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ABSTRACT

Manycore processors with wide SIMD cores are becoming a
popular choice for the next generation of throughput ori-
ented architectures. We introduce a hardware technique
called “diverge on miss” that allows SIMD cores to better
tolerate memory latency for workloads with non-contiguous
memory access patterns. Individual threads within a SIMD
“warp” are allowed to slip behind other threads in the same
warp, letting the warp continue execution even if a subset of
threads are waiting on memory. Diverge on miss can either
increase the performance of a given design by up to a factor
of 3.14 for a single warp per core, or reduce the number of
warps per core needed to sustain a given level of performance
from 16 to 2 warps, reducing the area per core by 35%.

Categories and Subject Descriptors

C.1 [PROCESSOR ARCHITECTURES]: Multiple Data
Stream Architectures (Multiprocessors)

1. INTRODUCTION

The growth in single-thread performance has slowed dra-
matically in recent years, due to limits in the power con-
sumption, thermal constraints and complexity. As a re-
sponse, the microprocessor industry has shifted its focus
onto multicore processors, which combine a number of cores
onto a single die. Some of these designs give higher priority
to overall throughput than to single-thread latency, trading
out-of-order cores for simpler, smaller in-order cores which
are smaller and less power hungry. While single-thread per-
formance suffers, overall chip throughput is increased. This
design point is often referred to as “manycore”, as opposed
to more traditional multicore designs, which retain an or-
ganization with few high-performance out-of-order cores for
maximum single-thread performance.

Manycore designs are limited by both the overall power
budget and the available chip area. Manycore processors
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that use a single instruction multiple data (SIMD) organi-
zation can amortize the area and power overhead of a single
frontend over a large number of execution backends. For
example, we estimate that a 32-wide SIMD core requires
about one fifth the area of 32 individual scalar cores. Note
that this estimate does not include the area of any intercon-
nection network among the MIMD cores, which often grows
supra-linearly with the number of cores [18].

To better tolerate memory and pipeline latencies, many-
core processors typically use fine-grained multi-threading,
switching among multiple warps,® so that active warps can
mask stalls in other warps waiting on long-latency events.
The drawback of this approach is that the size of the regis-
ter file increases along with the number of warps per core.
Most current and planned manycore processors also use on-
chip caches to reduce the required off-chip bandwidth and
to hide the latency of accessing DRAM as much as possible.
The combination of SIMD cores and caches presents special
problems for architects because each SIMD thread may in-
dependently hit or miss. This problem is not just limited to
array-style SIMD organizations where each SIMD thread is
a scalar processing element. Vector-SIMD instructions sets
with gather support, including [1, 25] suffer the same prob-
lem. Divergence becomes a particular problem for load or
store instructions that have irregular access patterns. Con-
sider code where each thread of a SIMD warp needs to read
many contiguous values in a global array, but each thread
accesses distinct regions, starting at a random offset, for ex-
ample in DNA sequence alignment. While reading in their
values, the probability that a thread in a warp will cross a
cache line boundary and have to stall grows as the number
of threads per warp increases. In such a case, the lockstep
nature of SIMD execution forces the core to stall or switch
to another warp for each load. Clearly, such memory access
patterns will waste much of the computational power of the
SIMD core waiting on memory requests.

This paper presents a new hardware mechanism, diverge
on miss, that takes advantage of looping behavior to tem-
porarily mask off threads in a warp that miss in the data
cache and allows the other threads to continue executing,
re-enabling the masked off threads as soon as possible. Let-
ting threads which hit in the cache continue to execute al-
lows them to use idle execution slots when all warps of a
core would otherwise be stalled. It also allows them to issue

'For simplicity, we use the term thread to refer to a SIMD
lane, and warp to a SIMD group that operates in lockstep.
Multithreading a SIMD core therefore consists of supporting
multiple warps.



future cache misses earlier, increasing memory level paral-
lelism [16]. We call warps where some threads have contin-
ued to execute while others are stalled waiting on memory
slipping warps.

We show that diverge on miss can increase performance of
a manycore processor using 32-wide SIMD cores by up to a
factor of 3.14 over an architecture which doesn’t incorporate
diverge on miss, can decrease the area of each SIMD core by
35% at equal performance or increase peak performance by
30% compared to an architecture which doesn’t use diverge
miss. We show how such a mechanism can be built with
low overhead on top of existing structures meant to deal
with control-flow divergence. Diverge on miss builds on the
fact that high-performance SIMD and vector cores already
have logic for masking off threads on a fine-grained basis
to support arbitrary control-flow and can already deal with
multiple parallel memory operations finishing out-of-order
due to their support of scatter/gather operations.

2. RELATED WORK

Early academic work [7, 22] on manycore processors ex-
plored the benefit of chips built out of many simple cores
for both commercial and scientific workloads. They showed
that for workloads with sufficient parallelism, many sim-
ple cores could outperform an organization with few high-
performance cores. Recent commercial, general-purpose prod-
ucts that target throughput-oriented workloads exemplify
some of these lessons. For example, the Niagara proces-
sor [2] from Sun implements 8 simple SPARC cores, each of
which has 4 execution contexts.

GPU manufacturers have evolved their designs from pure
ASICs to general-purpose manycore processors, with each
core having a logical warp width between 32 and 64 and a
large number of warps per core [4, 17]. While all of this
hardware was traditionally hidden behind complex graphics
APIs, recently both AMD and NVIDIA have made avail-
able APIs [3, 10, 15] which are meant for general purpose
computation and can take advantage of GPU hardware.

The recently announced Intel Larrabee architecture [25]
has capabilities of both GPUs and multicore processors,
supporting both the x86 ISA, cache coherence and mem-
ory ordering, as well as wide SIMD execution and multi-
ple hardware execution contexts per core. Both Niagara
and Larrabee (will) support conventional cache architec-
tures, where caches are coherent, addressed through a uni-
fied address space, obey a well-defined memory ordering
model and large enough to hold the working set of multi-
ple programs.

GPUs on the other hand, because they have been designed
primarily to support graphics APIs such as OpenGL and
Direct3D [8], have very different cache architectures. One
major difference is simply in the size of caches relative to
number of ALUs, with GPUs having more ALUs relative
to cache size than CPUs. Another difference is that caches
are divided among different address spaces (so called texture
and constant caches) and optimized for specific access pat-
terns which go along with these address spaces in graphics
applications. A variety of CUDA applications have taken
advantage of these properties, Che et al. [11] and Boyer et
al. [9] in particular discuss the importance of using these
memory paths.

In general it can be said that GPUs have designed their
cache architectures to help maximize aggregate throughput,

but not necessarily to minimize the latency of any individual
thread. Diverge on miss enables the combination of very
wide SIMD execution of GPUs with regular cache hierarchies
and helps greatly reduce single-thread latency and increase
throughput for workloads with irregular access patterns.

Warp divergence in SIMD processors as a result of control-
flow divergence was explored by Fung et al. [14], who pro-
posed Dynamic Warp Formation as a way to lessen the per-
formance loss due to this particular problem. While the
technique of dynamic warp formation can also be applied to
memory divergence, the hardware overhead of our technique
is much smaller, requiring only small additions to existing
structures. For example, Dynamic Warp Formation requires
that the register file have as many independent banks as
there are threads in a warp, substantially increasing the area
overhead due to addresses having to be routed to each bank,
each bank needing its own address decoders and also having
much shorter word lines. Our technique requires only one
bank for the width of the warp.

The software controlled approach to diverge on miss out-
lined in Section 4.2 can be compared to the streaming ap-
proach of the Merrimac architecture [12] and the Cell chip’s
Synergistic Processing Units [13]. These architectures have
explicit memory hierarchies and independent DMA engines,
which can fetch lists of memory references into a large soft-
ware controlled on-chip buffer asynchronously, without hav-
ing to block execution.

In contrast to these architectures, a software implemen-
tation of diverge on miss does not force the programmer to
explicitly organize data in a fixed size buffer, nor does it fix
the size of this buffer. Any program written for a von Neu-
mann architecture will work on such a processor. The extra
instructions to snoop the memory hierarchy only provide
potentially higher performance.

There has been considerable work done to allow single-
threaded CPUs to continue to execute instructions and find
more cache misses in the shadow of an initial long-latency
miss. Examples include Continual Flow Pipelines [26], Runa-
head Execution [19] and Flea-Flicker Pipelining [6]. Such
techniques enhance and extend existing structures for spec-
ulative execution of a single thread to allow a large number
of instructions from the same thread to be in flight at the
same time. Our work focuses on exposing more of the MLP
inherent in the many threads of a SIMD core.

3. BACKGROUND ON SIMD DIVERGENCE
HANDLING

3.1 Control-Flow Divergence

The baseline architecture in this study uses the same post-
dominator based reconvergence algorithm presented by Fung
et al. [14]. Each warp is associated with a branch divergence
stack, which tracks control flow for all threads in the warp.
Each entry in this stack holds three fields: the active PC
field, an active threads bitmask and a reconvergence PC
field.

If a divergent branch (where some threads evaluate the
branch as taken and some as not-taken) is executed, the
top of the stack entry is modified to hold the reconvergence
PC along with a bitmask of the currently active threads in
the warp. A new entry is pushed on the stack consisting
of the fall through PC, a bitmask indicating which threads
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Figure 1: Warps can be forced to wait on memory
by a single miss from a single thread. Even cores
with multiple warps are forced to stall by a single
cache miss per warp.

evaluated the branch as not-taken, as well as the reconver-
gence PC of the branch. A second entry consisting of the
branch-target PC is also pushed on the stack, along with
the bitmask indicating which threads evaluated the branch
as taken, and again the reconvergence PC.

The active PC and thread-active bitmask are then set to
the active PC and bitmask fields of the top of the stack
(which is the taken branch entry in this case) and execution
continues. When the active PC reaches the reconvergence
PC, the stack is popped and the active PC and bitmask are
set to the values contained in the not-taken stack entry.

Finally, when the reconvergence PC is reached a second
time the active bitmask is restored to it’s state before the
branch. If a branch is encountered multiple times in a row
(such as a loop branch), then no new entry needs to be cre-
ated on the stack; it is enough to modify the bitmask if any
active threads want to exit the loop. As we will show in
Section 4, the same basic operations that are needed to sup-
port control-flow divergence by the pipeline logic (checking
the PC against a PC stored in a structure, taking a pre-
defined action if the PCs match, and modifying the bitmask
of active threads based on the result of that action) also
support diverge on miss.

3.2 Divergent Scatter/Gather

When a SIMD vector or array core with scatter/gather
support and an attached data cache executes a load, the
data cache looks up each cache line touched by each load
from each thread. If even a single lookup misses, execution of
the entire warp has to stall until that miss has been serviced.
We call memory operations in which some threads hit and
some threads miss divergent memory operations.

If a core only has a single warp to execute, it has to stall
in such an event. Even a core with multiple warps can be
stalled by only a small number of individual memory re-
quests missing the cache, as illustrated in Figure 1.

The cache lines not in the cache on a divergent memory
operation are returned by the memory subsystem in arbi-
trary order. The values requested within those cache lines
must now be extracted and written back to the register file.
If the architecture allows writing back of individual threads’
register values into the SIMD register file as a background
operation, no intermediate storage is needed. If this is not
the case, a Memory Coalescing Buffer (MCB) is needed,
where values are buffered between the time they are read
from the cache and when they are written back. An MCB
is also needed for those threads which hit in the cache if

individual register writes are not allowed. All threads that
have hit in the cache must capture their values, as the cache
lines they access may be evicted during the servicing of any
misses. Each MCB entry must track which threads are wait-
ing on which cache lines, and which threads are active at all,
since some threads may be masked off due to control-flow
divergence. Each entry thus holds a three state FSM track-
ing whether a thread is invalid, waiting on memory, or has
received its memory value. The MCB also acts as a write
buffer for divergent writes, with the write data for each miss-
ing thread waiting in the MCB entry for its cache line to be
brought into the cache.

4. DIVERGE ON MISS

Diverge on Miss is a hardware mechanism which allows
some threads in a warp to continue to execute on divergent
memory accesses. Threads which miss in the data cache (or a
given cache level if there is a multi-level cache hierarchy) are
masked off and do not continue execution, while the threads
that hit in the cache continue to execute normally. Such a
warp is called a slipping warp, as it allows some threads to
slip or lag behind others. Figure 2 shows a comparison of ex-
ecution with normal, blocking SIMD hardware and Diverge
on Miss.

Memory requests from missing threads are serviced in par-
allel with the warp continuing execution. When the warp
next encounters the same memory instruction (or a con-
dition which forces re-synchronization of all threads in a
warp)? the missing threads that have received their memory
value in the meantime are re-enabled. Threads which still
have not received their memory values continue to be masked
off. Individual threads can slip a variable amount relative
to other threads, potentially missing the cache shortly after
being re-enabled. Slipping warps can either catch up when
other threads miss in the cache or continue to execute after
the other threads have already finished executing, forcing
the warp to execute longer. In general, threads are likely to
leapfrog each other, limiting the risk of laggards.

For programs which are memory latency bound, diverge
on miss can dynamically trade execution cycles for more la-
tency tolerance, higher MLP and potentially improved uti-
lization of the data cache. We will show in Section 5 how the
hardware can use runtime control mechanisms to limit the
amount of slip, controlling the amount of extra execution
cycles based on the needs of the running program.

We discuss two options for supporting diverge on miss:
a pure hardware implementation and a hybrid hardware-
software approach which only exposes a new type of load
and store instructions, but leaves all the implementation and
handling of the divergence to the software layer.

4.1 Pure Hardware Implementation

Diverge on miss uses a very similar structure to the di-
vergence stack used by branch divergence. The Memory
Divergence Table (MDT) shown in Figure 3, keeps track of
divergent memory operations.

The following actions occur when a divergent memory op-
eration is executed:

1. The memory request is issued to the cache and a bit-
mask indicating which threads hit and which miss is

2Examples of synchronizing conditions include barriers and
control-flow instructions such as calls and returns
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Figure 2: Comparison of a warp with 2 threads executing with Diverge on Miss (bottom) and with normal
blocking SIMD execution (top). With blocking SIMD execution, all threads in a warp have to wait if any
thread misses in the cache. With Diverge on Miss, a thread which hit in the cache can continue to execute
and initiate a subsequent cache miss earlier, allowing a warp to have higher memory level parallelism (MLP)

than with blocking SIMD execution.
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Figure 3: The Memory Divergence Table tracks
which lanes of a warp are waiting on which mem-
ory op and which ones are ready to be merged back
into the active warp.

returned.

2. The fact that some threads hit and some missed is
detected by the control logic.

3. The control logic searches the current warp’s MDT
entries for an existing entry with the same PC, merging
the new request into the MDT entry if it exists. If an
MDT entry is not found, the control tries to allocate
an MDT entry to the instruction. Allocation might
fail because of a limited number of entries per core, or
because the adaptive slip controller (described later)
decides that it is better to have this memory operation
execute as a normal load or store. 3

also initialized with the memory addresses requested
by the threads that missed the cache and the per-
thread status fields in the MCB entry are set to ei-
ther waiting or invalid. The missing addresses are sent
to the memory subsystem to be fetched, while threads
which hit in the cache receive their memory values and
continue executing. If allocation fails, the warp falls-
back to normal SIMD execution, and blocks waiting
for all misses to complete.

. Because the time between when a cache line is returned

and when a thread can be merged back into the active
warp cannot be known a priori, it is possible that a
cache line could be evicted while the requesting thread
is waiting for re-activation. To prevent this case, as
soon as a cache line is returned, the memory values
that were requested are extracted and stored in the
appropriate slot in the MCB entry. The slots’ status
bits are also updated from waiting to ready.

. When the same memory instruction gets executed again

(or a forced reconvergence happens), the control logic
will again search the MDT and find an existing entry.
Threads which have their status bits set to ready will
write their fetched memory value back to the regis-
ter file along with those lanes that hit in the cache,
and their status field will be updated to invalid. If
all threads have the invalid status, the entry can be
deallocated.

If allocation succeeds, the threads which missed the
cache are written to the MDT as a bitmask along with
the PC of the memory operation. The MCB entry is

3In either case, an MCB entry is also allocated to the mem-
ory operation. If no MCB entry is available, execution has
to stall until an entry becomes available.

4.2 Software-Controlled Implementation

An alternative approach, which we do not evaluate in
this paper, is to add a new type of instruction, called the
load&snoop and store&snoop. These instructions operate
as normal loads and stores if they hit in the level one data
cache (or another level of the cache hierarchy). If they miss,



however, they do not block but are instead turned into im-
plicit prefetches. By guaranteeing a fixed latency to comple-
tion, they have the benefit of being easy to schedule for the
compiler in optimized loops, similar to accesses to scratch-
pad memories in other architectures [13].

If a thread misses in the cache, a bit is set in a bitmask.
The bitmask can be stored either in a special purpose regis-
ter or returned as a second register write of the instruction,
similar to the low and high parts of a multiplication. In this
approach neither the MDT nor the MCB are implemented
in hardware. The software can implement most of the func-
tionality of these structures, or modify them according to
the needs of the application. Note that because the cache
lines which are prefetched are not locked down in any way, a
load& snoop or store&snoop can fail repeatedly and indeed
indefinitely. For example if all threads in a warp try to load
distinct cache lines that are mapped to a single set in the
cache and the cache’s associativity is smaller than the width
of a warp, it is impossible for all loads to hit in the cache
simultaneously. Software can always serialize all loads or
stores of a warp if it detects too many retries.

4.3 Ensuring Reconvergence

Supporting SIMD divergence on memory operations raises
similar concerns as supporting SIMD branch divergence. En-
suring that all threads get re-merged into the active warp
and finish executing requires some extra policies and logic
per core.

In typical usage, a divergent load or store will be inside
a loop body and executed a large number of times. In this
scenario, diverged lanes can normally reconverge on the next
iteration of the loop. But if a thread diverges during the last
loop iteration or control flow jumps outside the loop body,
we must ensure that that thread still reconverges.

If a subset of threads in a warp reach a return state-
ment while other threads are still masked off, the control
logic checks the MDT and re-activates those threads while
masking off the threads which have hit the return statement.
Note that this is the same mechanism that is used to han-
dle branch divergence, so the control logic only has to be
extended to check the MDT in addition to the branch diver-
gence stack. If there are multiple entries in the MDT this
process is repeated until the MDT is empty.

S. LIMITING THREAD DIVERGENCE

A SIMD core which allows threads to diverge on cache
misses has to deal with the potential of excessive divergence.
This can occur if some threads hit in the cache the great ma-
jority of the time, while the others almost always miss. This
can happen due to the inherent nature of a given workload
or the interaction of the program with the cache subsystem.
In the worst case by the time the fast threads finish execut-
ing a loop, the laggard threads will only have advanced a
few iterations. The warp containing these threads will have
to execute the slow threads to completion, greatly wasting
execution cycles and gaining no benefit in terms of overall
warp execution latency.

Worse, excessive divergence can make the cache access
behavior of a given warp much worse, with accesses that
would have been a contiguous, coalesced set of hits turning
into accesses spread over many cycles, increasing cache churn
and decreasing hit rates. These drawbacks to diverge on
miss SIMD execution grow proportionally to the divergence

between threads in a warp.

5.1 Adaptive Slip Control

To limit the amount of divergence, we introduce new con-
trol hardware, which we call the Adaptive Slip Controller
(ASC), to limit how far threads in a warp can slip relative to
each other. The ASC has a small counter for each thread in
a warp. If an undiverged warp encounters a diverge on miss
event, those threads which hit in the cache have their coun-
ters incremented. If any thread’s counter hits some max-
imum value, the warp reverts to blocking execution of all
loads and stores until the maximum counter value falls be-
low the maximum value again. Note that threads which are
marked as inactive by the branch divergence stack are not
considered in this process.

If a warp is already diverged when it encounters another
diverge event and all tail-end threads (which have counter
values of zero) hit in the cache, the counter values of all
threads which miss the cache in this instance are decre-
mented. The same mechanism applies when some threads
reach the maximum counter value. They are disabled and
their counters get decremented when the remaining threads
hit in the cache. The counter of each thread is reset when
hardware warps are reassigned to a new set of software
threads.

5.2 Adaptively Limiting Thread Divergence

The optimal maximum divergence value is very much de-
pendent on the interaction of the program, the input and
the architecture. We use a mechanism - called adaptive diff
- which keeps track of the number of cycles a core was not ac-
tively executing instructions (a value of zero indicating that
it is completely ALU bound), whether the amount of off-chip
bandwidth that it used was above its fair fraction of over-
all bandwidth (bandwidth bound), as well as the number
of cycles it was stalled waiting on memory (latency bound).
Since enabling more slip may result in extra execution cy-
cles (as the trailing threads finish execution) and can result
in more bandwidth usage (due to previously coalesced ac-
cesses being broken into chunks which are touched at differ-
ent points in time), the amount of slip is controlled by how
ALU-, bandwidth- or latency-bound a given program is dur-
ing a sampling period. We use very long sampling periods
of 100000 cycles or more. If the core was neither ALU nor
bandwidth bound over a given sampling period, the maxi-
mum allowed divergence value is incremented, if it is either
ALU or bandwidth bound the maximum divergence is decre-
mented and kept constant if latency and ALU or bandwidth
are roughly in balance.

6. HARDWARE OVERHEAD

Diverge on miss adds the Memory Divergence Table, the
per-thread divergence counters and some other small struc-
ture to each core. Table 1 lists the extra state required for
each structure. The MDT is similar to the branch diver-
gence stack, in that each entry needs to record the PC of a
divergent instruction, along with a bitmask indicating which
threads took which of the two possible paths. The number
of MDT entries per warp is directly related to the maximum
number of outstanding memory operations each warp sup-
ports. We assume that the baseline architectures allows two
outstanding memory operations per warp, which means that
the augmented core with diverge on miss has two MDT and



core type Area
scalar core 1.05 mm?
32 scalar core 33.60 mm?
32-wide SIMD core with 2 warps 7.3 mm?
32-wide SIMD core with 16 warps | 11.5 mm?

Table 2: Area estimates for different core configura-
tions

MCB entries per warp.

As explained in Section 5, it is useful to dynamically adapt
the maximum amount of slip allowed among threads in a
single warp at runtime. To track the slip of each thread,
we need a small counter per thread. We assume that each
counter is 8 bits, allowing threads to slip by 255 hits or
misses relative to each other. These counters are updated
with each divergent memory operation and checked against
the Max Slip Counter. If any thread reaches the maximum
allowed slip, a bit is set in the warp’s Slip-Limit Bitmask,
disabling further execution of that thread until divergence
is reduced below the threshold value.

6.1 Core Areas

To estimate the areas of SIMD cores versus scalar cores
and the impact of different numbers of warps per core we
developed an area model using public data and simple scal-
ing rules. To estimate realistic sizes for the different units
of a core, we measured the sizes of the different functional
units of an AMD Opteron processor in 130nm technology
from a publicly available die photo. We could only account
for about 70% of the total area, the rest being x86-specific,
system level circuits, or unidentifiable. We scaled the func-
tional unit areas to 45nm, assuming a 0.7 scaling factor per
generation. Since we assume that each SIMD lane only has
a 32 bit data path (combining adjacent lanes if 64 bit results
are needed) we scaled all unit areas appropriately.

We use the numbers for each functional unit and scale
them by their capacities and port numbers relative to the
Opteron core. Table 2 shows the areas for a 32-wide SIMD
core with 2 warps, a core with 16 warps, a scalar core and
32 scalar cores calculated with this methodology.

7. EXPERIMENTAL SETUP

7.1 Simulator

Our custom simulator models a set of SIMD /vector cores,
along with a cache hierarchy and a shared memory subsys-
tem. The cores are modeled as having a constant CPI of one
for all non-memory instructions and private L1 data caches.
We assume that the structures for holding outstanding mem-
ory requests are not a limiting factor. Each core can have one
or multiple warps, and it can switch among them on a cycle
by cycle basis at no extra cost. The scheduling algorithm
is round-robin, skipping warps which are waiting on mem-
ory requests. The memory reference traces are collected di-
rectly from the native applications, which are instrumented
with calls to our simulator. To determine the number of
instructions between memory references, each application is
inspected manually and the number of arithmetic and con-
trol flow instructions between memory references are passed
to the simulator.

Direct instrumentation of native applications was preferred

over gathering large memory traces, to avoid the I/O and
decompression overheads of normal trace-based simulators.
The combination of a simple core model and direct instru-
mentation of native applications allows the simulator to be
very fast (slowdowns of only 10x over pure native execution
are the norm) and can consequently model input sizes which
would be prohibitively slow to simulate otherwise. This is
especially important when dealing with a large number of
cores and threads per core.

7.2 Simulated System

Our base chip consists of 32 in-order cores each supporting
32-wide SIMD execution, all running at 2 GHz, for an overall
maximum execution bandwidth of 2 Teraops. Each core
has a 32KB private data cache, which has 32B cache lines
and is 4-way set associative. We model a standard LRU
replacement policy. All cores share a 256 GB/sec memory
interface, with a memory access latency of 500 cycles.

7.3 Workload

Our chosen application kernels represent a cross section
of application domains which greatly benefit from the large
increase in throughput offered by manycore architectures.

7.3.1 Molecular Dynamics

We use the molecular dynamics package HOOMD (Highly
Optimized Object Oriented Molecular Dynamics) [5] version
0.8. HOOMD is a general purpose molecular dynamics pack-
age that can take advantage of the computational power of
GPUs using CUDA [21]. The two most computationally
intensive functions in HOOMD are the Lennard-Jones po-
tential computation and neighbor list generation, making up
over 95% of the runtime. Note that HOOMD also supports
other potentials, which all have the same computation and
memory patterns as the Lennard-Jones computation.

The neighbor list function (NL) determines for every par-
ticle being simulated which other particles are close enough
that their Lennard-Jones interactions with the current par-
ticle have to be taken into account. Since all particles move
during the simulation time frame, the neighbor list is regen-
erated every 10 time steps. To avoid the need to check ev-
ery particle against every other particle, particles are sorted
into spatial bins in a preliminary step. Each particle then
computes the distance between it and all particles in all
neighboring bins, adding those particles that fall inside a
cutoff radius to its neighbor list. To avoid regenerating the
neighbor list each time step, the cutoff radius is made larger
than necessary, so that particles which might move inside
the real cutoff radius in several time steps are also added to
the neighbor list.

The Lennard-Jones function (LJ) calculates the Lennard-
Jones potential for each particle each time step, calculating
distance and force for each particle on the neighbor list.
Both kernels are parallelized by assigning each particle to a
single thread.

We run a the standard HOOMD benchmark simulating
a liquid consisting of 64000 particles at a packing fraction
of 0.2 interacting via the Lennard-Jones force. We simulate
the first 600 time steps.

7.3.2  DNA Sequence Alignment

We use the program MummerGPU [24] (SA), which uses
a suffix tree to efficiently find alignments of short DNA se-



Structure Fields per Entry

PC, Thread Bitmask
Per-Thread Counter
Thread Bitmask
Per-Core Counter

Memory Divergence Table
Per-Thread Divergence Counter
Per-Warp Slip-Limit Bitmask
Max-Slip Counter

State per Entry | Number of Entries | Total Structure Size
32 bits + W bits M- N 16 — 256 bytes
8 bits W . N 32 — 512 bytes
W bits N 4 — 16 bytes
8 bits 1 1 byte

Table 1: New structures needed to support diverge on miss. N is the number of warps per core, which range
from 1 to 16. W is the warp width, which is assumed to be 32 throughout this paper.M is the number of
divergent memory operations per warp allowed, which is set to 2.

quences (such as those generated by high-speed DNA se-
quencing machines) against a reference genome. The tree is
traversed from the root in a data dependent manner, with
each edge holding a variable number of base pairs which
must all match for the traversal to proceed to the next node.
Note that MummerGPU 1.1 has an inefficiency that we
have fixed in our version. Originally each input string was
stored contiguously in memory, making SIMD reads of the
input inefficient, due to each SIMD lane’s accessing memory
locations which are separated by a stride. Following the
example of HOOMD'’s neighbor list layout, we rearranged
the input strings to be interleaved in memory, allowing the
hardware to access them in a contiguous manner.
MummerGPU parallelizes its computation by mapping
each input string to a thread. Similar to Schatz et al. [24],
we run SA in the exact matching mode, matching batches
of synthetic snippets of length 25, 50, 200 and 800 base
pairs sampled randomly from the Bacillus anthracis genome
(GenBankID : NC_003997.3) to match against itself. Each
batch contains a total of one million base pairs, with batches
containing longer string containing linearly fewer samples.
We report the average performance over all 4 string lengths.

7.3.3  Ray Tracing

We use the bwfirt ray tracing framework [23], and specif-
ically the provided SimpleBVH ray tracer as our test appli-
cation. SimpleBVH decomposes the scene into a bounding
volume hierarchy tree. Each ray traverses the tree to find
the object that it hits in the scene. Bwfirt uses SimpleBVH
to do path tracing through a given scene, letting rays bounce
around a scene multiple times until they hit a light source.

We parallelize SimpleBVH by having each thread trace a
different ray through the scene. As our input we use the
conference scene with approximately 1 million triangles and
set the resolution of the generated image to 1024 by 1024
pixels.

7.3.4  Data Mining

We use the k-means program (KM) from Minebench [20].
The k-means code randomly generates N cluster centers,
where N is given by the user. It then computes the distance
between each point and each cluster center and assigns each
point to the cluster with the closest center. After complet-
ing the reassignment of points to clusters it recomputes the
cluster centers as the average of all points assigned to the
cluster. The last two steps are repeated until the number of
points switching cluster to another falls below a pre-specified
threshold.

Both the distance computation per point and the recom-
putation of the cluster centers can be easily parallelized. We
assign each point to a thread for the distance computation
as well as the cluster center recomputation. We run k-means
with 32 clusters and with the provided input set of roughly

half a million data points, each with 36 features

7.3.5 Image Manipulation

We use a blurring kernel (GF), which computes the 3 by 3
Gaussian blur for each pixel of the input image. Each warp
is assigned an image tile consisting of 32 by 32 pixels, with
threads being assigned a single row in the tile. The input is
a randomly generated black and white image with 2048 by
2048 pixels resolution.

8. EVALUATION

Our baseline for all comparisons unless otherwise stated
is that each core has a single warp.

8.1 Application Behavior

We first explore the performance characteristics and scal-
ing behavior of our selected kernels on the baseline chip as
outlined in Section 7.2. Table 3 shows some of the most im-
portant performance aspects of each application, along with
their flops and bandwidth usage with 1 and 16 warps per
core with blocking SIMD execution.

Each of these kernels access their main data structure in
their critical loop. Any cache miss by a load in the critical
loop will cause a warp to almost immediately stall for all
kernels, since the following instructions are data dependent
on the load.* The number of instructions per memory op
determines how sensitive to cache miss rate each kernel is.
As an example, assume that all loads result in cache misses,
so that each warp will have to stall after X instructions,
where X is the number of instructions per memory op. If
there are a large number of instructions per memory op,
then only a small number of warps is needed to keep a core
busy while a single warp is stalled waiting on memory. If
the number of instructions per memory op is small, then
a larger number of warps are needed. Thus, for a given
number of warps per core, cores executing kernels with fewer
instructions per memory op will stall more often and have
lower performance. The same rule applies at any given cache
miss rate.

Most of the kernels have high cache miss rates due to
low temporal or spatial locality. The exception is k-means
kernel, which has excellent temporal locality and a small
working set per warp.

As a consequence, k-means is the only kernel which can
exploit the full performance of the base chip with only a
single warp per core, achieving 2 teraops/sec. The other
kernels are all limited by memory stalls to much lower per-
formance, with sequence alignment achieving only 2.9% of
the maximum possible performance.

4Writes also stall warps quickly, but here the critical re-
source is the size of the write buffers.




Kernel Name instructions off-chip bandwidth | inst per sec.
per memory op (GB/sec) (MInst/sec)
Neighbor List Generation (NL) 19 8.15/111.4 156/2048
Lennard-Jones Force Calculation (LJ) 25 26.34/256 204/1599
DNA Seq. Align. (SA) 7 62.77/256 57/445
Ray Tracing (RT) 15 30.60/256 124/767
K-Means (KM) 5 26/256 2048/634
Gaussian Filter (GF) 8 77.91/256 65/215

Table 3: Number of instructions per memory operation, bandwidth usage and instructions per second for
each kernel. The BW and inst/sec data are presented as A /B, where A is the performance with a single warp
per core and B is with 16 warps per core with no diverge on miss.
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Figure 4: Increase in performance of 2 to 16 warps
per core relative to a single warp per core. All con-
figurations use blocking SIMD execution.

Figure 4 shows the increase in throughput when we in-
crease the number of warps per core from 1 to 16, and Fig-
ure 5 shows the bandwidth used for the same configurations.
The neighbor list generation kernel shows the best increase,
being limited by arithmetic throughput with 16 warps per
core, as shown in Table 3. On the other hand, the sequence
alignment and ray tracing kernels become bandwidth bound
at 4 and 8 warps respectively. K-means suffers greatly from
cache thrashing, as its performance decreases starting at 8
warps, due to the combined working set of all warps in each
core starting to exceed the size of the cache. Ray tracing
also suffers from cache thrashing at 16 warps.

8.2 Fixed Slip Performance

Figure 6 shows the relative speedup for 1 to 16 warps per
core with a fixed maximum slip value compared to normal,
blocking SIMD execution. We first determined which single
fixed maximum slip value gave the best speedup across all
kernels for each #warps/core configuration, shown as avg
max slip in the Figure. We also determined the best fixed
maximum slip value for each kernel and #warps/core and
calculated the overall speedup using these individually best
max slip values. This value is shown as best mix of max
slip in the Figure. The difference at 1 and 2 warps is very
significant, with relative speedups of of 2.65 vs. 4 at 1 warp
per core and 2.88 vs. 3.15 at 2 warps per core. Moreover, the
k-means kernel (which is ALU bound) exhibits a slowdown
vs. blocking warps.

1 warp 2 warps 4 warps 8 warps 16 warps

Figure 5: Bandwidth usage of all kernels with 1 to
16 warps per core. The total available bandwidth is
256 GB/sec.
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Figure 6: Speedup relative to blocking SIMD execu-
tion with 1 to 16 warps per core. We show diverge
on miss and a fixed maximum slip across all kernels
for one particular config versus combining the best
fixed slip for each kernel.



These results show that the the maximum slip value can-
not be set statically across all applications, but has to adapt
to the workload.

8.3 Adaptive Slip Performance

Figure 7 shows the speedup with the diverge on miss and
adaptive slip versus blocking warps for 1 to 16 warps per
core broken out per kernel. Figure 8 shows the geometric
mean speedup across all kernels for the same combinations
of number of warps per core compared to a baseline of 1
warp per core and blocking SIMD execution.

Looking at the behavior of individual kernels shown in
Figure 7 first, we see that the 2D Gaussian filter has the
highest speedup of all tested kernels, increasing throughput
to 8.3 times the speed of blocking SIMD execution at 1 warp
per core. As the number of warps increases, the relative
speedup compared to blocking SIMD execution decreases, as
the kernel becomes bandwidth bound relatively quickly. The
neighbor list generation and Lennard-Jones force calculation
kernels also show high speedups at 2.5 and 5.6 respectively
with 1 warp per core. As the number of warps per core
is increased, these two kernels start to be limited by ALU
throughput and bandwidth respectively, showing almost no
speedup at 16 warps. The DNA sequence alignment kernel
has its best speedup at 1 warp per core with 4.23. The
alignment is also bandwidth bound as the number of warps
increases.

K-means is a counterpoint to the other kernels, showing
no appreciable speedup. This is because each thread reuses
the data for the its point 32 times (once for each of the 32
cluster centers), leading to a small number of initial cache
misses followed by the great majority of memory accesses
hitting in the data cache. This behavior only changes at 8
and 16 warps, as the number of threads per core overwhelms
the data cache and capacity misses result in a slowdown.
With 8 warps, diverge on miss can provide a small speedup,
as threads can reuse data in the cache in some cases where
blocking warps would mean that the accesses would be too
far apart in time. This is a good example how diverge on
miss can help workloads which require a large number of
warps for part of their execution, but are also limited by
cache thrashing in other parts.

In overall performance the biggest gains can be seen for
1 to 4 warps per core, where the geometric mean speedup
of diverge on miss with adaptive slip compared to blocking
SIMD execution is 3.14 to 1.75 for 1 to 4 warps. Figure 8
shows that the speedup over 1 warp per core and blocking
SIMD execution is 3.14, 4.66 and 5.38 for diverge on miss,
and 1, 1.8 and 3.07 for blocking SIMD execution for 1,2 and
four warps per core respectively.

At 8 and 16 warps per core many kernels become purely
bandwidth or ALU bound, which means that benefit of adap-
tive slip decreases. Diverge on miss with adaptive slip im-
proves overall performance by 26% at 8 warps per core and
by 3.8% at 16 warps per core compared to blocking SIMD
execution.

Compared to the scaling of performance for blocking SIMD
execution shown in Figure 4, we can see that a core with 2
warps and diverge on miss and adaptive slip can provide
equivalent performance to a core with 16 warps and normal
SIMD execution. From the area estimates in Section 6.1, we
can see that such a core is approximately 35% smaller than
a core with 16 warps.
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Figure 7: Speedup of adaptive slip versus blocking
SIMD execution for different configurations. We
sweep the number of warps per core from 1 to 16,
showing the speedup due to adaptive slip at each.

Diverge on miss with adaptive slip control can also pro-
vide a higher peak performance (5.38 times the baseline)
than normal execution (4.14 times the baseline), but only
requires 4 warps per core versus 16 warps per core. Because
diverge on miss can tolerate more latency with a given num-
ber of warps, it is more limited by bandwidth constraints.
As such, area saved by smaller cores could be used for more
1/0, bigger caches or other structures which reduce off-chip
bandwidth.

8.4 Cores with Private L2 Caches

Since both Larrabee and Niagara provide unified second
level cache on-chip, we also explore whether adding diverge
on miss to a design where the SIMD cores are coupled to
L2 caches is worthwhile. We simulate a design with the
same number and type of cores as in previous experiments,
but where each core has a private 256KB L2 cache. Each
L2 cache is has 32B cache lines and is 16-way set associa-
tive. We also keep off-chip bandwidth and access latency
constant.

The mean performance of such a chip compared to a chip
without L2 caches (data not shown in the Figures) is 8.1%,
7.2%, 7.4%, 52.4% and 115.9% higher for 1 to 16 warps per
core. Performance scaling also improves with the addition
of L2 caches. The relative performance of a core with 16
warps compared to 1 warp per core is 6.35 with L2 cache
and 4.14 without.

Figure 9 shows the speedup for each kernel with the di-
verge on miss and adaptive slip versus blocking warps for 1
to 16 warps per core. Figure 10 shows the geometric mean
speedup of diverge on miss and blocking SIMD execution
as the number of warps per core is increased from 1 to 16
compared to 1 warp per core and blocking SIMD execution.

The overall performance increases are even larger than
in Figure 8 primarily because kernels are less bandwidth
bound and have fewer L2 caches misses, so that the misses
which can be hidden with diverge on miss cover a larger
fraction of misses and provide a larger relative improvement
in performance. Adaptive slip can provide a higher peak
performance of 7.36 times the base performance versus 6.35
for blocking SIMD execution, which needs twice as many
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Figure 8: Comparing the speedup of both block-
ing SIMD execution and adaptive slip from 1 to 16
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execution. Adaptive slip can provide a higher peak
performance of 5.38 times the base performance ver-
sus 4.14 for normal execution, which needs 4 times
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Figure 9: Speedup with adaptive slipping warps ver-
sus blocking SIMD execution with each core having
a private 256KB L2 cache. We sweep the number of
warps per core from 1 to 16, showing the speedup
due to adaptive slip at each.
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Figure 10: For cores with 256 KB L2 caches, we com-
pare the speedup of blocking SIMD execution and
adaptive slipping warps from 1 to 16 warps. The
baseline is 1 warp per core with blocking SIMD ex-
ecution.

warps. Adaptive slip needs only 4 warps per core to provide
equivalent performance to normal execution at 16 warps.

9. CONCLUSIONS

To maximize performance within power and area con-
straints, designers have turned to architectures with many
small, multithreaded SIMD cores for throughput oriented
workloads. Such architectures work well for applications
with regular data access patterns, but can easily become
latency bound for workloads with more complicated scat-
ter/gather access patterns.

We introduce the concept of diverge on miss, which al-
lows SIMD warps to continue execution even when a sub-
set of their threads are waiting on memory. This provides
benefits when runahead threads prefetch cache lines for lag-
ging threads. It also increases throughput when divergent
threads experience misses and runahead and lagging threads
continually leapfrog each other, rather than continually be-
ing held back by the slowest thread. The key insight is that
SIMD cores’ support for branch divergence can be elegantly
extended to support memory divergence .

We show that on a set of data-parallel kernels, diverge
on miss can provide speedups as high as 3.14 over normal
SIMD execution or reduce the core area by 35% at constant
performance. It can also provide 30% higher absolute peak
performance than normal execution with fewer warps per
core.

10. ACKNOWLEDGMENTS

This work has been supported in part by NSF grants IIS-
0612049, CNS-0615277, and CNS-0509245, and a gift from
NVIDIA Research. We would also like to thank Timo Aila
and the anonymous reviewers for their detailed, constructive
suggestions on how to improve the paper.

11. REFERENCES

[1] Intel Advanced Vector Extensions Programming
Reference, 2009. http://software.intel.com/file/21558.



2]

[10]

[11]

[12]

[15]

K. Aingaran, P. Kongetira, and K. Olukotun. Niagara:
A 32-way Multithreaded Sparc Processor. I[EEE
Micro, 25:21-29, 2005.

AMD. ATI CTM Guide: Technical reference manual.
Technical report, AMD, 2006. Version 1.01.

AMD. ATI Radeon HD 2900 Technology, GPU
Specifications, 2007.

J. A. Anderson, C. D. Lorenz, and A. Travesset.
General Purpose Molecular Dynamics Simulations
fully implemented on Graphics Processing Units. J. of
Computational Physics, 227(10):5342-5359, 2008.

R. D. Barnes, E. M. Nystrom, J. W. Sias, S. J. Patel,
N. Navarro, and W.-m. W. Hwu. Beating In-Order
Stalls with ”Flea-Flicker” Two-Pass Pipelining. In
Proc. 36th IEEE/ACM Int’l Symp. Microarchitecture
(MICRO ’03), pages 387-398, 2003.

L. A. Barroso, K. Gharachorloo, R. McNamara,

A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese. Piranha: A Scalable Architecture
based on Single-Chip Multiprocessing. In Proc. 27th
Int’l Symp. Computer Architecture (ISCA "00), pages
282-293, 2000.

D. Blythe. The Direct3D 10 system. ACM Trans.
Graphics, 25(3):724-734, 2006.

M. Boyer, D. Tarjan, S. T. Acton, and K. Skadron.
Accelerating Leukocyte Tracking using CUDA: A Case
Study in Leveraging Manycore Coprocessors. In Proc.
24th Int’l Parallel and Distributed Processing Symp.
(IPDPS ’09), pages 1-12, 20009.

I. Buck, T. Foley, D. Horn, J. Sugerman,

K. Fatahalian, M. Houston, and P. Hanrahan. Brook
for GPUs: Stream Computing on Graphics Hardware.
ACM Trans. on Graphics, 23(3):777-786, 2004.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
and K. Skadron. A Performance Study of
General-Purpose Applications on Graphics Processors
using CUDA. J. of Parallel and Distributed
Computing, 68(10):1370-1380, 2008.

W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H.
Ahn, J. Gummaraju, M. Erez, N. Jayasena, I. Buck,
T. J. Knight, and U. J. Kapasi. Merrimac:
Supercomputing with Streams. In Proc. 15th
ACM/IEEE Conf. Supercomputing (SC ’03), page 35,
2003.

B. K. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee,
G. Gervais, R. Kim, T. Le, P. Liu, J. Leenstra, J. S.
Liberty, B. W. Michael, H.-J. Oh, S. M. Miiller,

O. Takahashi, K. Hirairi, A. Kawasumi, H. Murakami,
H. Noro, S. Onishi, J. Pille, J. Silberman, S. Yong,

A. Hatakeyama, Y. Watanabe, N. Yano, D. A.
Brokenshire, M. Peyravian, V. To, and E. Iwata.
Microarchitecture and Implementation of the
Synergistic Processor in 65-nm and 90-nm SOI. IBM
J. Research and Development, 51(5):529-544, 2007.
W. W. L. Fung, I. Sham, G. Yuan, and T. M.
Aamodt. Dynamic Warp Formation and Scheduling
for Efficient GPU Control Flow. In Proc. 40th
IEEE/ACM Int’l Symp. Microarchitecture (MICRO
'07), pages 407-420, 2007.

M. Garland, S. L. Grand, J. Nickolls, J. Anderson,

J. Hardwick, S. Morton, E. Phillips, Y. Zhang, and
V. Volkov. Parallel Computing Experiences with

23]

(24]

(25]

(26]

CUDA. IEEE Micro, 28(4):13-27, 2008.

A. Glew. MLP yes! ILP no! In ASPLOS Wild and
Crazy Ideas, 1998.

E. Lindholm, J. Nickolls, S. Oberman, and

J. Montrym. NVIDIA Tesla: A Unified Graphics and
Computing Architecture. IEEE Micro, 28(2):39-55,
2008.

G. H. Loh. The Cost of Uncore in
Throughput-Oriented Many-Core Processors. In
Workshop on Architectures and Languages for
Throughput Applications, 2008.

O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt.
Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-Order Processors. In
"Proc. 9th Int’l Conf. High Performance Computer
Architecture (HPCA 08)”, pages 129-140, 2003.

R. Narayanan, B. Ozisikyilmaz, J. Zambreno,

G. Memik, and A. Choudhary. MineBench: A
Benchmark Suite for Data Mining Workloads. In Proc.
2006 IEEE Int’l Symposium on Workload
Characterization (ISWC 706), pages 182-188, 2006.
J. Nickolls, I. Buck, M. Garland, and K. Skadron.
Scalable Parallel Programming with CUDA. ACM
Queue, 6(2):40-53, 2008.

K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson,
and K. Chang. The Case for a Single-Chip
Multiprocessor. In Proc. 7th Int’l Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VII), pages 2-11, 1996.
M. Raab, L. Griinschloss, J. Hanikaz, M. Finckh, and
A. Keller. bwfirt. http://bwfirt.sourceforge.net/.

M. Schatz, C. Trapnell, A. Delcher, and A. Varshney.
High-Throughput Sequence Alignment using Graphics
Processing Units. BMC Bioinformatics, 8(1):474, 2007.
L. Seiler et al. Larrabee: A Many-Core x86
Architecture for Visual Computing. ACM Trans. on
Graphics, 27(3):1-15, 2008.

S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi,
and M. Upton. Continual Flow Pipelines. In Proc.
11th Int’l Conf. Architectural Support for
Programming Languages and Operating Systems
(ASPLOS-XI), pages 107-119, 2004.



