
Merging Path and Gshare Indexing in
Perceptron Branch Prediction

DAVID TARJAN and KEVIN SKADRON
University of Virginia

We introduce the hashed perceptron predictor, which merges the concepts behind the gshare,
path-based and perceptron branch predictors. This predictor can achieve superior accuracy to a
path-based and a global perceptron predictor, previously the most accurate dynamic branch pre-
dictors known in the literature. We also show how such a predictor can be ahead pipelined to yield
one cycle effective latency. On the SPECint2000 set of benchmarks, the hashed perceptron predictor
improves accuracy by up to 15.6% over a MAC-RHSP and 27.2% over a path-based neural predictor.

Categories and Subject Descriptors: C1.1 [Computer Systems Organization]: Procecessor
Architectures—Single data stream architectures

General Terms: Performance

Additional Key Words and Phrases: Branch prediction, neural networks, two-level predictors

1. INTRODUCTION

The trend in recent high-performance commercial microprocessors has been
toward ever deeper pipelines to enable ever higher clock speeds [Boggs et al.
2004; Hinton et al. 2001], with the issue width staying about the same as earlier
designs. This trend increases pressure on the branch predictor from two sides.
First, the increasing branch misprediction penalty increases emphasis on the
accuracy of the branch predictor. Second, the decreasing cycle time makes it
difficult to use large tables or complicated logic to perform a branch prediction
in one cycle.

A second major trend has been the emergence of power as a fundamental
design constraint on microprocessor design. The increasing use of computers
in a mobile setting has also put a premium on energy efficiency. Branch pre-
dictors have a large degree of leverage on both factors. Improvements in the
branch predictor, a relatively small subunit of the whole processor, can lead to
disproportionate improvements for the whole processor in terms of power and
energy efficiency [Parikh et al. 2004].

Authors’ address: D. Tarjan, Computer Science Dept., University of Virginia, 151 Engineer’s Way
PO Box 400740, Charlottesville, VA 22904-4740; email: {dtarjan,skadron}@cs.virginia.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1544-3566/05/0900-0280 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005, Pages 280–300.

Merging Path and Gshare Indexing in Perceptron Branch Prediction • 281

Most branch predictors explored in the last 10 years have been based on
tables of two-bit saturating counters. The perceptron predictor is a new kind of
predictor that is based on a simple neural network.

Perceptrons have been shown to have superior accuracy at a given storage
budget in comparison to the best table-based predictors. Yet they need a large
number of small adders to operate every cycle they make a prediction, increas-
ing both the area of the predictor and the energy per prediction.

Previous perceptron predictors assign one weight per local, global or path
branch history bit. This means that the amount of storage and the number
of adders increases linearly with the number of history bits used to make a
prediction. One of the key insights of this paper is that the one-to-one ratio
between weights and number of history bits is not necessary. By assigning a
weight not to a single branch but a sequence of branches (a process we call
hashed indexing), a perceptron can work on multiple partial patterns making
up the overall history.

Decoupling the number of weights from the number of history bits used to
make a prediction allows us to reduce the number of adders and tables almost
arbitrarily.

Most large table-based and perceptron predictors cannot make a prediction
in a single cycle. The consequence has been that recent designs often use a
small one-cycle predictor backed up by a larger and more accurate multicycle
predictor. This increases the complexity in the front end of the pipeline, without
giving all the benefits of the more accurate predictor.

Recently, it was proposed [Seznec et al. 1996; Ipek et al. 2005; Jiménez 2003;
Seznec and Fraboulet 2003] that a branch predictor could be ahead pipelined,
using older history or path information to start the branch prediction, with
newer information being injected as it became available. While there is a small
decrease in accuracy compared to the unpipelined version of the same predictor,
the fact that a large and accurate predictor can make a prediction with one or
two cycles latency more than compensates for this.

Using a different approach to reducing the effective latency of a branch pre-
dictor, a pipelined implementation for the perceptron predictor [Jiménez 2003]
was also proposed. Hiding the latency of a perceptron predictor requires that
such a predictor be heavily pipelined, leading to problems similar as those en-
countered when designing modern hyperpipelined execution cores.

The main contributions of this paper are:

� We show that the one-to-one correlation of weights to number of history bits
in a perceptron is not necessary.

� A perceptron predictor using hashed indexing can perform equally well or
better than a global or path-based neural predictor while having a factor of
four fewer adders.

� Combining multiple ways to index weights in a single perceptron improves
accuracy over using only a single way.

� A perceptron can be ahead pipelined to reduce its effective latency to one
cycle, obviating the need for a complex overriding scheme.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

282 • D. Tarjan and K. Skadron

Fig. 1. The global perceptron assigns weights to each element of the branch history and makes
its prediction based on the dot-product of the weights and the branch history plus a bias weight to
represent the overall tendency of the branch. Note that the branch history can be global, local or
something more complex.

This paper is organized as follows. Section 2 gives a short introduction to
the perceptron predictor and gives an overview of related work. Section 3 in-
troduces hashed indexing and explores its benefits. Section 4 talks about the
impact of delay on branch prediction and how it has been dealt with up to now,
as well as the complexity involved in such approaches. Section 5 shows how
a perceptron predictor can be ahead pipelined to yield a one cycle effective la-
tency. Section 6 shows several small improvements to the hashed perceptron
which help improve accuracy. Section 7 describes our simulation infrastructure,
Section 8 compares the accuracy and performance of the different predictors.
Section 9 finally concludes.

2. THE PERCEPTRON PREDICTOR AND RELATED WORK

2.1 The Idea of the Perceptron

The perceptron is a very simple neural network. Each perceptron is a set of
weights, which are trained to recognize patterns or correlations between their
inputs and the event to be predicted. A prediction is made by calculating the
dot-product of the weights and an input vector (see Figure 1). The sign of the
dot-product is then used as the prediction. In the context of a global perceptron
[Jiménez and Lin 2001] branch predictor, each weight represents the correlation
of one bit of history (global, path or local) with the branch to be predicted.
In hardware, each weight is implemented as an n-bit signed integer stored
in an SRAM array, where n is typically 8 in the literature. The input vector
consists of 1’s for taken and −1’s for not taken branches. The dot-product can
then be calculated using a Wallace-tree adder [Cormen et al. 1990], with no
multiplication circuits needed.

2.2 Related Work

The idea of the neural branch prediction was originally introduced by
Vintan and Iridon [1999] and Jiménez and Lin [2002] showed that the global
perceptron could be more accurate than any other then known global branch
predictor. The original Jiménez perceptron used a Wallace-tree adder to com-
pute the output of the perceptron, but still incurred more than four cycles of
latency.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Merging Path and Gshare Indexing in Perceptron Branch Prediction • 283

The path-based neural predictor [Jiménez 2003] hides most of the delay by
fetching weights and computing a running sum along the path leading up to
each branch. The critical delay of this predictor is thus the sum of the delay
of a small SRAM array, a mux and one small adder. It is estimated that a
prediction would be available in the second cycle after the address became
available.

Seznec proposed several improvements to the original global perceptron in
Seznec [2003, 2004a]. He introduced the concepts of redundantly representing
the global history and skewing the index functions for the weights to reduce
aliasing in [2003]. He introduced the MAC-RHSP (multiply-add contribution
redundant-history skewed perceptron) predictor in [2004a]. He also reduces the
number of adders needed by a factor of 4 (16 when using redundant history)
over the normal global perceptron predictor.

In our terminology, the MAC-RHSP is similar to a global perceptron predictor
that uses a concatenation of address and history information ({mi,AcG,∅}) to
fetch its weights. However the MAC-RHSP fetches all weights, which share
the same address bits from the tables and then uses a 16-to-1 mux to select
among them. Our work was partly inspired by Seznec [2004a] and the MAC
representation is one specific instance of an idea, which we generalize in the
hashed perceptron.

The latency of the MAC-RHSP can be hidden from the rest of the pipeline by
starting the prediction early and computing all possible combinations of the last
four branches in parallel. This requires 15 individual adders in addition to the
15-entry adder tree, which is required to calculate the rest of the dot-product.
The hashed perceptron only needs to calculate the two possible outcomes of the
last branch in parallel because of its lower latency and, in general, requires
two to three times fewer adders because it packs more branch history bits into
fewer weights than the MAC-RHSP.

Ipek et al. [2005] investigated inverting the global perceptron. Theirs is not a
pipelined organization per se, but rather uses older history to allow prefetching
the weights from the SRAM arrays, hiding the associated latency. During fetch,
these prefetched weights are combined with an input consisting of newer history
and address bits, but this still incurs the delay of the Wallace-tree adder. There
is no need for this kind of inversion for a pipelined perceptron, since the critical
path is already reduced to a small SRAM array and a single adder. They also
looked at incorporating concepts from traditional caches, i.e., two-level caching
of the weights, pseudotagging the perceptrons, and adding associativity to the
weight tables.

The recently proposed piecewise linear-branch predictor [Jiménez 2004] im-
proves on the path-based neural predictor by changing the mapping of each
weight from the address of a previous branch to a hash of a previous and the
current branch address. In our notation (see below), this would be a {mi, AhP, G}
instead of a {mi, P, G}. In addition, the piecewise linear-branch predictor uses
local and global history to make each prediction and dynamically adjusts the
history length used. The predictor also uses a bias table, which is larger than the
other weight tables and some other features to reduce aliasing. The {mi, AhP,
G} mapping used is very similar to the {mi, PxP, ∅} introduced below, the only

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

284 • D. Tarjan and K. Skadron

Table I. Criteria in Our Taxonomy

Type of Information Used for
Weight Selection W or Input Information Combination

ind: Index Type Vector IV Method
si : single index A: branch address x: exclusive or’ed
mi : multiple indexes G: global branch history c: concatenated

P: branch path history h: hashed (any non-trivial
hash function)

L: local branch history
∅: not used (set to constant 1)

difference being that the current branch address is used and a more elaborate
hash function. However, the {mi,AhP,G} mapping maintains the one-to-one
mapping between branches and weights, while {mi, PxP, ∅} maps two branches
to one weight.

The O-GEHL predictor [Seznec 2004b] was introduced at the same time
as the piecewise linear predictor. It consists of the geometric history length
(GEHL) branch predictor augmented with dynamic history-length fitting and
dynamic threshold fitting. The last two features are orthogonal to the tech-
niques presented in this work and could be applied to the hashed perceptron.
The GEHL predictor is similar to the hashed perceptron in that it can use a
very long history with relatively few weights. Instead of segmenting the global
history into multiple parts like the hashed perceptron, it uses different hash
functions to assign varying number of history bits (the history-lengths form a
geometric series) to each weight.

3. THE HASHED PERCEPTRON

3.1 A Taxonomy for Perceptron Predictors

A perceptron can written as: out = ∑n
i=0 weights[index[i], i] · input[i]

For any perceptron we can ask several questions:

1. Is the same index used for all the weights or not, i.e., does it have a single
index or multiple indexes?

2. What kind of information is used as input to calculate the index/indexes?
How about for the input vector? Are several kinds used?

3. If more than one kind of information is used in either index or input vector,
how are they combined?

Table I lists possible answers to these questions. We can now write any
perceptron indexing scheme in the form of a tuple:

{type of indexing used(ind),
type(s) of information used for Weight selection,
type(s) of information used for Input Vector}

To clarify this taxonomy, let us look at a few examples (illustrated in Figure 2
and listed in Table II) by filling in an empty tuple { , , }:
ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Merging Path and Gshare Indexing in Perceptron Branch Prediction • 285

Fig. 2. When using gshare-style hashed indexing, weights are fetched by indexing into multiple
tables with the exclusive OR of a branch address and a subsection of the speculative global branch
history.

The global perceptron [Jiménez and Lin 2002] uses the branch address (→
{ , A, }) as index for all the weights (→ { si, A, }) and uses the global branch
history as input vector (→ { si, A, G}).

The local/global perceptron differs from the global perceptron in that it con-
catenates global and local branch history (→ { si, A, GcL}).

The path-based neural predictor uses branch path history as index for its
weights (→ { , P, }). Each weights uses the address of a different branch (→
{ mi, P, }) and the input vector again consists of the global branch history
(→ { mi, P, G}).

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

286 • D. Tarjan and K. Skadron

Table II. Examples of Our Taxonomy

Original Mapping Name Name in Our Taxonomy
global perceptron {si, A, G}
local-global perceptron {si, A, GcL}
inverted global perceptron {si, G, GcA}
path-based neural {mi, P, G}

3.2 Hashed Indexing

Previous perceptron predictors used each weight to measure the correlation be-
tween a single branch and the current prediction. This means that the number
of tables and adders grows linearly with the amount of history used to make
a prediction. It also means that the counters for each weight have to be large
enough so that a single weight is able to override many other weights.

There are two main insights behind hashed indexing:
� Multiple branches can be assigned to a single weight.
� The global branch/path history can be subdivided into multiple segments to

perform a series of partial pattern matches instead of a single one as in a
traditional predictor.

The indexing scheme for the path-based neural predictor [Jiménez 2003] is that
the index for the ith weight is the pc of the ith prior branch modulo the number
of weights per table.

(past branch pc[0] = cur branch pc)
{mi, P, G}: index[i] = past branch pc[i] mod #weights

Assume we want to assign two branches to each weight, while keeping the
number of weights constant. One way is an analog of the gselect [McFarling
1993] approach, concatenating the pc of the 2ith prior branch with the outcome
of (2i + 1)th prior branch to form the index.

{mi, PcG, ∅} : index[i]
= ((past branch pc[2i] � 1) ⊕ history bit[2i + 1]) mod #weights

Another approach uses the idea from Stark et al. [1998] to encode two branches
in a single index by shifting the second branch by one and XORing the two pc’s.

{mi, Px P, ∅} : index[i]
= (past branch pc[2i] ⊕ (past branch pc[2i + 1] � 1)) mod #weights

Instead of concatenating path information with global information, we can
use the idea behind the gshare predictor [McFarling 1993]. XORing a segment of
the global branch history with the pc allows us to assign log(#weights) branches
to a single weight. [For a given #weights per table each history segment con-
tains log(#weights) bits of global history.]

{mi, PxG, ∅} : index[i] = (history segment[i]⊕past branch pc[i]) mod #weights

Instead of using path history, we can just use the branch pc.

{mi, AxG, ∅} : index[i] = (history segment[i] ⊕ cur branch pc) mod #weights

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Merging Path and Gshare Indexing in Perceptron Branch Prediction • 287

3.3 Implications of Using Hashed Indexing

In all of the proposed mappings, multiple past branches are assigned to a sin-
gle weight. This breaks the clean symmetry with the input vector. For these
mappings the input vector is not used. This means that all the elements of the
input vector are set equal to a constant one.

A fundamental problem of the previous perceptron predictors in compar-
ison to two-level correlating predictors, such as the gshare predictor, was
that they could not reliably predict linearly inseparable branches [Jiménez
and Lin 2002]. The most common example of linearly inseparable branches
are branches which are dependent on the exclusive OR of two previous
branches.

Using hashed indexing, linearly inseparable branches, which are mapped to
the same weight can be accurately predicted, because each table acts like a
small gshare predictor.

3.3.1 Computing Predictions and Training the Predictor. Below we show
pseudocode for predicting a branch and updating the predictor for a multiple
indiexes perceptrons. Note that the mi-perceptron functions assume no input
vectors.
Let

� h be the #tables
� history segment[] be an array of unsigned integers representing the global

branch history
� n be the number of weights per table

We show the algorithm for {mi,AxG,∅} as example of mi indexing:

function mi perceptron prediction (branch pc, history segment[]:custom):
{taken, not taken}

begin
index[0] := branch pc mod n
out := W[0,index[0]]
for j in 1 .. h do

index[j] := (history segment[j−1] ⊕ branch pc) mod n
out := out + W[j,index[j]]

end for
if out ≥ 0 then

prediction := taken
else

prediction := not taken
end if

end

The predictor is trained if the prediction was wrong or if the absolute value of
out was below the training threshold θ . The formula for θ is θ = ⌊

1.93 ∗ h + h/2
⌋
.

If no input vector is used (such is in {mi,AxG,∅}), all weights are incremented
if the outcome was taken and decremented otherwise. Note that saturating
arithmetic has to be used because of the limited number of bits with which
each weight is represented.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

288 • D. Tarjan and K. Skadron

Fig. 3. The number of tables and weights is varied from 4 to 64 at each size for all predictors. All
predictors improve with more weights/longer histories.

function mi perceptron update (index[], out: integer, prediction, outcome:
{taken, not taken})

begin
if prediction �= outcome or |out| ≤ θ then

for j in 0 .. h do
if outcome = taken then

W[j, index[j]] := W[j, index[j]] + 1
else

W[j, index[j]] := W[j, index[j]] − 1
end if

end for
end if

end

3.4 Evaluating Hashed Indexing

The different mappings were evaluated for accuracy across a range of sizes and
number of tables by varying the number of tables at a given size. Note that for
clarity only the best mappings are shown.

The {si,A,G}, {mi,P,G}, and {mi,PcG,∅} were the best at smaller sizes, as
can be seen in Figure 3. All of them improve with more tables and thus longer
histories. Starting at 2KB, the {mi,PcG,∅} needs fewer separate tables to reach
a given accuracy than the other two predictors. This shows that the {mi,PcG,∅}
can take advantage of the longer history over the {mi,P,G} at a given number
of tables. Because the {mi,P,G} suffers from less aliasing than the {mi,PcG,∅}
it outperforms it at 1 and 2KB.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Merging Path and Gshare Indexing in Perceptron Branch Prediction • 289

Fig. 4. The number of tables and weights is varied from 4 to 64 at each size for all predictors.
{mi,AxG,∅} and {mi,PxG,∅} show the effects of aliasing and destructive interference at small sizes.

In Figure 4 it can be seen that at larger sizes and fewer tables the {mi,PxG,∅}
and {mi,AxG,∅} dominate. We include the {mi,PcG,∅} as a stand in for the
{si,A,G} and {mi,P,G} predictors, since it is the best predictor of all three
when using fewer tables. Interestingly, the {mi,PxG,∅} performs worse than
the {mi,AxG,∅}. It seems that the extra path information does not give bet-
ter correlation with the branch to be predicted than simply using the branch
address.

Both {mi,PxG,∅} and {mi,AxG,∅} suffer more from aliasing than the other
predictors, as can be seen from their performance at small sizes. This makes
intuitive sense, since they are similar to gshare in how they access their tables.
The {mi,P,G} is similar to a bimodal predictor in indexing and it is well known
that bimodal predictors suffer less from aliasing than a simple gshare predictor,
especially at small sizes.

We can conclude that the {mi,P,G} and {mi,PxG,∅} are best at small sizes,
while the {mi,AxG,∅} is the best at larger sizes.

3.5 Combining Multiple Mappings in One Predictor

Ideally we would like to combine the advantages of the different mappings in
one predictor. The solution to this problem is to combine multiple mappings
in one predictor. Different weights of the same perceptron are fetched using
different mappings, but are still trained as one perceptron.

The approach used in this work is to combine a short {mi,P,G} or {mi,PxP,∅}
perceptron (which both belong to the class of path-based neural predictors) with

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

290 • D. Tarjan and K. Skadron

Fig. 5. Design space for trading of path history vs. branch history.

an {mi,AxG,∅} perceptron. The reasoning behind this choice is as follows:

� Most branches are either highly biased or show very good correlation with
a branch in the very recent past. A short {si,A,G} or {mi,P,G} could predict
these kind of branches well.

� Some branches need path information to be accurately predicted. This fact,
as well as its superior accuracy, leads to the choice of {mi,P,G} over {si,A,G}.

� Some branches need as much global branch history as possible to be accu-
rately predicted. The {mi,AxG,∅} can use the most global history with the
fewest weights and is more accurate than {mi,PxG,∅}.

� To obtain a uniform design (no input vector) for the whole predictor, we use
{mi,P,∅} instead of {mi,P,G}.

3.6 Accuracy of a Multiple Mapping Perceptron

When using the multiple mappings as described above, there is a tradeoff at any
given size between the total number and size of each table. A second tradeoff is
between the two different mappings, that is to say, how many weights should
be fetched using one mapping and how many using the other mapping. A third
tradeoff is whether/when to use {mi,P,∅} or {mi,PxP,∅}. In Figure 5 we show
some of the design space for all these tradeoffs.

Keeping the number of tables constant at 8, we want to find out what num-
ber of weights should use path history as opposed to global branch history at
any given size. We also want to evaluate whether {mi,PxP,∅} or {mi,P,∅} is
preferable.

In Figure 5 we show the results of this design space exploration.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Merging Path and Gshare Indexing in Perceptron Branch Prediction • 291

We can see an overall improvement in accuracy with increasing hardware
budgets. At small overall sizes using {mi,P,∅} gives a clear advantage, while at
larger sizes {mi,PxP,∅} gives a slight advantage. The amount of path history
needed decreases with increasing size. While at 512 Bytes using 4 weights with
path history is best, using only 1 weight with path history is best from 32KB
on upward.

Since the number of weights is kept constant at 8 in this experiment, the size
of all the tables doubles as the size of the predictor doubles. Larger tables help
reduce aliasing, which makes it easier for the predictor to identify different
branches. Less aliasing seems to reduce the need for path history to separate
different branches.

We can draw several conclusions from Figures 3, 4, and 5:
� The hashed perceptron outperforms both its component mappings at all sizes.
� The optimal number of weights with path history varies.
� Using as much global history as possible improves accuracy at larger sizes.

3.7 Advantages of a Hashed Perceptron

In total, a hashed perceptron with both {mi,AxG,∅} and {mi,P,∅} or {mi,PxP,∅}
mappings has several advantages, some new and some incorporated from pre-
vious perceptrons:
� The hashed perceptron predictor can accurately predict some linearly insep-

arable branches, something which traditional perceptron predictors cannot,
as long as they are mapped to the same weight.

� The chance that many weights with no correlation overpower a single weight
with good correlation is lessened, because the hashed perceptron predictor
has fewer weights for the same history-length than a path-based({mi,P,G})
neural predictor.

� Separate weights for the most recent branches allows the hashed perceptron
to distinguish between multiple paths leading up to a branch.

4. DELAY IN BRANCH PREDICTION

An ideal branch predictor uses all the information available at the end of the
previous cycle to make a prediction in the current cycle. In a table-based branch
predictor, this would mean using a certain mix of address, path, and history bits
to index into a table and to retrieve the state of a two-bit saturating counter (a
very simple finite-state machine), from which the prediction is made.

4.1 Overriding Prediction Schemes

Because of the delay in accessing the SRAM arrays and going through whatever
logic is necessary, larger predictors often cannot produce a prediction in a single
cycle in order to direct fetch for the next cycle. This necessitates the use of a
small, but fast, single-cycle predictor to make a preliminary prediction, which
can be overridden [Jiménez et al. 2000] several cycles later by the main pre-
dictor. Typically, this is either a simple bimodal predictor or, for architectures

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

292 • D. Tarjan and K. Skadron

which do not use a BTB, a next line predictor as is used by the Alpha EV6 and
EV7 [Calder and Grunwald 1995].

This arrangement complicates the design of the front of the pipeline in sev-
eral ways. Most obviously, it introduces a new kind of branch misprediction and
necessitates additional circuitry to signal an overriding prediction to the rest
of the pipeline.

If the overriding disagrees with the preliminary predictor, the front of the
pipeline is usually flushed. Energy is wasted both by accessing and updating two
different predictors as well as the extra work done in the front of the pipeline.

4.2 Ahead-Pipelined Predictors

A solution to this problem was introduced in Seznec et al. [1996] and expanded
upon in Jiménez [2003], by “ahead” pipelining the branch prediction process.

In an abstract sense, the prediction is begun with incomplete or old infor-
mation and newer information is injected into the ongoing process. This means
that the prediction can stretch over several cycles, with the only negative
aspect being that only a very limited amount of new information can be used
for the prediction.

An ahead-pipelined predictor obviates the need for a separate small and
fast predictor, yet it introduces other complications. In the case of a branch
misprediction, the state of the processor has to be rolled back to a checkpoint.
Because traditional predictors only needed one cycle, no information except for
the PC (which was stored anyway) and the history register(s) were needed.

4.3 Checkpointing Ahead-Pipelined Predictors

For an ahead-pipelined predictor, all the information that is in flight has to
be checkpointed or the branch-prediction pipeline would incur several cycles
without a prediction being made in the case of a misprediction being detected.
This would effectively lengthen the pipeline of the processor, increasing the
branch misprediction penalty.

This problem was briefly mentioned in Seznec and Fraboulet [2003] in
the context of 2BCgskew predictor and it was noted that the need to re-
cover in one cycle could limit the pipeline length of the predictor. In a simple
gshare, the amount of state grows exponentially with the depth of the branch-
predictor pipeline, if all the bits of new history are used. Hashing the bits of
new history down in some fashion of course reduces the amount of state in
flight.

For a pipelined perceptron, all partial sums in flight in the pipeline need to
be checkpointed. Each partial sum is the sum of k w-bit weights and is thus
w + log(n) bits wide. (See Table III for the formulas used to determine the
total amount of state to be checkpointed and Table IV for examples for deep
pipelines.) Since the partial sums are distributed across the whole predictor in
pipeline latches, the checkpointing tables and associated circuitry must also be
distributed. The amount of state that needs to be checkpointed/restored and the
pipeline length determine the complexity and delay of the recovery mechanism.
Shortening the pipeline and/or reducing the amount of state to be checkpointed
per pipeline stage will reduce the complexity of the recovery mechanism.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Merging Path and Gshare Indexing in Perceptron Branch Prediction • 293

Table III. Amount of State to be Checkpointed for Each Type of Predictora

Predictor Type Amount of State to be Checkpointed in Bits

path-based perceptron
∑x

i=2 w + ⌈
lg(i)

⌉
bits

ahead pipelined perceptron (w · x) + ∑x
i=2 w + ⌈

lg(i)
⌉

bits

table-based 2x−1 − 1 bits for most significant bits
ax is the pipeline depth of each predictor and w is the number of bits for each weight in the perceptron
predictor.

Table IV. Checkpointing Overhead as a Function of Pipeline Depth

Depth of Pipeline Amount of State to be Checkpointed in Bits
13 133
18 195
20 221
32 377
34 405
37 447

It is obvious that a hashed perceptron, which has a much shorter pipeline
than a tuned global or path-based neural predictor, is easier to design under
such constraints.

5. AHEAD PIPELINING A PERCEPTRON PREDICTOR

To bring the latency of the pipelined path-based neural predictor down to a
single cycle, it is necessary to decouple the table access for reading the weights
from the adder. The idea, introduced in Tarjan et al. [2004], is that using the
address from the cycle n − 1 to initiate the reading of weights for the branch
prediction in cycle n would allow a whole cycle for the table access, leaving the
whole cycle when the prediction is needed for the adder logic. We can use the
same idea as was used for the ahead pipelined table-based predictors to inject
one more bit of information (whether the previous branch was predicted taken
or not taken) at the beginning of cycle n. We thus read two weights, select one
based on the prediction, which becomes available at the end of cycle n-1, and
use this weight to calculate the result for cycle n. While this means that one
less bit of address information is used to retrieve the weights, perceptrons are
much less prone to the negative effects of aliasing than table-based predictors.

Note that there is also the possibility that no branch needs to be predicted in
a certain cycle. (We do not show the associated circuitry in Figure 6 for reasons
of clarity.) In this case the pipeline does not advance. For this case, the old
partial sums need to be kept in an additional shadow latch, which loads its
contents into the normal pipeline latch if no signal from the BTB,RAS or from
predecode bits is received.

In the case of a branch misprediction, the pipeline has to be restored the
same as a normal path-based neural predictor. Because the predictor has to
work at a one cycle effective latency, additional measures have to be taken. One
possibility is to checkpoint not just the partial sums but also one of the two
weights coming out of the SRAM arrays on each prediction. Only the weights,
which were not selected, need be stored, because, by definition, when a branch

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

294 • D. Tarjan and K. Skadron

Fig. 6. (top) The original proposal for a pipelined perceptron uses the current address in each
cycle to retrieve the weights for the perceptron. (bottom) Our proposed design uses addresses from
the previous cycle to retrieve two weights and then chooses between the two at the beginning of
the next cycle. Note that the mux could be moved ahead of the pipeline latch if the prediction is
available early enough in the cycle.

misprediction occurred, the wrong direction was chosen initially. A second pos-
sibility is to also calculate the partial sums along the not chosen path. This
reduces the amount of state that needs to be checkpointed to only the partial
sums, but necessitates additional adders. A third possibility is to only calculate
the next prediction, for which no new information is needed, and advance all
partial sums by one stage. This would lead to one less weight being added to
the partial sums in the pipeline and a small loss in accuracy. The difference
between options two and three is fluid and the number of extra adders, extra
state to be checkpointed; any loss in accuracy can be weighed on a case by case
basis.

For our simulations we assumed the first option and leave evaluation of the
second and third option for future work.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Merging Path and Gshare Indexing in Perceptron Branch Prediction • 295

5.1 Ahead Pipelining the Hashed Perceptron and Path-Based Neural Predictor

To minimize the impact of ahead pipelining on the path-based neural predictor,
we ahead pipeline only the bias weight. This means that the sum of three small
integers needs to be calculated in the final cycle.

The hashed perceptron is a more complex case. The weights fetched using
{mi,AxG,∅} have to be handled in two different ways. For weights using only
older history, we simply move fetching them a couple of cycles ahead of the ac-
tual branch. This means that a previous branch address has to be used for index-
ing the weights. For the weight using the most recent history, ahead pipelining
similar to gshare.fast has to be used. All weights fetched using {mi,P,∅} or
{mi,PxP,∅} can be fetch normally.

6. IMPROVEMENTS TO THE HASHED PERCEPTRON

The traces made available for the First Championship Branch Prediction Work-
shop differ markedly from those of SpecInt 2000 [Loh 2005]. To adapt the hashed
perceptron to the CBP traces, we introduced several improvements:
� Sign-bit splitting: To reduce destructive aliasing between branches with op-

posite bias, the sign bits are stored in separate and larger tables from the
rest of the weights. Each weight now has two or four sign bits assigned to it.
This improvement is similar in spirit to the sharing of hysteresis bits [Seznec
et al. 2003] or the agree predictor [Sprangle et al. 1997].

� Static weight boosting: Many benchmarks need only the weight from one
table for an accurate prediction. The other weights have no good correlation
with the branch. These tables are almost always either the bias table or the
table with the most recent path or branch history. To increase the importance
of these weights without increasing the size of their counters, the value of
all weights from these tables is doubled when the output is computed.

� Head-splitting and tail-sharing: The basic insight, which has also been used
in Loh [2004] and Jiménez [2004], is that older history is less important than
more recent history or bias weights. This lead us to increase the size of the
bias weight table by 1.875 and cutting in half the size of the three tables with
the oldest history.

� Using {mi,AxPxPxP,∅} instead of {mi,PxP,∅}
� Smaller counters: We found that five bit counters (including the sign bit)

were large enough and we did not have to use full 8-bit counters.
� Slightly biasing the predictor to not taken to reflect the distribution of

branches in the traces.

6.1 Simulation Setup

We evaluate the hashed perceptron against a global perceptron, the path-
based neural predictor, and the MAC-RHSP using all SPEC2000 integer
benchmarks. All benchmarks were compiled for the Alpha instruction set us-
ing the Compaq Alpha compiler with the SPEC peak settings and all in-
cluded libraries. Exploring the design space for new branch predictors ex-
haustively is impossible in any reasonable timeframe. To shorten the time

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

296 • D. Tarjan and K. Skadron

Table V. Configuration Parameters of the Simulated Processor

Parameter Configuration
L1-Icache 64KB, 32B, 2-way, 3 cycle latency
L1-Dcache 64KB, 32B, 4-way, 3 cycle latency
L2 unified cache 4MB, 128B, 8-way, 15 cycle latency
BTB 4096 entry, 4-way
Indirect branch predictor 512 entry, 8-way
Processor width 6
Pipeline depth exposed by

branch misprediction
33

ROB entries 512
IQ, FPQ entries 64
LSQ entries 128
L2 miss latency 200 cycles

Table VI. Number of Tables for the Path-Based Neural, Hashed,
and Global Perceptrons

Number of Tables N and Latency (in Cycles) D
Size (KB) Hash MAC-RHSP Path Global
1 N:8 D:2 N:5 D:3 N:14 D:2 N:14 D:4
2 N:8 D:2 N:7 D:3 N:18 D:2 N:18 D:5
4 N:8 D:2 N:7 D:3 N:24 D:2 N:30 D:5
8 N:8 D:2 N:8 D:3 N:30 D:2 N:48 D:5
16 N:16 D:2 N:8 D:3 N:38 D:2 N:47 D:5
32 N:16 D:2 N:8 D:3 N:44 D:2 N:47 D:6
64 N:16 D:3 N:19 D:4 N:46 D:3 N:59 D:7
128 N:16 D:3 N:24 D:4 N:48 D:3 N:59 D:8
256 N:16 D:4 N:24 D:4 N:48 D:4 N:60 D:9
512 N:16 D:5 N:28 D:6 N:48 D:5 N:67 D:10
1024 N:16 D:5 N:28 D:6 N:52 D:5 N:70 D:11

needed for the design space exploration, we used 500 million instruction traces
to tune all predictors for optimal accuracy. These traces were chosen using
data from the SimPoint [Sherwood et al. 2002] project. Simulations were
conducted using EIO traces for the SimpleScalar simulation infrastructure
[Burger et al. 1996].

For the main evaluation of all predictors and to collect performance num-
bers, 1 billion instruction traces chosen with SimPoint were used. We employed
a greatly enhanced version of the sim-outorder simulator, called sim-modes,
from the Simplescalar toolkit [Burger et al. 1996] to gather all performance
data. Sim-modes models separate integer, floating point, and load/store queues,
as well as a separate ROB. It also models the full depth of the pipeline, instead
of simulating only a five-stage pipeline. We use the technique introduced in
Skadron et al. [1998] and save the top of the return address stack with each
prediction to avoid corruption of the RAS on a branch misprediction. For all the
main simulations, sim-modes was run for 100M instruction prior to the begin-
ning of the selected traces to warm up all caches and other microarchitectural
structures. All statistics were restarted after this warmup period. The details
of the processor model used can be found in Table V.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Merging Path and Gshare Indexing in Perceptron Branch Prediction • 297

Fig. 7. Misprediction rates on the 12 SpecInt 2000 benchmarks.

The history lengths for the tuned predictors can be found in Table VI. To get
the delay of each predictor, we used the delay numbers presented in Jiménez
[2003] for predictors with equal sizes and comparable number of tables as
those presented in Jiménez [2003]. We used CACTI 3.2 to extrapolate the delay
numbers for predictors larger than 64KB. It should be noted, however, that at
these sizes, factors such as transmitting the weights and partial sums between
tables become very noticable. Since we took no account of these additional fac-
tors, the delay numbers used are only a first-order estimate. For all predictors
with greater than one cycle latency, a 2K entry bimodal predictor is used as the
initial predictor.

7. RESULTS

The average misprediction rates and the harmonic mean IPC for the path-based
neural, MAC-RHSP, global, and hashed perceptrons are shown in Figures 7 and
8. Several interesting trends can be seen in Figure 7. The hashed perceptron
is the most accurate predictor at all sizes. The MAC-RHSP starts out almost
the worst but catches up and overtakes the path-based neural predictor at
larger sizes. We theorize that because the MAC-RHSP is similar to a {mi,AcG,∅}
perceptron, it needs a minimum table size so that a meaningful number of
address and history bits can be used for each weight. Conversely, the path-
based neural predictor is more comfortable with small hardware budgets, but
tops out at a higher misprediction rate. This trends can be seen in the fact
that the hashed perceptron is only 6.8% more accurate than the path-based
neural predictor at 1KB, but has a 27.2% advantage at 1MB. The trend in
comparison with the MAC-RHSP is the reverse, where the difference shrinks
from 15.6% at 1KB to 9.5% at 1MB. The differences in accuracy are reflected
in the IPC numbers in Figure 8. However, they are also attenuated by the
increasing latency of the larger predictors. This leads to the fact that the best

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

298 • D. Tarjan and K. Skadron

Fig. 8. Harmonic mean IPC on the 12 SpecInt 2000 benchmarks.

Fig. 9. Accuracy of the hashed perceptron, piecewise linear, GEHL, and O-GEHL branch predictors
on the CBP traces.

performance can found anywhere from 16 to 256KB for each predictor. At 32KB
the hashed perceptron has a 3.7 and 4% advantage over the MAC-RHSP and
the path-based neural predictor, respectively.

7.1 Accuracy on the CBP Traces

On the CBP traces, we compare the improved hashed perceptron with the
piecewise linear branch predictor and the O-GEHL predictor. All three predic-
tors are configured to CBP specifications, using less than 64K + 256 bits. The
O-GEHL and the piecewise linear predictor use the configurations which were
submitted for the CBP contest. The results are shown in Figure 9. Since the
O-GEHL uses dynamic history-length fitting and dynamic threshold fitting,
which can also be applied to the hashed perceptron, we also include the GEHL
predictor as straight comparison with the hashed perceptron. The hashed per-
ceptron achieves 2.89 mispredictions per 1000 instructions, which would have
placed it third in the rankings when using the publicly distributed traces.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

Merging Path and Gshare Indexing in Perceptron Branch Prediction • 299

8. CONCLUSION AND FUTURE WORK

We have introduced the hashed perceptron predictor, which merges the concepts
behind the gshare and path-based perceptron predictors. This predictor has
several advantages over prior proposed branch predictors:
� The hashed perceptron improves branch misprediction rate by up to 15.6%

over a MAC-RHSP and 27.2% over a path-based neural predictor on the
SPEC2000 integer set of benchmarks, increasing IPC by up to 7.5%.

� The hashed perceptron can reduce the number of adders by almost a factor
of four in comparison to the path-based neural predictor and up to a factor
of six in comparison to the global perceptron.

� The amount of state that needs to be checkpointed and restored in case of a
branch misprediction is reduced by almost a factor of four in comparison to
the path-based neural predictor.

� By ahead pipelining the hashed perceptron predictor the overhead and added
complexity of associated with having a large predictor overriding a smaller
predictor are eliminated.

The hashed perceptron eliminates the need for a preliminary predictor and
overriding mechanism, and offers superior accuracy, starting at low hardware
budgets and scales, better than previous designs to larger configurations. It is
small enough, fast enough, and simple enough to be a promising choice as a
branch predictor for a future high-performance processor.

We think the hashed perceptron offers a good base for further research.
The introduction of gshare-style indexing to perceptron predictors should allow
many of the techniques developed to reduce aliasing and increase accuracy in
two-level correlating predictors to be applied to perceptron predictors. In the
other direction, it might be possible to use the idea of matching multiple partial
patterns to increase accuracy in two-level correlating predictors.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation under grant
nos. EIA-0224434, CCR-0133634, a grant from Intel MRL, and an Excellence
Award from the Univ. of Virginia Fund for Excellence in Science and Technol-
ogy. The authors would also like to thank Mircea R. Stan for many fruitful
discussions about neural networks.

REFERENCES

BOGGS, D., BAKTHA, A., HAWKINS, J. M., MARR, D. T., MILLER, J. A., ROUSSEL, P., SINGHAL, R., TOLL, B.,
AND VENKATRAMAN, K. S. 2004. The Microarchitecture of the Intel Pentium 4 processor on 90nm
technology. Intel Technology Journal 8, 1 (Feb.).

BURGER, D., AUSTIN, T. M., AND BENNETT, S. 1996. Evaluating Future Microprocessors: The
Simplescalar Tool Set. Tech. Rep. CS-TR-1996-1308, University of Wisconsin-Madison.

CALDER, B. AND GRUNWALD, D. 1995. Next cache line and set prediction. In Proceedings of the 22nd
Annual International Symposium on Computer Architecture. ACM Press, New York, 287–296.

CORMEN, T., LEISERSON, C., AND RIVEST, R. 1990. Introduction to Algorithms. McGraw-Hill, New
York.

HINTON, G., SAGER, D., UPTON, M., BOGGS, D., CARMEAN, D., KYKER, A., AND ROUSSEL, P. 2001. The
Microarchitecture of the Pentium 4 processor. Intel Technology Journal 5, 1 (Feb.), 13.

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

300 • D. Tarjan and K. Skadron

IPEK, E., MCKEE, S. A., SCHULZ, M., AND BEN-DAVID, S. 2005. Perceptron Based Branch Prediction:
Performance of Some Design Options. Tech. Rep. CSL-TR-2005-1043, Cornell Computer Systems
Lab. April.

JIMÉNEZ, D. A. 2003. Fast path-based neural branch prediction. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society. 243.

JIMÉNEZ, D. 2004. Idealized piecewise linear branch prediction. In The First Championship
Branch Prediction Workshop, 2004.

JIMÉNEZ, D. AND LIN, C. 2001. Dynamic branch prediction with perceptrons. In Proceedings of The
Seventh International Symposium on High-Performance Computer Architecture. 197–206.

JIMÉNEZ, D. A. AND LIN, C. 2002. Neural Methods for Dynamic Branch Prediction. ACM Trans.
Comput. Syst. 20, 4, 369–397.

JIMÉNEZ, D. A., KECKLER, S. W., AND LIN, C. 2000. The impact of delay on the design of branch
predictors. In Proceedings of the 33rd Annual ACM/IEEE International Symposium on Microar-
chitecture. ACM Press, New York, 67–76.

LOH, G. H. 2004. The Frankenpredictor: Stitiching together nasty bits of other predictors. In The
First Championship Branch Prediction Workshop, 2004.

LOH, G. H. 2005. Simulation differences between academia and industry: A branch prediction
case study. In Proceedings of the IEEE International Symposium on Performance Analysis of
Systems and Software, 2005. ISPASS 2005.

MCFARLING, S. 1993. Combining Branch Predictors. Tech. Rep. TN-36, Digital Western Research
Laboratory. June.

PARIKH, D., SKADRON, K., ZHANG, Y., AND STAN, M. 2004. Power-aware branch-prediction: Charac-
terization and design. IEEE Trans. Comput. 53, 2, 168–186.

SEZNEC, A. 2003. Redundant history skewed perceptron predictors: Pushing limits on global
history branch predictors. Tech. Rep. 1554, IRISA. Sept.

SEZNEC, A. 2004a. Revisiting the Perceptron Predictor. Tech. Rep. 1620, IRISA. May.
SEZNEC, A. 2004b. The O-GEHL Branch Predictor. In The First Championship Branch Prediction

Workshop, 2004.
SEZNEC, A. AND FRABOULET, A. 2003. Effective Ahead Pipelining of Instruction Block Address Gen-

eration. In Proceedings of the 30th Annual International Symposium on Computer architecture.
ACM Press, New York, 241–252.

SEZNEC, A., JOURDAN, S., SAINRAT, P., AND MICHAUD, P. 1996. Multiple-block ahead branch predictors.
In Proceedings of the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VII). Cambridge, Massachusetts, United States,
ACM Press, New York, NY, 116–127. Available at http://doi.acm.org/10.1145/237090.237169.

SEZNEC, A., FELIX, S., KRISHNAN, V., AND SAZEIDES, Y. 2003. Design tradeoffs for the Alpha EV8
conditional branch predictor. In Proceedings of the 29th Annual International Symposium on
Computer Architecture. 295–306.

SHERWOOD, T., PERELMAN, E., HAMERLY, G., AND CALDER, B. 2002. Automatically Characteriz-
ing Large Scale Program Behavior. Tenth International Conference on Architectural Support
for Programming Languages and Operating Systems, Oct. http://www.cs.ucsd.edu/users/calder/
simpoint/.

SKADRON, K., AHUJA, P. S., MARTONOSI, M., AND CLARK, D. W. 1998. Improving prediction for pro-
cedure returns with return-address-stack repair mechanisms. In International Symposium on
Microarchitecture. 259–271.

SPRANGLE, E., CHAPPELL, R. S., ALSUP, M., AND PATT, Y. N. 1997. The agree predictor: A mechanism
for reducing negative branch history interference. In ISCA. 284–291.

STARK, J., EVERS, M., AND PATT, Y. N. 1998. Variable length path branch-prediction. In ASPLOS-
VIII: Proceedings of the eighth international conference on Architectural support for programming
languages and operating systems. ACM Press, New York, 170–179.

TARJAN, D., SKADRON, K., AND STAN, M. R. 2004. An ahead pipelined alloyed perceptron with single
cycle access time. In The 5th Workshop on Complexity-Effective Design, 2004.

VINTAN, L. AND IRIDON, M. 1999. Towards a High Performance Neural Branch Predictor. In
Proceedings of the 9th International Joint Conference on Neural Networks. 868–873.

Received October 2004; revised April 2005 and July 2005; accepted July 2005

ACM Transactions on Architecture and Code Optimization, Vol. 2, No. 3, September 2005.

