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With cooling costs rising exponentially, designing cooling solutions for worst-case power dissipa-
tion is prohibitively expensive. Chips that can autonomously modify their execution and power-
dissipation characteristics permit the use of lower-cost cooling solutions while still guaranteeing
safe temperature regulation. Evaluating techniques for this dynamic thermal management (DTM),
however, requires a thermal model that is practical for architectural studies.

This paper describes HotSpot, an accurate yet fast and practical model based on an equivalent
circuit of thermal resistances and capacitances that correspond to microarchitecture blocks and
essential aspects of the thermal package. Validation was performed using finite-element simulation.
The paper also introduces several effective methods for DTM: “temperature-tracking” frequency
scaling, “migrating computation” to spare hardware units, and a “hybrid” policy that combines
fetch gating with dynamic voltage scaling. The latter two achieve their performance advantage by
exploiting instruction-level parallelism, showing the importance of microarchitecture research in
helping control the growth of cooling costs.

Modeling temperature at the microarchitecture level also shows that power metrics are poor
predictors of temperature, that sensor imprecision has a substantial impact on the performance of
DTM, and that the inclusion of lateral resistances for thermal diffusion is important for accuracy.

Categories and Subject Descriptors: C.5.3 [Computer Systems Organization]: Computer Sys-
tems Implementation—Microcomputers and Microprocessors—thermal management

General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: Dynamic compact thermal models, dynamic thermal manage-
ment, dynamic voltage scaling, feedback control, fetch gating

1. INTRODUCTION

In recent years, power density in high-end microprocessors has doubled every
three years [Borkar 1999; Mahajan 2002]. Because energy consumed by a chip
is converted into heat, this continuing exponential rise in power density cre-
ates vast difficulties in cooling costs. For high-performance processors, cooling
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solutions cost $1–3 or more per watt of heat dissipated [Borkar 1999; Gunther
et al. 2001]. Cooling costs are therefore also rising exponentially, threatening
industry’s ability to deploy cost-effective new systems.

Power-aware design alone has failed to stem this tide, requiring temperature-
aware design at all system levels, including the processor architecture.
Temperature-aware design makes use of power-management techniques, but
often in ways that are different from those used to improve battery life or regu-
late peak power. Localized heating occurs much faster than chip-wide heating;
since power dissipation is spatially nonuniform across the chip, this leads to
“hot spots” and spatial gradients that can cause timing errors or even physical
damage. These effects evolve over time scales of hundreds of microseconds or
milliseconds. Power-management techniques, in order to be used for thermal
management, must directly target the spatial and temporal behavior of operat-
ing temperature. In fact, many low-power techniques have little or no effect on
operating temperature, because they do not reduce power density in hot spots,
or because they only reclaim slack and do not reduce power and temperature
when no slack is present. Temperature-aware design is therefore a distinct
albeit related area of study.

Thermal design techniques to date have mostly focused on the thermal pack-
age (heat sink, fan, and so on). If the package is designed for worst-case power
dissipation, it must be designed for the most severe hot spot that could po-
tentially arise, which is prohibitively expensive. Yet these worst-case scenarios
are rare: the majority of applications, especially for the desktop, do not induce
sufficient power dissipation to produce the worst-case temperatures. A package
designed for the worst case is excessive.

Dynamic thermal management (DTM) allows the thermal package to be de-
signed for power densities exhibited by typical applications, with the chip itself
adapting if temperatures approach dangerous levels. For typical applications,
the less-expensive package still keeps temperatures within specification and
DTM is never engaged. If some atypical application causes the processor to run
too hot, on-chip sensors detect the thermal stress and engage some form of run-
time response, such as dynamic voltage scaling (DVS) or global clock-gating,
while trying to minimize any associated performance loss. This response by the
chip itself therefore provides the additional cooling and worst-case protection
that is needed for reliability, without the associated system cost of a package
designed for worst-case behavior. As long as the threshold temperature that
engages DTM (the trigger threshold) is based on the hottest temperature in the
system, this approach successfully regulates temperature. Gunther et al. [2001]
reported that designing the thermal package for the “worst typical” application
rather than the true worst case, and using DTM in the form of coarse-grained
global clock gating, permitted a 20% reduction in the thermal design power
for the Pentium 4. For applications that do engage DTM, some performance
loss may be incurred, because reducing temperature typically entails reducing
power density, which in turn typically entails slower execution. But per-chip
savings can be as high as a hundred dollars or more for very high-end, high-
power processors and probably in the tens of dollars for laptop systems that re-
quire expensive, compact thermal technologies such as heat pipes [Viswanath
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et al. 2000]. Improving DTM design will allow greater cost savings with minimal
performance cost.

The Need for Architecture-Level Thermal Management. While DTM can
substantially reduce cooling costs and still allow typical applications to run
at peak performance, DTM tends to reduce performance for applications that
exceed the thermal design point—sometimes substantially so. Architectural
techniques have an essential role to play. The architecture domain is unique
in its ability to use runtime knowledge of application behavior and the current
thermal status of different units of the chip to adjust execution, distribute the
workload in order to control thermal behavior, and exploit instruction-level par-
allelism (ILP). The architecture has detailed temperature information about
hot spots and temperature gradients that can be combined with dynamic infor-
mation about ILP in order to precisely regulate temperature while minimizing
performance loss.

In this paper, we describe two new techniques that outperform prior DTM
solutions, but both require microarchitecture-level design and analysis, which
in turn requires appropriate modeling capability.

The Need for Architecture-Level Thermal Modeling. To accurately char-
acterize current and future thermal stress, temporal and spatial nonunifor-
mities, and application-dependent behavior—let alone evaluate architectural
techniques for managing thermal effects—an accurate and practical dynamic
model of temperature is needed. As we show in this paper, estimating thermal
behavior from some kind of average of power dissipation is unreliable. It can
lead to incorrectly estimating the performance impact of thermal effects and
even to developing thermal-management techniques that target areas of the
chip that are not hot spots.

An effective architecture-level thermal model must be simple enough to allow
architects to reason about thermal effects and trade-offs; detailed enough to
model runtime changes in temperature within different functional units; and
yet computationally efficient and portable for use in a variety of architecture
simulators. Finally, the model should be flexible enough to easily extend to
novel computing systems that may be of interest from a temperature-aware
standpoint.

Contributions. This paper extends our prior work [Skadron 2004; Skadron
et al. 2003a; Stan et al. 2003]. We illustrate the importance of thermal modeling
and describe a compact, dynamic, and portable thermal model for convenient
use at the architecture level; use this model to show that hot spots typically
occur at the granularity of architecture-level blocks, and that power-based met-
rics are not well correlated with temperature; and discusses some remaining
needs for further improving the community’s ability to evaluate temperature-
aware techniques. Our model—which we call HotSpot—is publicly available at
http://lava.cs.virginia.edu/hotspot. Using this model, we evaluate a variety of
DTM techniques using a subset of SPEC2000 benchmarks [Standard Perfor-
mance Evaluation Corporation] and compare them to current techniques such
as DVS and fetch gating that have slowdowns of 27–36%. The most effective
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technique is “temperature-tracking” dynamic frequency scaling: timing errors
due to hotspots can be eliminated with an average slowdown of 4.5%, and, if
frequency can be changed without stalling computation, less than 3%. For tem-
perature thresholds where preventing physical damage is also a concern, using
a spare register file and migrating computation between the register files in
response to heating is best, with an average slowdown of 15–19%. If the extra
area for a spare register file cannot be entertained, the next-best technique
we found is a hybrid technique that combines fetch gating with DVS in order
to exploit ILP in conjunction with the stronger power reductions afforded by
DVS. Hybrid DTM yields slowdowns of 20–23%. All our experiments include
the effects of sensor imprecision, which significantly handicaps runtime ther-
mal management.

The rest of this paper is organized as follows. The next section provides
further background and related work. Then Section 3 describes our proposed
model and shows the importance of modeling temperature rather than power.
Section 4 describes the DTM techniques we evaluate and discuss the role of
thermal-sensor nonidealities. Section 5 describes our experimental setup, and
then Section 6 compares the various DTM techniques’ ability to regulate tem-
perature. Section 7 concludes the paper.

2. BACKGROUND AND RELATED WORK

High temperatures create a number of problems, because transistors can fail to
switch properly (this can lead to soft or hard errors), many aging mechanisms
are significantly accelerated (e.g., electromigration), which leads to an overall
decrease in reliability, and both the die and the package can even suffer perma-
nent damage. Yet accelerating clock rates and microarchitectural innovations
lead to steadily increasing power densities. Since carrier mobility is inversely
proportional to temperature, operating temperatures cannot rise and may even
need to decrease in future generations for high-performance microprocessors.
The ITRS actually projects that the maximum junction temperature decreases
from 95◦C for 180 nm to 85◦C for 130 nm and beyond. Spatial temperature
gradients exacerbate this problem, because the clock speed must typically be
designed for the hottest spot on the chip, and information from our industrial
partners suggests that temperatures can vary by 30◦ or more under typical
operating conditions. Such spatial nonuniformities arise both because differ-
ent units on the chip exhibit different power densities, and because localized
heating occurs much faster than chip wide heating due to the slow rate of lat-
eral heat propagation. Yet another temperature-related effect is leakage, which
increases exponentially with operating temperature. This in turn dissipates ad-
ditional heat, which in the extreme can even lead to a destructive cycle called
thermal runaway.

A wealth of work has been conducted to design new packages that provide
greater heat-removal capacity, to arrange circuit boards to improve airflow, and
to model heating at the circuit and board (but not architecture) levels. Compact
models are the most common way to model these effects, although computa-
tional fluid dynamics using finite-element modeling is often performed when
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details regarding the flow of air or a liquid are considered. An excellent survey
of these modeling techniques is given by Sabry in [2002], but they typically de-
pend on low-level VLSI netlists and structural implementation details or only
give steady-state solutions.

Despite the long-standing concern about thermal effects, only a few stud-
ies have been published so far in the architecture field. Among existing
chips, Gunther et al. [2001] describe the thermal design approach for the
Pentium 4, where thermal management is accomplished via global clock gating;
Fleischmann [2000] describes thermal management in the Transmeta Crusoe,
which uses DVS; and Sanchez et al. [1997] describe thermal management in
the PowerPC G3, which uses fetch throttling.

Huang et al. [2000] deploy a sequence of four power-reducing techniques—a
filter instruction cache, DVS, subbanking for the data cache, and if necessary,
global clock gating—to produce an increasingly strong response as temperature
approaches the maximum allowed temperature. Brooks and Martonosi [2001]
compared several stand-alone techniques for thermal management: frequency
scaling, voltage and frequency scaling, fetch gating, decode throttling (similar
to fetch throttling), and speculation control. They also point out the value of
having a direct microarchitectural thermal trigger that does not require a trap
to the operating system and its associated latency. Unfortunately no tempera-
ture models of any kind were available at the time, so both papers use a moving
average of chip-wide power dissipation as a proxy for temperature. As we show
in Section 3.6, this value does not track temperature reliably. A further problem
is that at the time, it was unknown which units on the processor ran the hottest,
so some of the proposed techniques do not reduce power density in those areas
which industry feedback and our own simulations suggest to be the main hot
spots, namely the register files, load-store queue, and execution units. For ex-
ample, we found that the low-power cache techniques are not terribly effective,
because caches are not typically the hottest units.

Lim et al. [2002] propose a heterogeneous dual-pipeline processor for mo-
bile devices in which the standard execution core is augmented by a low-power
scalar pipeline that shares the fetch engine, register files, and execution units
but deactivates out-of-order components such as the renamer and issue queues.
The low-power pipeline is primarily intended for applications that can tolerate
low performance and hence is effective at saving energy, but this technique can
also help whenever the primary pipeline overheats, although with more perfor-
mance loss than the best techniques described here [Skadron et al. 2003b]. This
work used the TEMPEST thermal model [Dhodapkar et al. 2000], which does
model temperature directly, but only at the chip level, and no sensor effects are
modeled.

In terms of modeling, a chip-wide model such as TEMPEST allows some
exploration of chip-wide techniques such as DVS, fetch toggling, and the
Pentium 4’s global clock gating, but not more localized techniques, yet it cannot
capture the effects of hot spots or changing chip layout. Our prior work [Skadron
et al. 2002] proposed a simple model for tracking temperature on a per-unit
level, and feedback control to modify the Brooks fetch-toggling algorithm to
respond gradually, showing a 65% reduction in performance penalty compared
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to the all-or-nothing approach. Other than HotSpot and TEMPEST, we are un-
aware of any compact models that have been developed for use in architecture
research. No prior work in the architecture field accounts for imprecision due
to sensor noise and placement.

Recently, Srinivasan and Adve [2003] and Heo et al. [2003] have used an early
version of our RC model [Skadron et al. 2002]. Srinivasan and Adve showed
that multimedia programs have properties that permit predictive rather than
reactive DTM, and proposed forms of localized DTM that adapt the issue queue
and register file size as well as the number of active ALUs. Heo et al. described
an algorithm for migrating computation between spare computational units,
similar to our MC technique, but with the insight that doing so proactively at a
rate faster than the thermal time constant exploits the latency of heating and
can be used to help regulate temperature.

This paper demonstrates the importance of a more detailed thermal model
that includes localized heating, thermal diffusion, and coupling with the ther-
mal package, uses this model to evaluate a variety of techniques for DTM, and
finds two new techniques that outperform classical techniques such as clock
gating and DVS.

3. THERMAL MODELING AT THE ARCHITECTURE LEVEL

3.1 Using an Equivalent RC Circuit to Model Temperature

There exists a well-known duality [Krum 2000] between heat transfer and elec-
trical phenomena. Heat flow can be described as a “current” passing through
a thermal resistance, leading to a temperature difference analogous to a “volt-
age.” Thermal capacitance is also necessary for modeling transient behavior,
to capture the time required for a mass to change temperature and hence to
account for the delay before a change in power results in the temperature’s
reaching steady state. Lumped values of thermal R and C can be computed to
represent the heat flow among regions of a chip and from each region to the
thermal package. The thermal Rs and Cs together lead to exponential rise and
fall times characterized by thermal RC time constants analogous to the elec-
trical RC time constants. The rationale behind this duality is that current and
heat flow are described by exactly the same differential equations for a poten-
tial difference. In the thermal-design community, these equivalent circuits are
called compact models, and dynamic compact models if they include thermal
capacitors. This duality provides a convenient basis for an architecture-level
thermal model. For a microarchitectural unit, heat conduction to the thermal
package and to neighboring units are the dominant mechanisms that determine
the temperature.

3.2 A Parameterized, BICI, Dynamic Compact Model
for Microarchitecture Studies

For the kinds of studies we propose, the compact model must have the following
properties. It must track temperatures at the granularity of individual microar-
chitectural units, so the equivalent RC circuit must have at least one node for
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each unit. It must be parametrized, in the sense that a new compact model is
automatically generated for different microarchitectures; and portable, making
it easy to use with a range of power/performance simulators. It must be able
to solve the RC-circuit’s differential equations quickly. It must be validated so
that simulated temperatures can be expected to correspond to what would be
observed in real hardware. Finally, it must be BICI, that is, boundary- and
initial-condition independent: the thermal model component values should not
depend on initial temperatures or the particular configuration being studied.
The model we propose, which we call HotSpot, accomplishes these goals by
taking advantage of the duality between thermal and electrical systems. Each
unit on the chip is modeled as a heat (power) dissipator; each underlying re-
gion of silicon is modeled as part of the RC circuit, with several RC elements
representing lateral and thermal heat flow; and the package and convection
contribute additional RC elements. The model is a simple library that provides
an interface for specifying some basic information about the package and for
specifying any floorplan of any desired granularity. HotSpot then generates
the equivalent RC circuit automatically, and, supplied with power dissipations
over any chosen time step, computes temperatures at the center of each block
of interest. The model is BICI by construction since the component values are
derived only from material, physical, and geometric values.

Chips today are typically packaged with the die placed against a spreader
plate, often made of aluminum, copper, or some other highly conductive mate-
rial, which is in turn placed against a heat sink of aluminum or copper that is
cooled by a fan. This is the configuration modeled by HotSpot. Low-power/low-
cost chips often omit the heat spreader and sometimes even the heat sink; and
mobile devices often use heat pipes and other packaging that avoid the weight
and size of a heat sink. These extensions remain areas for future work.

The equivalent circuit—see Figure 1 for an example—is designed to have
a direct and intuitive correspondence to the physical structure of a chip and
its thermal package. The RC model therefore consists of three vertical, con-
ductive layers for the die, heat spreader, and heat sink, and a fourth vertical,
convective layer for the sink-to-air interface. The die layer is divided into blocks
that correspond to the microarchitectural blocks of interest and their floorplan.
For simplicity, the example in Figure 1 depicts a die floorplan of just three
blocks, whereas a realistic model would have 10–20 or possibly even more. The
spreader is divided into five blocks: one that corresponds to the area right un-
der the die (Rsp), and four trapezoids corresponding to the periphery that is
not covered by the die. In a similar way, the sink is divided into five blocks: one
corresponding to the area right under the spreader (Rhs); and four trapezoids
for the periphery. Finally, the convective heat transfer from the package to the
air is represented by a single thermal resistance (Rconvection). Air is assumed to
be at a fixed ambient temperature, which is often assumed in thermal design
to be 45◦C [Mahajan 2002] (this is not the room ambient, but the tempera-
ture inside the computer “box”). Because the perspective in Figure 1 makes it
somewhat difficult to distinguish vertical and lateral Rs, Figure 2 shows the
RC model for only Rs in the die layer. Note that we have chosen not to divide
the spreader’s center section into blocks corresponding to each block in the die.
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Fig. 1. Example HotSpot RC model for a floorplan with three architectural units, a heat spreader,
and a heat sink. The RC model consists of three layers: die, heat spreader, and heat sink. Each
layer consists of a vertical RC pair from the center of each block down to the next layer and a lateral
RC pair from the center of each block to the center of each edge.

Fig. 2. The RC model for just the die layer.

This is a simplification permitted by the fact that the vertical resistance for the
spreader is much less than for the die, so the spreader is relatively isothermal
across its surface. Note also that we currently neglect the small amount of heat
flowing into the die’s insulating ceramic cap and into the I/O pins, and from
there into the circuit board, and so on. We also neglect the interface materials
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between the die, spreader, and sink (these could simply be added as additional
vertical layers in the model). Some of these considerations may actually be non-
trivial. These are all areas for future work. Perhaps the most important and
interesting area for future work is the inclusion of heating due to the clock grid
and other interconnect. The effects of wires can be approximated by including
their power dissipation in the dynamic, per-block power-density values that
drive HotSpot. Our experiments take this approach because the power model
we use to drive HotSpot—Wattch [Brooks et al. 2000]—accounts for wires’ power
this way. A more precise approach would better account for wire lengths and
drivers, separately treat self-heating in the wire, and model temperature in
each layer of the die.

For the die, spreader, and sink layers, the RC model consists of a vertical
model and a lateral model. The vertical model captures heat flow from one layer
to the next, moving from the die through the package and eventually into the air.
For example, Rv2 in Figure 2 accounts for heat flow from block 2 into the heat
spreader. The lateral model captures heat diffusion between adjacent blocks
within a layer, and from the edge of one layer into the periphery of the next
area (e.g., R1 accounts for heat spread from the edge of block 1 into the spreader,
while R2 accounts for heat spread from the edge of block 1 into the rest of the
chip). At each time step in the dynamic simulation, the power dissipated in
each unit of the die is modeled as a current source (not shown) at the node in
the center of that block.

3.3 Deriving the Model

In this section we sketch how the values of R and C are computed. The deriva-
tion is chiefly based on the fact that thermal resistance is proportional to the
thickness of the material and inversely proportional to the cross-sectional area
across which the heat is being transferred: R = t/k · A, where k is the ther-
mal conductivity of the material per unit volume, 100 W/m · K for silicon and
400 W/m · K for copper at 85◦C. Thermal capacitance, on the other hand, is
proportional to both thickness and area: C = c · t · A, where c is the thermal
capacitance per unit volume, 1.75 × 106 J/m3 · K for silicon and 3.55 × 106

J/m3 · K for copper. Note that HotSpot requires a scaling factor to be applied to
the capacitors: capacitors in the spreader and sink should be multiplied by 0.4,
and capacitors in the silicon should be multiplied by thickness-dependent factor
of about 2–3. These factors are analytical values derived from physical proper-
ties and account for some simplifications in our lumped model relative to a full,
distributed RC model; the derivation appears in Skadron et al. [2003b]. Typical
chip thicknesses are in the range of 0.3–0.9 mm; this paper studies a “thinned”
chip of 0.5 mm thickness. Thinning adds to the cost of production but reduces
localized hotspots by reducing the amount of relatively higher-resistance silicon
and getting the heat-generating areas closer to the higher-conductivity metal
package.

In addition to the basic derivations above, lateral resistances must account
for spreading resistance between blocks of different aspect ratios, and the ver-
tical resistance of the heat sink must account for constriction resistance from
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Table I. Sample R and C Values. Rs are in K/W,
and Cs in J/K and Include the Appropriate

Scaling Factor

Block Rvert Rlat C
IntReg+IntExec 0.420 3.75 0.024
D-Cache 0.250 6.50 0.032
Spreader (Center) 0.025 0.83 0.350
Sink (Center) 0.026 0.50 8.800
Convec. 1.000 na 140.449

the heat-sink base into the fins [Lee et al. 1995]. Spreading and constriction
resistances account for the increased heat flow from a small area to a large
one and vice versa. These calculations are entirely automated within HotSpot.
Again, the derivation appears in Skadron et al. [2003b].

This HotSpot model has several advantages over prior models. In contrast
to TEMPEST [Dhodapkar et al. 2000], which models the average chip-wide
temperature, HotSpot models heat at a much finer granularity and accounts
for hotspots in different functional units. HotSpot has more in common with
models from our earlier work [Skadron et al. 2002; Stan et al. 2003], but with
some important improvements. Our first work [Skadron et al. 2002] omitted
the lateral resistances and the package, both essential for accurate tempera-
tures and time evolution; and used a rather extreme die thickness of 0.1 mm,
compressing the spatial temperature gradients too much. Our next model [Stan
et al. 2003] corrected these effects but collapsed the spreader and sink, and did
not account for spreading resistance, leading to inconvenient empirical fitting
factors, and a nonintuitive matching between the physical structure and the
model.

Normally, the package-to-air resistance (Rconvection) would be calculated from
the specific heat-sink configuration. In this paper, we instead manually choose a
resistance of 1.0 K/W that gives us a good distribution of benchmark behaviors;
see Section 5.5. Results with 0.8 K/W are qualitatively similar and have been
reported elsewhere [Skadron et al. 2003a, 2003c].

To convey some sense of the R and C values that our model produces, Table I
gives some sample values, including those for two different blocks on the die.
Vertical Rs for the copper spreader and sink correspond to the middle block,
while lateral Rs for the spreader and sink correspond to the inner R for one
of the peripheral blocks. As mentioned, the convection resistance of 1.0 K/W
has been chosen to provide a useful range of benchmark behaviors, and rep-
resents a midpoint in the range 0.1–2.0 that might be found for typical heat
sinks [Viswanath et al. 2000] in desktop and server computers. As less expen-
sive heat sinks are chosen—for use with DTM, for example—the resistance
increases and temperatures increase, and vice versa.

HotSpot dynamically generates the RC circuit when initialized with a config-
uration that consists of the blocks’ layout and their areas (see Section 3.5). This
circuit is then used in a dynamic architectural power/performance simulation
by providing dynamic values for power density in each block as the values for
the current sources. Power densities are obtained from the power/performance
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Wattch [Brooks et al. 2000] simulator, averaged over the last 10K clock cycles;
see Section 5.1 for more information on the choice of sampling rate. At each
time step, the differential equations describing the RC circuit are solved using
a fourth-order Runge-Kutta method, returning the new temperature of each
block. Each call to the solver takes about 50 µs on a 1.6 GHz Athlon processor,
so the simulation-time overhead for temperature modeling is negligible for rea-
sonable sampling rates, less than 1% of total simulation time. The number of
iterations for the Runge–Kutta solver is adaptive, to account for the different
number of iterations required for convergence at different sampling intervals,
an improvement over what was reported in Skadron et al. [2003a], where we
used a fixed number of iterations regardless of sampling interval. This slightly
improves performance and makes the overhead independent of sampling rate.

HotSpot is already configurable for purposes of modeling new floorplans and
variations of the packaging configuration described here, and for use with differ-
ent simulators and power models. More extensive changes, such as modeling
packages with more layers or fans with multiple speed settings, will require
minor effort but should remain straightforward.

3.4 Validating the Model

We are not aware of any source of localized, time-dependent measurements of
physical temperatures at a microarchitectural granularity that could be used to
validate our model. Eventually, we hope to use thermal test chips (e.g., Benedek
et al [2001]) or an infrared camera to measure runtime temperatures on a
fine temporal and spatial granularity. Until this becomes feasible, we com-
pare against Floworks (http://www.floworks.com), a commercial, finite-element
simulator of 3D fluid and heat flow for arbitrary geometries, materials, and
boundary conditions that performs full fluid-dynamics calculations, including
air flow. A detailed description of our Floworks setup appears in Skadron et al.
[2003b].

Floworks and HotSpot are not entirely independent. Although all R, C, and
scaling factors are determined analytically, without reference to Floworks re-
sults; and like HotSpot, our Floworks model omits some details, such as I/O
pads and interface materials, which might actually be important. In any case,
we can verify that the two obtain similar steady-state operating temperatures
and transient response. Figure 3(a) shows steady-state validation comparing
temperatures predicted by Floworks, HotSpot, and a “simplistic” model that
eliminates the lateral portion of the RC circuit (but not the package, omission of
which would yield extremely large errors). HotSpot shows good agreement with
Floworks, with errors (with respect to the ambient, 45◦C or 318 K) always less
than 5.8% and usually less than 3%. The simplistic model, on the other hand,
has larger errors, as high as 16%. One of the largest errors is for the hottest
block, which means too many thermal triggers will be generated. Figure 3(b)
shows transient validation comparing, for Floworks, HotSpot, and the simplis-
tic model, the evolution of temperature in one block on the chip over time.
The agreement is excellent between Floworks and HotSpot, but the simplistic
model shows temperature rising too fast and too far. Both the steady-state and
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Fig. 3. Model validation. (a) Comparison of steady-state temperatures between Floworks, HotSpot,
and a “simplistic” model with no lateral resistances. (b) Comparison of the step response in
Floworks, HotSpot, and the simplistic model for a single block, the integer register file.

Fig. 4. (a) Die photo of the Compaq Alpha 21364 (From CPU Info Center website). (b) Floorplan
corresponding to the 21364 that is modeled by our experiments. (c) Closeup of 21364 CPU core.

the transient results show the importance of thermal diffusion in determining
on-chip temperatures. We have also validated the scaling factor for the silicon
capacitances by testing a 0.1 mm-thick chip with a copper spreader of the same
size, and our baseline 0.5 mm chip but with an aluminum (2.58 × 106 J/m3 · K)
spreader of the same size, with similarly small errors. Although we have not yet
conducted extensive validations for a wide range of configurations, the HotSpot
model is quite general and should give valid results for any reasonable chip
thickness, convection resistance, and die/package material.

3.5 Floorplanning: Modeling Thermal Adjacency

The size and adjacency of blocks is a critical parameter for deriving the RC
model. In all of our simulations so far, we have used a floorplan (and also ap-
proximate microarchitecture and power model) corresponding to that of the
Alpha 21364. This floorplan is shown in Figure 4. Like the 21364, it places the
CPU core at the center of one edge of the die, with the surrounding area consist-
ing of L2 cache, multiprocessor–interface logic, and so on. Since we model no
multiprocessor workloads, we omit the multiprocessor interface logic and treat
the entire periphery of the die as second-level (L2) cache. The area of this cache
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Fig. 5. Scatter plots of temperature versus average power density for gcc with averaging intervals
of (a) 10K, showing all the major blocks, and (b) 100M cycles, showing only the integer register file.

seems disproportionately large compared to the 21364 die photo in Figure 4(a),
because we have scaled the CPU to 130 nm, while keeping the overall die size
constant in anticipation of the release of a 130 nm 21364 (we assumed a sim-
ple process shrink and kept the die size the same). Note that we do not model
I/O pads, because we do not yet have a good dynamic model for their power
density—more future work.

Eventually, we envision an automated floorplanning algorithm that can de-
rive areas and floorplans automatically using only the microarchitecture con-
figuration.

3.6 Importance of Directly Modeling Temperature

Due to the lack of an architectural temperature model, a few prior studies
have attempted to model temperatures by averaging power dissipation over a
window of time. This will not capture any localized heating unless it is done
at the granularity of on-chip blocks, but even then it fails to account for lat-
eral coupling among blocks, the role of the heat sink, the nonlinear rate of
heating, and so on. We have also encountered the fallacy that temperature cor-
responds to instantaneous power dissipation, when in fact the thermal capaci-
tance acts as a low-pass filter in translating power variations into temperature
variations.

Computing correlation between average-power samples and temperatures,
as we did in Skadron et al. [2003a], turns out to overstate the accuracy of
power metrics: even though statistical correlation is reasonably high for av-
erages over 100 million cycles, power still cannot be used to effectively infer
operating temperature with any useful precision. Figures 5(a) and (b) present,
for two different averaging intervals, scatter plots for each value of average
power density versus the corresponding temperature. Although the 100 M in-
terval does show correlation, large temperature ranges ( y-axis) are observed for
any given value of power density (x-axis). This is partly due to the exponential
nature of heating and cooling, which can be observed in the exponentially rising
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and falling curves. These data come from gcc, a representative benchmark, with
the reference expr input, simulated to completion.

4. TECHNIQUES FOR ARCHITECTURAL DTM

This section describes the various architectural mechanisms for dynamic ther-
mal management that are evaluated in this paper, and then discusses design
and modeling considerations for on-chip temperature sensing. The general phi-
losophy behind all but one of these techniques is to react to thermal stress by re-
ducing power density just long enough to bring the temperature to a safe level.
The exception is temperature-tracking dynamic frequency scaling (TTDFS),
which can be applied when the only risk from excessive temperature is timing
errors. In this case it is sufficient to simply reduce the clock speed.

Most of the DTM techniques described below entail minimal extra hard-
ware and should have a negligible effect on power density. The feedback con-
trollers required by some techniques are probably the most complex and require
a few registers, an adder, and a multiplier, along with a state machine to drive
them, but single-cycle response is not needed, so the controller can be made
with minimum-sized circuitry. The datapath width in the controller can also be
narrow, since only limited precision is needed. Other techniques require state
machines with single-cycle response, but their state space is trivial.

4.1 DTM Techniques

4.1.1 Temperature-Tracking Dynamic Frequency Scaling. Independently
of the relationship between frequency and voltage, the temperature dependence
of carrier mobility means that frequency is linearly dependent on the operat-
ing temperature. Garrett and Stan [2001] report an 18% variation over the
range 0–100◦. This suggests that the standard practice of designing the nom-
inal operating frequency for the maximum allowed operating temperature is
too conservative. When applications exceed the temperature specification, they
can simply scale frequency down in response to the rising temperature. Be-
cause the temperature dependence is mild within the interesting operating re-
gion, the performance penalty of preventing timing errors is also mild—indeed,
negligible.

It might seem odd to only scale frequency. The reason is that the dependence
of frequency on temperature is independent of its dependence on voltage: any
change in voltage requires an additional reduction in frequency. This means
that, unlike traditional DFS, TTDFS does not allow reductions in voltage with-
out further reductions in frequency.

A processor must typically stall for anywhere from 10–50 µs to accommodate
resynchronization of the clock’s phase-locked loop (PLL), but if the transition is
gradual enough, the processor can execute through the change without stalling,
as the Xscale is believed to do [Semeraro et al. 2002]. We examine a discretized
frequency scaling with 10 MHz steps and 10 µs stall time for every change in
the operating frequency; and an ideal version that does not incur this stall but
where the change in frequency does not take effect until after 10 µs has elapsed.
We call these “TTDFS” and “TTDFS-i(deal).” Larger step sizes do not offer
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enough opportunity to adapt, and smaller step sizes create too much adaptation
and invoke too many stalls. No feedback control is needed for TTDFS, since the
frequency is simply a linear function of the current operating temperature.

This technique is unique among our other techniques in that the operating
temperature may legitimately exceed the 85◦ threshold that other techniques
must maintain. As long as frequency is adjusted before temperature rises to
the level where timing errors might occur, there is no violation.

4.1.2 Dynamic Voltage Scaling. DVS has long been regarded as a solution
for reducing energy consumption, because it gives cubic reductions in power
density relative to performance loss. It has recently been proposed as one solu-
tion for thermal management [Brooks and Martonosi 2001; Huang et al. 2000],
and is used for this purpose in Transmeta’s Crusoe processors [Fleischmann
2000]. When changing the processor voltage, frequency must be reduced in
conjunction with voltage, because circuits switch more slowly as the operating
voltage approaches the threshold voltage. We used Cadence with BSIM 100 nm
low-leakage models to derive appropriate frequency settings for each voltage
step [Skadron et al. 2003b].

We model two possible scenarios for the overhead of switching volt-
age/frequency settings. In the first (“DVS”), the penalty to change the DVS
setting is 10 µs, during which the pipeline is stalled. In the second, idealized
scenario (“DVS-i”), the processor may continue to execute through the change
but the change does not take effect until after 10 µs have elapsed.

Different implementations of DVS offer various numbers of steps for the volt-
age and frequency, ranging from two with Intel’s SpeedStep to at least ten for
Transmeta’s LongRun, and forty for the Intel Xscale. For thermal management,
we found that multiple steps are unnecessary. We tried a variety of step granu-
larities: continuous, ten, five, three, and two (which we call “binary”). For all but
binary DVS, we use a proportional-integral (PI) controller to select the highest
voltage that regulates temperature.1 Although multiple step sizes can be ben-
eficial for balancing battery life and performance, for DTM they all give almost
exactly the same performance, differing by less than 0.4% for DVS-stall and
less than 0.01% for DVS-ideal. These results mean that the PI control reported
in our prior work [Skadron et al. 2003a] is unnecessary. Only two voltages are
needed for DTM: the maximum voltage, and a low voltage that eliminates all
possible thermal violations.

The reasons for this behavior are twofold. First, when more than two voltages
are available, safety requires DTM to be conservative, and so the minimum
voltage is often used anyway, obviating the benefit of multiple steps. Second,
even when multiple steps are available and a higher voltage is used, it takes
longer to reduce thermal stress, eliminating the advantage of conferred by the
higher frequency; while lower voltages take less time to reduce thermal stress
so the lower frequency is used for a shorter time.

1When the controller is near a boundary between DVS settings, small fluctuations in temperature
can produce too many changes in setting, incurring costly overhead. To prevent this, we apply a
simple low-pass filter to decide whether to increase the voltage [Skadron et al. 2003b]. Filtering
cannot be used for lowering the voltage, because that is compulsory in response to thermal stress.
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Instead of step size, what does matter for DTM is the value of the lowest
voltage. With our heat sink and benchmarks, we use 85% of the nominal volt-
age for the low setting with binary DVS. This is the highest voltage that still
eliminates thermal violations.

4.1.3 Fetch and Clock Gating. With fetch gating, fetch is prevented at some
duty cycle, reducing instruction activity through the pipeline and hence power
density. The choice of duty cycle is a feedback-control problem, for which we use
a PI controller, with settings confirmed by exhaustive search.

Clock gating might seem more attractive, because it attains extra power
reduction by eliminating power dissipation in the clock tree. But stopping and
starting the entire clock tree on a rapid basis (required to exploit ILP) may be
infeasible, especially given voltage-stability concerns. The mild levels of fetch
gating that we employ maintain activity throughout the pipeline and should
present less of a voltage-stability problem. To bound the potential extra savings
that can be attained with these gating techniques, we show results for both fetch
gating (FG) and global clock gating (GCG) in order to provide approximate lower
and upper bounds on the power savings possible with a realistic implementation
of one of these gating schemes. We refer to these schemes as FG-PI and GCG-PI.

4.1.4 Local Toggling. As a possibly more gentle way to implement gating,
individual domains of the processor can have their activity gated or “toggled”
at the gentlest duty cycle that successfully regulates temperature—“LTOG-PI.”
The choice of duty cycle is again a feedback-control problem.

Only domains in thermal stress are toggled. When a unit is toggled in any
given cycle, it is prevented from performing its normal activity. Note that this is
not a multiple-clock-domain organization; all units operate with the same clock
and when a unit is toggled, other units continue operating normally. This means
that the units must be decoupled in some fashion, most likely with the queues
that already exist in a superscalar processor. The domains that we considered
for toggling are the fetch engine, integer engine, floating-point engine, and load-
store/data-cache engine. Decoupling buffers between the domains, such as the
issue queues, will still dissipate some power even when toggled off, in order
to allow neighboring domains to continue operating; for example, allowing the
data cache to write back results even though the integer engine is stalled that
cycle. Note that as the toggling duty cycle for some domain exceeds available
ILP, the entire processor will tend to operate at that duty cycle, and local tog-
gling becomes similar to global fetch gating.

4.1.5 Migrating Computation. Two units that run hot by themselves will
tend to run even hotter when adjacent. On the other hand, separating them
will introduce additional communication latency that is incurred regardless
of operating temperature. This suggests the use of spare units located in cold
areas of the chip, to which computation can migrate only when the primary
units overheat.

We developed a new floorplan that includes an extra copy of the integer
register file, shown in Figure 6. When the primary register file reaches 81.6◦,
issue is stalled, instructions ready to write back are allowed to complete, and
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Fig. 6. Floorplan with spare integer register file for migrating computation.

the register file is copied, four values at a time. Then all integer instructions
use the secondary register file, allowing the primary register file to cool down,
while computation continues unhindered except for the extra computational
latency incurred by the greater communication distance. The extra distance is
accounted for by charging two extra cycles for every register-file access.2 When
the primary register file returns to 81.5◦, the process is reversed and compu-
tation resumes using the primary register file. We call this scheme “migrating
computation” (MC). Note that, because there is no way to guarantee that MC
will prevent thermal violations, a failsafe mechanism is needed, for which we
use FG-PI.

Copying values between the register file of course dissipates power, both due
to the values that must be copied and to the extra cycles of execution time.
Accessing the distant register file, whether for use in computation or to copy
values between register files, involves additional power dissipation due to the
fact that the signal has to be driven over a longer distance. For each register
file read, the issue queue sends register addresses to the register file, and the
register file responds to the execution units. Results are then written back to
the register file. Assuming that the register file is connected to the issue queue
and the execution units via top level metal, we can compute the extra power
dissipated in these wires with the formula aCV 2 f . We assume an activity factor
of 0.5 corresponding to random switching. The capacitance can be computed
using Wattch parameters and the wires’ length (obtained from our floorplanning
tool). For now, we make the simple assumption that the power dissipation in
the global interconnect is allocated equally between the sender and receiver (to
account for repeaters), yielding 0.003–0.004 W/bit for the processor model and
clock frequency modeled in our experiments (see Section 5).

It is also important to note that the different floorplan will have some direct
impact on thermal behavior even without the use of any DTM technique. The
entire integer engine runs hot, and even if the spare register file is never used,

2This is accounted for in the issue logic so that when one operand will be provided via bypassing,
the other operand is obtained from the register file early enough so that the register-file operand
is ready at the same time as the bypassed operand.
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the MC floorplan rearranges the hot units, especially by moving the load-store
queue (typically the second- or third-hottest block) farther away from the pri-
mary register file. The design space here is rich, but we were limited in the
number of floorplans that we could explore, because developing floorplans that
fit in a rectangle with no white space is a laborious process. Eventually, we
envision an improved floorplanning algorithm that can derive floorplans auto-
matically using some simple specification format.

The dual-pipeline scheme proposed by Lim et al. [2002] could actually be
considered another example of migrating computation. MC could also be con-
sidered a limited form of multiclustered architecture e.g. [Canal et al. 1999].

4.1.6 Hybrid DTM. Finally, we introduce a hybrid technique that com-
bines fetch or clock gating with DVS [Skadron 2004]. The problem with most
existing DTM approaches is that different hardware techniques may be better
suited to different degrees of thermal stress. This is not just a matter of finding
the optimal setting for some technique and matching its response to the degree
of thermal stress, such as finding the best voltage and frequency setting that
safely cools the chip while minimizing slowdown. Rather, completely different
mechanisms may be needed. We show that when thermal stress is severe, an
aggressive DTM response based on voltage scaling is likely best, because this
obtains approximately cubic reductions in power density relative to the reduc-
tion in performance. On the other hand, when thermal stress is mild and only a
mild DTM response is needed, we show that an architectural response that ex-
ploits ILP has less overhead than DVS—possibly even no overhead if sufficient
ILP is present. These observations argue for a hybrid DTM technique that uses
the most effective type of response according to the degree of thermal stress:
DVS for aggressive DTM response, and ILP techniques for mild DTM response.
Once the required DTM response is aggressive enough that ILP techniques no
longer adequately exploit ILP, DVS is engaged. This is the point at which DVS’s
cubic impact becomes dominant.

We mentioned earlier that DVS by itself does not require multiple settings
and feedback control, while FG or GCG by itself does. When combined into
a hybrid technique, multiple settings and feedback control can be eliminated
for both component techniques with only a 0.5% average loss in performance.
We therefore only present results for the simpler scheme (“Hyb”) that omits
multiple settings and feedback control. This scheme responds to thermal stress
by using a fixed duty cycle at full voltage for the ILP-exploiting gating technique
(FG or GCG), and when the temperature is too far above the trigger point,
lowering the voltage and returning the FG/GCG duty cycle back to 100%. This
approach is appealing because it eliminates imprecision, oscillation, and so on
that arise with controllers, and because it dovetails with binary DVS.

Composing a hybrid technique requires a way to find the crossover point at
which the choice of best technique changes between the “ILP technique” and
DVS. To conduct such measurements, we would eventually like a figure of merit
that is an a priori measure of cooling, independent of the specific experimental
thermal setup. For now, we simply conducted a search across a range of FG and
GCG duty cycles.
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Fig. 7. DTM slowdown for different PI-Hyb configurations with DVS-stall.

As Figure 7 shows, the best hybrid configuration uses a maximum duty cycle
of 3 (i.e., skip a fetch cycle once every three cycles) for PI-Hyb with DVS-stall.
This figure plots, for PI-Hyb, the slowdown as a function of the duty cycle.
A value of x on the x-axis indicates that fetch is gated every 1/x cycles, so
larger values mean that DVS is engaged sooner. (0.33 means that fetch is gated
two out of every three cycles.) A duty cycle of 3 represents the crossover point
because beyond this point, it becomes difficult for the ILP technique to success-
fully exploit instruction-level parallelism, and slowdown rises sharply. In the
meantime, beyond this point, DVS’s cubic reduction in power density relative
to slowdown overcomes the stalls associated with switching settings. In con-
trast, for the idealized DVS without any stalls, the maximum duty cycle is 20.
Because no stalls are incurred to switch DVS settings, only the mildest fetch
gating, where ILP hides almost all performance impact, can give better results
than DVS.

We performed the same analysis for different low-voltage settings, and with
and without the PI controller, and always found the same crossover points. This
suggests that the interaction of fetch duty cycle with ILP is purely an architec-
tural phenomenon and remains the same even as the low-voltage varies.

4.2 Sensors

Runtime thermal management requires real-time temperature sensing. So far,
all prior published work of which we are aware has assumed omniscient sen-
sors, which we show in Section 6 can produce overly optimistic results. Sen-
sors that can be used on chip for the type of localized thermal response, we
contemplate, are typically based on analog CMOS circuits using a current ref-
erence. An excellent reference is Bakker and Huijsing [2000]. The output cur-
rent is digitized using a ring oscillator or some other type of delay element to
produce a square wave that can be fed to a counter. Although these circuits
produce nicely linear output across the temperature range of interest, and re-
spond rapidly to changes in temperature, they are sensitive to lithographic
variations and supply–current variations. These sources of imprecision can be
reduced by making the sensor circuit larger, at the cost of increased area and
power. Another constraint that is not easily solved by up-sizing is that of sensor
bandwidth—the maximum sampling rate of the sensor.

Industry contacts tell us that CMOS sensors which would be reasonable to
use in moderate quantity of say 10–20 sensors would have at best a precision
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of ±2◦C and sampling rate of 10 ms. This matches the results in Bakker and
Huijsing [2000]. We place one sensor per architectural block.

We model the imprecision by randomizing at each node the true temperature
reading over the specified range ±2◦. We assume that the hardware reduces the
sensor noises at runtime by using a moving average of the last ten measure-
ments, because averaging reduces the error as the square root of the number
of samples. This, of course, assumes that the measured value is stationary,
which is not true for any meaningful averaging window. This means we must
also account for the potential change in temperature over the averaging win-
dow, which we estimate to be potentially as much as 0.4◦ if temperatures can
rise 0.1◦ per 30 µs. For ±2◦, we are therefore able to reduce the uncertainty to
S = 2√

10
+ 0.4 = ±1◦. An averaging window of ten samples was chosen because

the improved error reduction with a larger window is offset by the larger change
in the underlying value.

There is one additional nonideality that must be accounted for when model-
ing sensors and cannot be reduced by averaging. If a sensor cannot be located
exactly coincident with every possible hotspot, the temperature observed by the
sensor may be cooler by some spatial-gradient factor G than at the hotspot. If,
in addition to the random error discussed above, there is also a systematic or
offset error in the sensor that cannot be canceled, this increases the magnitude
of the fixed error G. Based on simulations in our finite-element model and the
assumption that sensors can be located near but not exactly coincident with
hotspots, we choose G = 2◦.

It can therefore be seen that for any runtime thermal-management tech-
nique, the use of sensors lowers the emergency threshold by G + S (3◦ in our
case). This must be considered when comparing to other low-power design tech-
niques or more aggressive and costly packaging choices. This extra temperature
margin is also strong motivation for finding temperature-sensing techniques
that avoid this overhead, perhaps based on clever data fusion among sensors,
or the combination of sensors and performance counters.

5. SIMULATION SETUP

In this section, we describe the various aspects of our simulation framework
and how they are used to monitor runtime temperatures for the SPECcpu2000
benchmarks [Standard Performance Evaluation Corporation].

5.1 Integrating the Thermal Model

HotSpot is completely independent of the choice of power/performance simu-
lator. Adding HotSpot to a power/performance model merely consists of two
steps. First, initialization information must be passed to HotSpot. This con-
sists of an adjacency matrix describing the floorplan (the floorplan used for
the experiments in this paper is included in the HotSpot release) and an ar-
ray giving the initial temperatures for each architectural block. Then at run-
time, the power dissipated in each block is averaged over a user-specified in-
terval and passed to HotSpot’s RC solver, which returns the newly computed
temperatures.
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Although it is feasible to recompute temperatures every cycle, this is waste-
ful, since even at the fine granularity of architectural units, temperatures take
at least 100K cycles to rise by 0.1◦C. We chose a sampling rate of 10K cycles
as the best trade-off between precision and overhead. For sampling intervals of
10K and less, the error is less than 0.01◦—the same magnitude as the rounding
error due to significant digits in the Runge–Kutta solver.

5.2 Power-Performance Simulator

We use a power model based on power data for the Alpha 21364 [Bannon 2002].
The 21364 consists of a processor core identical to the 21264, with a large L2
cache and (not modeled) glueless multiprocessor logic added around the pe-
riphery. An image of the chip is shown in Figure 4, along with the floorplan
schematic that shows the units and adjacencies that HotSpot models. Because
we study microarchitectural techniques, we use Wattch version 1.02 [Brooks
et al. 2000], which is based on a widely used and convenient cycle-accurate mi-
croarchitecture simulator, SimpleScalar [Burger and Austin 1997]. Our power
data for were 1.6 V at 1 GHz in a 0.18µ process, so we used Wattch’s linear
scaling to obtain power for 0.13µ, Vdd =1.3 V, and a clock speed of 3 GHz. These
values correspond to the recently announced operating voltage and clock speed
that for the Pentium 4 [Robertson 2002]. We assume a die thickness of 0.5 mm.
Our spreader and sink are both made of copper. The spreader is 1 mm thick
and 3 cm × 3 cm, and the sink has a base that is 7 mm thick and 6 cm × 6 cm.
Power dissipated in the per-block temperature sensors and the DTM control
logic are not modeled.

We augmented SimpleScalar’s sim-outorder to model an Alpha 21364 as
closely as possible, with four-wide integer and two-wide floating-point issue
queues, an 80-entry integer and floating-point merged physical/architectural
register file, and an 80-entry active list. First-level caches are 64 KB, 2-way,
write-back, with 64 B lines and a 2-cycle latency; the second-level is 4 MB,
8-way, with 128 B lines and a 12-cycle latency; and main memory has a 225-
cycle latency. The only major features of the 21364 that we do not model are
the register-cluster aspect of the integer box, way prediction in the I-cache, and
speculative load-use issue with replay traps (which may increase power den-
sity in blocks that are already quite hot). We also modified SimpleScalar/Wattch
to account for dynamic frequency and voltage scaling and to report execution
time in seconds rather than cycles as the metric of performance. Finally, we
augmented the issue logic to properly handle the extra latency to MC’s spare
register file, by taking advantage of bypassing when possible and otherwise
waking instructions up early enough to read the register file early enough to
be ready when other operands become available.

5.3 Modeling the Temperature-Dependence of Leakage

Because leakage power is an exponential function of temperature, these power
contributions may be large enough to affect the temperature distribution and
the effectiveness of different DTM techniques. Furthermore, leakage is present
regardless of activity, and leakage at higher temperatures may affect the
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efficacy of thermal-management techniques that reduce only activity rates.
Eventually, we plan to combine HotSpot with our temperature/voltage-aware
“HotLeakage” model [Li et al. 2004] to more precisely track dynamic leakage-
temperature interactions, which we believe are an interesting area for future
work. For now, to make sure that leakage effects are modeled in a reason-
able way, we use a simpler model: like Wattch, leakage in each unit is simply
treated as a percentage of its power when active, but this percentage is now
determined based on the temperature and technology node using figures from
ITRS data [2001].

The original model assumes that idle architectural blocks are clock gated
and leak a fixed percentage of the dynamic power that they would dissipate if
active. The default value of 10% happens to roughly correspond to the leakage
percentage that would be seen at 85◦C in the 130 nm generation, according
to our calculations from the ITRS projections. To better incorporate leakage ef-
fects in a simple way, we improve Wattch’s model to account for the temperature
dependence of leakage. We use ITRS data [SIA 2001] to derive an exponential
distribution for the ratio RT of leakage power to dynamic power as a func-
tion of temperature T , and recompute the leakage ratio at every time step.
This gives

RT = R0

V0T 2
0

e
B

T0 · V T 2 · e
−B
T (1)

where T0 is the ambient temperature and R0 is the ratio at T0 and nominal
voltage V0. B is a process technology constant that depends on the ratio be-
tween the threshold voltage and the subthreshold slope. This ratio was com-
puted using the leakage current and saturation drive current numbers from
ITRS 2001. Only the VT 2 · e

−B
T term varies with temperature and/or operat-

ing voltage. This expression replaces the fixed leakage factor in the original
Wattch.

It is desirable to eventually model leakage in more detail, to account for
structural details, and permit studies of the interactions between tempera-
ture and leakage-management techniques. The interaction of leakage energy,
leakage control, and thermal control is beyond the scope of this paper, but is
clearly an interesting area for future work, and since we do not study leakage-
control techniques here, the simpler temperature-dependent function given in
Equation (1) seems adequate for our current work.

5.4 Benchmarks

We evaluate our results using benchmarks from the SPECcpu2000 suite. The
benchmarks are compiled and statically linked for the Alpha instruction set us-
ing the Compaq Alpha compiler with SPEC peak settings and include all linked
libraries but no operating system or multiprogrammed behavior. For each pro-
gram, we fast-forward to a single representative sample of 500 million instruc-
tions. The location of this sample is chosen using the data provided by Sherwood
et al. [2001]. Simulation is conducted using SimpleScalar’s EIO traces to ensure
reproducible results for each benchmark across multiple simulations.
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Table II. Benchmark Summary, Heat Sink R = 1.0 K/W. “I” = Integer, “F”
= Floating Point

Average % Cycles in Dynamic Max
IPC Power (W) Thermal Violation Temp. (◦C)

Severe Thermal Stress (medium)
mesa (F) 2.7 31.5 100.0 90.9
perlbmk (I) 2.3 30.4 100.0 94.3
gzip (I) 2.3 31.0 100.0 90.9
bzip2 (I) 2.3 31.7 100.0 93.8
Extreme Thermal Stress (hot)
eon (I) 2.3 33.2 100.0 92.0
crafty (I) 2.5 31.8 100.0 92.0
vortex (I) 2.6 32.1 100.0 91.4
gcc (I) 2.2 32.2 100.0 93.2
art (F) 2.4 38.1 100.0 95.6

Fig. 8. Operating temperature as a function of time (in terms of millions of clock cycles) for two
example benchmarks.

Due to the extensive number of simulations required for this study and the
fact that many did not run hot enough to be interesting thermally, we used only
nine of the total 26 SPEC2k benchmarks. A mixture of integer and floating-
point programs with intermediate, and extreme thermal demands were chosen.
Table II provides a list of the benchmarks we study along with their basic
performance, power, and thermal characteristics. It can be seen that IPC and
peak operating temperature are only loosely correlated with average power
dissipation. For most SPEC benchmarks, and all those in Table II, the hottest
unit is the integer register file—interestingly, this is even true for most floating-
point and memory-bound benchmarks. It is not clear how true this will be for
other benchmark sets.

For the benchmarks that have multiple reference inputs, we chose one. For
perlbmk, we used splitmail.pl with arguments “957 12 23 26 1014”; gzip—
graphic; bzip2—graphic; eon—rushmeier; vortex—lendian3; gcc—expr; and
art—the first reference input with “-startx 110.”

To more clearly illustrate the time-varying nature of programs’ thermal be-
havior, in Figure 8 we present two plots of programs’ operating temperature
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(with no DTM) in each unit as a function of time. In each plot, the vertical line
toward the left-hand side of the plot indicates when the warmup period ends.

Mesa (Figure 8(a)) deserves special comment because it shows clear program
phases. At each drop in its sawtooth curve, we found (not shown) a matching
sharp rise in L1 and L2 data misses and a sharp drop in branch mispredictions.
The rate of rise and fall exactly matches what we calculate by hand from the RC
time constants. The temperatures are only varying by a small amount near the
top of their range. So the increase in temperature occurs slowly, like a capacitor
that is already close to fully charged, and the decrease in temperature is quite
sharp, like a full capacitor being discharged. Perlbmk (Figure 8(b)) shows a
smaller version of this periodic sawtooth behavior.

5.5 Package, Warmup, and Initial Temperatures

The correct choice of convection resistance and heat-sink starting temperature
are two of the most important determinants of thermal behavior over the rel-
atively short time scales than can be tractably simulated using SimpleScalar.
We chose a low-cost heat sink whose convection resistance we compute to be
1.0 K/W. This represents a medium-cost heat sink, with a modest savings of
perhaps $10 [Viswanath et al. 2000] compared to the 0.7 K/W convection resis-
tance that would be needed without DTM. This is larger than the resistance
of 0.8 K/W that we chose manually in Skadron et al. [2003a], but has the ad-
vantage that it corresponds to a computed model of a real heat sink and fan
configuration. The relative performance of the various DTM schemes is mostly
unchanged, whether 0.8 or 1.0 K/W is used.

The initial temperatures that are set at the beginning of simulation play a
large role in thermal behavior. The most important temperature is that of the
heat sink. Its time constant is on the order of several minutes, so its temper-
ature barely changes and certainly does not reach steady state in our simula-
tions. For experiments with DTM (except TTDFS), the heat-sink temperature
should be set to a value commensurate with the maximum tolerated die tem-
perature (81.8◦ with our sensor architecture): the DTM response ensures that
chip temperatures never exceed this threshold, and heat sink temperatures are
correspondingly lower than with no DTM. We have not yet accounted for multi
programmed behavior: a “hot” application that begins executing when the heat
sink is cool may not generate thermal stress before its time slice expires. Rohou
and Smith [1999] used this to guide processor scheduling and reduce maximum
operating temperature. Indeed, although we have not explored scheduling pol-
icy, the fact that temperatures evolve on time scales of milliseconds suggests
that this is another interesting area for future work for which HotSpot should
be useful.

To avoid transient artifacts as on-chip structures reach representative tem-
peratures, it is necessary to warm up the state of large structures such as
caches and branch predictors, and then to literally warm up HotSpot. We first
set the blocks’ initial temperatures to the steady-state temperatures calculated
using the per-block average power dissipation for each benchmark. When we
start simulations, we run the simulations in full-detail cycle-accurate mode
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Fig. 9. Slowdown for DTM. The left-hand graph presents techniques that do not depend on “ideal”
voltage/frequency scaling, and the right-hand graph presents techniques that assume ideal scaling.

Fig. 10. Per-benchmark slowdowns for selected DTM techniques.

(but without statistics gathering) for 100 million cycles to train the caches—
including the L2 cache—and the branch predictor. (These two issues must be
treated sequentially, because otherwise cold-start cache effects would affect
temperatures.) Finally, we continue in full-detail cycle-accurate mode for an-
other 200 million cycles to allow temperatures to reach truly representative
values. Only after these warmup phases have completed do we begin to track
any experimental statistics.

6. RESULTS FOR DTM

In this section, we use the HotSpot thermal model to evaluate the performance
of the various techniques described in Section 4. First we assume realistic, noisy
sensors, and then consider how much the noise degrades DTM performance.

6.1 Results with Sensor Noise Present

Figure 9 presents the slowdown (execution time with thermal management
divided by original execution time) for each of the thermal management tech-
niques, averaged across all the benchmarks. None of the techniques incur any
thermal violations (Figure 10). All the average performance differences com-
pared to the baseline are significant at the 99% confidence level.

6.1.1 TTDFS versus Threshold-Based Techniques. The best technique for
thermal management by far is TTDFS, with the TTDFS-i version of course
being slightly better. The performance penalty for even the hottest benchmarks
is small; the worst is art with only a 4.1% slowdown for TTDFS-i and a 5.4%
slowdown for TTDFS. If the maximum junction temperature of 85◦ is strictly
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based on timing concerns, and somewhat higher temperatures than 85◦ can
be tolerated without unduly reducing operating lifetime, then TTDFS is vastly
superior because its impact is so gentle. Even if other factors (e.g., different
technology parameters) make the temperature dependence of frequency larger,
TTDFS remains an attractive solution.

It might seem there should be some benefit with TTDFS from increasing
frequency when below the trigger threshold, but we did not observe any note-
worthy speedups—even for TTDFS-i with the coldest benchmark, mcf, we ob-
served only a 2% speedup, and the highest speedup we observed was 3%. A few
benchmarks actually experienced a 1% slowdown, and the highest speedup we
observed was 2%. The reason for the lack of speedup is partly that the slope
is so small—this helps to minimize the slowdown for TTDFS with warm and
hot benchmarks, but minimizes the benefit for cold ones. In addition, for higher
frequency to provide significant speedup, the application must be CPU bound,
but then it will usually be hot and frequency cannot be increased.

If the junction temperature is dictated not only by timing but also physical
reliability, then TTDFS is not a viable approach: the specified junction tem-
perature must be enforced. All the remaining techniques do this, and among
these, the techniques using ideal DVS (DVS-ideal and the two hybrid-ideal tech-
niques) are vastly superior. If changing frequency entails a 10 µs stall, only the
left-hand graph in Figure 9 applies, and MC and the two hybrid techniques are
best.

6.1.2 Gating and Toggling. The gating/toggling techniques—GCG, FG,
and LTOG—all perform much worse than the other techniques. Although in
principle these techniques should capitalize on ILP, this only succeeds at mild
duty cycles where enough instructions are active to maintain throughput. Be-
yond duty cycles of about 1/3, slowdown becomes proportional to the duty cycle—
and these more aggressive duty cycles are often required. In contrast, DVS and
the hybrid techniques can take advantage of the fact that DVS allows cubic re-
ductions in power density relative to performance loss. The hybrid techniques
can still exploit ILP when only mild duty cycles are needed.

Note that LTOG actually performs worse than the two global gating tech-
niques. This contradicts the results in Skadron et al. [2003a]. We found that
the gain on the GCG and FG controllers was too high, engaging unnecessarily
strong duty cycles. The reason that LTOG is no better is that for all but the very
mildest of duty cycles, toggling one domain tends to proportionally reduce the
throughput of the entire pipeline; but these mild duty cycles are almost never
seen. The reason that FG is slightly better than LTOG—rather than simply be-
ing equivalent—is that FG’s immediate chip-wide impact does a slightly better
job of cooling down domains neighboring the hot one that triggered the gating.
This also means that subsequent heating takes slightly longer too.

GCG outperforms FG and LTOG because it eliminates power dissipation in
the clock tree and allows the chip to cool faster.

6.1.3 Hybrid versus DVS. Although DVS provides cubic reductions in
power density relative to performance loss, the hybrid techniques outperform
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DVS because they capitalize on the gating component’s ability to exploit ILP
and reduce stalls to change the DVS setting. Hybrid DTM can improve per-
formance by 5.5–6% compared to DVS alone, which represents about a 25%
reduction in DTM overhead. When an idealized DVS is available with no over-
head to change settings, hybrid DTM is less helpful, improving performance by
only about 1% compared to DVS-i, which represents about an 11% reduction
in DTM overhead. Hybrid DTM is still able to attain a small benefit even with
ideal DVS because DVS almost always imposes some performance overhead
due to the use of a lower frequency. This means that, even though hybrid DTM
with ideal DVS uses a very low crossover and the ILP technique is rarely used,
there are occasional mild temperature excursions where the ILP technique can
still do a better job of reducing temperature with less performance loss. It is not
clear whether this advantage is significant enough to be worth the effort. But
with the overheads found in typical DVS implementations today, hybrid DTM
does offer impressive benefits.

Another important point is that both DVS and hybrid techniques eliminate
the need for feedback control to select a duty cycle, eliminating a major source
of difficulty in tuning and making the DTM technique more robust. We did
also evaluate hybrid techniques with PI control to set the duty cycle on the
gating component, and found that it conferred no benefit. The explanation is the
same as for DVS’s insensitivity to the number of voltage steps: less aggressive
fetch gating takes longer to reduce the temperature, and vice versa. It might
seem that this argument should apply to FG, GCG, and LTOG too as stand-
alone techniques, but here the PI control is needed. If only one FG/GCG/LTOG
duty cycle were available, it would have to be too high—a duty cycle of 50%
for FG—to eliminate all thermal violations; and this is beyond the ILP-DVS
crossover point. Eliminating PI control for DVS works because its cubic nature
compensates for using a low voltage, and eliminating PI control for hybrid DTM
works because the fixed ILP response can be matched to the crossover point.

6.1.4 MC. Except for the ideal DVS and ideal hybrid schemes, MC is the
best DTM technique that ensures physical reliability. MC works well for three
reasons. First, the floorplan we used by itself is enough to reduce the operating
temperature of the primary integer register file. This shows the importance of
considering on-chip thermal diffusion in designing the floorplan. Second, MC
is able to exploit instruction-level parallelism. Third, the complete elimination
of activity in the primary register file allows it to cool quickly, minimizing the
time during which the slower secondary register file is needed.

It is interesting to note that MC alone is not able to prevent all thermal
violations. Our MC technique engaged the fallback technique for four of the
benchmarks, gzip, bzip2, gcc, and art: 6–9% of the time for gzip and bzip and
90–100% of the time for gcc and art. Even for these benchmarks where the
fallback technique is used, performance with MC–FG is better than with the
toggling, DVS, or hybrid techniques, so the migration does provide clear value
added. This is even true for art. Yet it also means that the choice of fallback
technique can be important to performance. Compared to GCG or FG as the
fallback, results are much worse if we use DVS as the fallback, again because
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of the overhead of stalls required when engaging DVS. Ideal DVS does not have
this problem, and performs slightly better as a fallback than GCG or FG.

It might be that issue logic which can adapt to the differing latencies of
the primary and secondary register files would be too complex. If the secondary
register file is not accessed early to account for its extra latency, the performance
overhead rises from 11.2% to 18.8%.

Other floorplans that accommodate the spare register file may give different
results, and spare copies of other units may be useful as well, especially for pro-
grams that cause other hotspots. We have not yet had a chance to explore these
issues. Another study we have not had a chance to perform is the cost-benefit
analysis of whether the extra die area for the spare register file would be better
used for some other structure, with hybrid DTM as the thermal-management
technique. But these results and recent work by Heo et al. [2003] suggest the
potential of trading-off area for thermal control. These results suggest that
migration and explicit consideration of floorplan issues are promising ways to
manage heat. And once alternate floorplans and extra computation units are
contemplated, the interaction of performance and temperature for microarchi-
tectural clusters e.g. [Canal et al. 1999] becomes an interesting area for further
investigation. Our MC results also suggest the importance of modeling lateral
thermal diffusion.

6.1.5 Summary of DTM Behavior.. The results reported here clearly show
the value of DTM techniques that can exploit ILP. Both the Hyb and MC tech-
niques obtain substantial benefits from ILP, although MC requires extra die
area for a spare copy of the register file. New techniques for more effectively
extracting ILP and for migrating computation are promising areas for future
work. Our results also show the drawback of using DVS unless the associated
stalls can be drastically reduced.

6.2 Role of Sensor Error

Sensor noise hurts in two ways; it generates spurious triggers when the tem-
perature is actually not near violation, and it forces a lower trigger threshold.
Both reduce performance. Figure 11 shows the impact of both these effects for
our DTM techniques (for TTDFS and DVS, we look at the nonideal versions)
in terms of what percentage of each techniques slowdown can be attributed to
sensor effects. Sensor error clearly has a significant impact on the effectiveness
of thermal management. MC, DVS, Hyb, and TTDFS are the most sensitive
to sensor noise because each incurs significant overhead for changes in DTM
setting—overhead that is wasted on spurious changes caused by noise. On the
other hand, even though TTDFS is sensitive to noise, the impact of the differ-
ent threshold on TTDFS was negligible. That is because the TTDFS change in
frequency for 1◦ is negligible.

Overall, these results also indicate not only the importance of modeling tem-
perature in thermal studies, but also the importance of modeling realistic sen-
sor behavior and of finding new ways to determine on-chip temperatures more
precisely.
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Fig. 11. Slowdown for DTM from eliminating sensor noise, and from the consequent increase in
trigger threshold to 82.8◦.

7. CONCLUSIONS AND FUTURE WORK

This paper has presented HotSpot, a practical and computationally efficient ap-
proach to modeling thermal behavior in architecture-level power/performance
simulators. Our technique is based on a simple network of thermal resistances
and capacitances that have been combined to account for heating within a block
due to power dissipation, heat flow among neighboring blocks, and heat flow
into the thermal package. The model has been validated against finite-element
simulations using Floworks, a commercial simulator for heat and fluid flow.
HotSpot is publicly available at http://lava.cs.virginia.edu/hotspot.

Using HotSpot, we can determine which are the hottest microarchitectural
units; understand the role of different thermal packages on architecture, perfor-
mance, and temperature; understand programs’ thermal behavior; and evalu-
ate a number of techniques for regulating on-chip temperature. When the max-
imum operating temperature is dictated by timing and not physical reliability
concerns, “temperature-tracking” frequency scaling lowers the frequency when
the trigger temperature is exceeded, with average slowdown of only 4.5%, and
only 3% if the processor need not stall during frequency changes. When phys-
ical reliability concerns require that the temperature never exceed a specified
value—85◦ in our studies—the best solutions we found were to provide a second
register file and migrate computation between them (11.2% slowdown) and a
hybrid technique that combines fetch gating with DVS (23.1% slowdown, and
only 7.7% slowdown if no stalls are needed during frequency changes). These
schemes perform substantially better than global clock gating, fetch gating, and
DVS—which exhibit slowdowns of 27–36%—because they exploit the ability of
instruction-level parallelism to hide small disruptions in instruction flow.

A significant portion of the performance loss of all these schemes is due to
sensor error, which invokes thermal management unnecessarily. Even with a
mere ±1◦ noise margin, sensor error was responsible for as much as 67% of the
slowdowns observed.

We feel that these results make a strong case that runtime thermal manage-
ment is an effective tool in managing the growing heat dissipation of processors,
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and that microarchitecture DTM techniques must be part of any temperature-
aware system. But to obtain reliable results, architectural thermal studies must
evaluate techniques based on temperature and must include the effects of sensor
noise as well as lateral thermal diffusion.

We hope that this paper conveys an overall understanding of thermal effects
at the architecture level, and of the interactions of microarchitecture, power,
sensor precision, temperature, and performance. This paper only touches the
surface of what we believe is a rich area for future work. The RC model must
still be validated against test chips, and can be refined in many ways, most
importantly to include the effects of heating in the metal layers due to wire
self-heating, heating in the I/O pads, the role of thermal interface layers in
the thermal package, and the impact of more sophisticated cooling techniques
such as heat pipes and variable-speed fans. The model can also be extended
to multiprocessor, chip-multiprocessor, and simultaneous multithreaded sys-
tems; many new workloads remain to be explored; and a better understand-
ing is needed for how programs’ execution characteristics and microarchitec-
tural behavior determine their thermal behavior. In terms of techniques for
improving runtime thermal management, many new DTM techniques are pos-
sible. Our results suggest that the most effective ones will exploit ILP as well
as the choice of floorplan. Clever data-fusion techniques for sensor readings
are also needed to allow more precise temperature measurement and reduce
sensor-induced performance loss. In addition to work in the microarchitecture
domain, temperature-awareness is also an interesting research area for other
components of a computer system as well as for scheduling policies within the
operating system. Finally, another important problem is to understand the in-
teractions among dynamic management techniques for active power, leakage
power, current variability, and thermal effects, which together present a rich
but poorly understood design space where the same technique may possibly be
used for multiple purposes but at different settings and points in time.
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