found that five bit counters (including the sign bit) were
large enough and we didn’t have to use full 8 bit counters.

—Slightly biasing the predictor to not taken to reflect the distribution of branches
in the traces.

7. SIMULATION SETUP

We evaluate the hashed perceptron against a global perceptron, the path-based
neural predictor and the MAC-RHSP using all SPEC2000 integer benchmarks. All
benchmarks were compiled for the Alpha instruction set using the Compaq Alpha
compiler with the SPEC peak settings and all included libraries. Exploring the
design space for new branch predictors exhaustively is impossible in any reasonable
timeframe. To shorten the time needed for the design space exploration, we used
500-million-instruction traces to tune all predictors for optimal accuracy. These
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Table V. Configuration parameters of the processor simulated

Parameter Configuration

L1-Icache 64KB, 32B, 2-way, 3 cycle latency

L1-Dcache 64KB, 32B, 4-way, 3 cycle latency

L2 unified cache 4MB, 128B, 8-way, 15 cycle latency

BTB 4096 entry, 4-way

Indirect Branch Predictor 512 entry, 8-way

Processor width 6

pipeline depth exposed by

branch misprediction

33

ROB entries 512

IQ, FPQ entries 64

LSQ entries 128

L2 miss latency 200 cycles

traces were chosen using data from the SimPoint [Sherwood et al. 2002] project.
Simulations were conducted using EIO traces for the SimpleScalar simulation in-
frastructure [Burger et al. 1996].

For the main evaluation of all predictors and to collect performance numbers,
1-billion-instruction traces chosen with SimPoint were used. We used a greatly
enhanced version of the sim-outorder simulator, called sim-modes, from the Sim-
plescalar toolkit[Burger et al. 1996] to gather all performance data. Sim-modes
models separate integer, floating point and load/store queues, as well as a separate
ROB. It also models the full depth of the pipeline, instead of simulating only a
five-stage pipeline. We use the technique introduced in [Skadron et al. 1998] and
save the top of the return address stack with each prediction to avoid corruption
of the RAS on a branch misprediction. For all the main simulations, sim-modes
was run for 100M instruction prior to the beginning of the selected traces to warm
up all caches and other microarchitectural structures. All statistics were restarted
after this warmup period. The details of the processor model used can be found in
Table V.

The history lengths for the tuned predictors can be found in Table VI. To get the
delay of each predictor, we used the delay numbers presented in [Jiménez 2003] for
predictors with equal sizes and comparable number of tables as those presented in
[Jiménez 2003]. We used CACTI 3.0 to extrapolate the delay numbers for predictors
larger than 64KB. It should be noted however, that at these sizes factors such as
transmitting the weights and partial sums between tables become very noticable.
Since we took no account of these additional factors, the delay numbers used are
only a first order estimate. For all predictors with greater than one cycle latency,
a 2K entry bimodal predictor is used as the initial predictor.

8. RESULTS

The average misprediction rates and the harmonic mean IPC for the path-based
neural, MAC-RHSP, global and hashed perceptrons are shown in Figures 7 and
8. Several interesting trends can be seen in Fig. 7. The hashed perceptron is the
most accurate predictor at all sizes. The MAC-RHSP starts out almost the worst
but catches up and overtakes the path-based neural predictor at larger sizes. We
theorize that because the MAC-RHSP is similar to a {mi,AcG,∅} perceptron, it
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Table VI. Number of tables for the path-based neural, hashed

perceptron and global perceptrons

Size

(KB)

number of tables N and latency (in cycles) D

hash MAC-

RHSP

path global

1 N:8 D:2 N:5 D:3 N:14 D:2 N:14 D:4

2 N:8 D:2 N:7 D:3 N:18 D:2 N:18 D:5

4 N:8 D:2 N:7 D:3 N:24 D:2 N:30 D:5

8 N:8 D:2 N:8 D:3 N:30 D:2 N:48 D:5

16 N:16 D:2 N:8 D:3 N:38 D:2 N:47 D:5

32 N:16 D:2 N:8 D:3 N:44 D:2 N:47 D:6

64 N:16 D:3 N:19 D:4 N:46 D:3 N:59 D:7

128 N:16 D:3 N:24 D:4 N:48 D:3 N:59 D:8

256 N:16 D:4 N:24 D:4 N:48 D:4 N:60 D:9

512 N:16 D:5 N:28 D:6 N:48 D:5 N:67 D:10

1024 N:16 D:5 N:28 D:6 N:52 D:5 N:70 D:11
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Fig. 7. Misprediction rates on the 12 SpecInt 2000 benchmarks

needs a minimum table size so that a meaningful number of address and history
bits can be used for each weight. Conversely, the path-based neural predictor is
more comfortable with small hardware budgets, but tops out at a higher mispre-
diction rate. This trends can be seen in the fact that the hashed perceptron is only
6.8% more accurate than the path-based neural predictor at 1KB, but has a 27.2%
advantage at 1MB. The trend in comparison with the MAC-RHSP is the reverse,
where the difference shrinks from 15.6% at 1KB to 9.5% at 1MB. The differences in
accuracy are reflected in the IPC numbers in Fig. 8. But they are also attenuated
by the increasing latency of the larger predictors. This leads to the fact that the
best performance can found anywhere from 16 to 256KB for each predictor. At
32KB the hashed perceptron has a 3.7 and 4% advantage over the MAC-RHSP and
the path-based neural predictor respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.



Merging Perceptron and Gshare · 19

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B

25
6K

B

51
2K

B
1M

B

ge
om

. m
ea

n 
IP

C
hashed
ahead hashed
MAC
neural 
global
ahead neural

Fig. 8. Harmonic mean IPC on the 12 SpecInt 2000 benchmarks

8.1 Accuracy on the CBP Traces

On the CBP traces, we compare the improved hashed perceptron with the piece-
wise linear branch predictor and the O-GEHL predictor. All three predictors are
configured to CBP specifications, using less than 64K + 256 bits. The O-GHEL
and the piecewise linear predictor use the configurations which were submitted for
the CBP contest. The results are shown in Fig. 9. Since the O-GEHL uses dynamic
history length fitting and dynamic threshold fitting, which can alo be applied to
the hashed perceptron, we also include the GEHL predictor as straight comparison
with the hashed perceptron. The hashed perceptron acchieves 2.89 mispredictions
per 1000 instructions, which would have placed it third in the rankings when using
the publicly distributed traces.

9. CONCLUSION AND FUTURE WORK

We have introduced the hashed perceptron predictor, which merges the concepts
behind the gshare and path-based perceptron predictors. This predictor has several
advantages over prior proposed branch predictors:

—The hashed perceptron improves branch misprediction rate by up to 15.6% over
a MAC-RHSP and 27.2% over a path-based neural predictor on the SPEC2000
integer set of benchmarks, increasing IPC by up to 7.5%.

—The hashed perceptron can reduce the number of adders by almost to a factor of
four in comparison to the path-based neural predictor and up to a factor of six
in comparison to the global perceptron.

—The amount of state that needs to be checkpointed and restored in case of a
branch misprediction is reduced by almost a factor of four in comparison to the
path-based neural predictor.
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Fig. 9. Accuracy of the hashed perceptron, piecewise linear, GEHL and O-GEHL branch predictors
on the CBP traces

—By ahead pipelining the hashed perceptron predictor the overhead and added
complexity of associated with having a large predictor overriding a smaller pre-
dictor are eliminated.

The hashed perceptron eliminates the need for a preliminary predictor and over-
riding mechanism, it offers superior accuracy starting at low hardware budgets and
scales better than previous designs to larger configurations. It is small enough, fast
enough and simple enough to be a promising choice as a branch predictor for a
future high-performance processor.

We think the hashed perceptron offers a good base for further research: The
introduction of gshare-style indexing to perceptron predictors should allow many
of the techniques developed to reduce aliasing and increase accuracy in two-level
correlating predictors to be applied to perceptron predictors. In the other direction,
it might be possible to use the idea of matching multiple partial patterns to increase
accuracy in two-level correlating predictors.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation under grant nos.
EIA-0224434, CCR-0133634, a grant from Intel MRL and an Excellence Award from
the Univ. of Virginia Fund for Excellence in Science and Technology. The authors
would also like to thank Mircea R. Stan for many fruitful discussions about neural
networks.

REFERENCES

Boggs, D., Baktha, A., Hawkins, J. M., Marr, D. T., Miller, J. A., Roussel, P., Singhal,

R., Toll, B., and Venkatraman, K. S. 2004. The Microarchitecture of the Intel Pentium 4

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.



Merging Perceptron and Gshare · 21

Processor on 90nm Technology. Intel Technology Journal 8, 1 (February).

Burger, D., Austin, T. M., and Bennett, S. 1996. Evaluating Future Microprocessors: The

Simplescalar Tool Set. Tech. Rep. CS-TR-1996-1308, University of Wisconsin-Madison.

Calder, B. and Grunwald, D. 1995. Next Cache Line and Set Prediction. In Proceedings of

the 22nd Annual International Symposium on Computer Architecture. ACM Press, 287–296.

Cormen, T., Leiserson, C., and Rivest, R. 1990. Introduction to Algorithms. McGraw-Hill,

New York.

Hinton, G., Sager, D., Upton, M., Boggs, D., Carmean, D., Kyker, A., and Roussel, P.

2001. The Microarchitecture of the Pentium 4 Processor. Intel Technology Journal 5, 1 (Febru-

ary), 13.

Ipek, E., McKee, S. A., Schulz, M., and Ben-David, S. 2005. Perceptron Based Branch Predic-

tion: Performance of Some Design Options. Tech. Rep. CSL-TR-2005-1043, Cornell Computer

Systems Lab. April.
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