
c
�

2002. Appears in the 2002 Workshop on Memory Performance Issues, in conjunction with ISCA-29; Anchorage, Alaska, May 25,2002. 1

Adaptive Cache Decay using Formal Feedback Control

Sivakumar Velusamy, Karthik Sankaranarayanan, Dharmesh Parikh,
Tarek Abdelzaher, Kevin Skadron

Dept. of Computer Science, University of Virginia
Charlottesville, VA 22904

Abstract
This paper argues that adaptive techniques in processor architec-
ture should be designed using formal feedback-control theory.
We use the derivation of a controller for cache decay—a tech-
nique for leakage-energy savings—to illustrate the process of
formal feedback-control design and to show the benefits of feed-
back control. Control theory provides a powerful framework that
simplifies the task of designing an adaptive system. It provides
well-known control designs that are easy to tune for performance
and stability. Open-loop adaptation, on the other hand, is vulner-
able to unacceptable behaviors when presented with workloads
or conditions that were not anticipated at design time. In con-
trast, feedback control responds to unanticipated behaviors and
provides robust operation in cases where open-loop designs fail.
Since interest in adaptivity only continues to grow, the need for
feedback control techniques and formal design techniques can
only grow accordingly. Although our work so far leaves several
open questions—especially the question of how best to choose
the control setpoint—we hope that this paper will demonstrate
the value of formal feedback control and provide guidelines for
its general application in architecture research.

1 Introduction
Runtime adaptation has become a topic of great interest in the
architecture community, because it allows the microarchitecture
to adjust according to a particular application’s needs. The great-
est amount of work has been in power-aware computing, where
a variety of techniques have recently been proposed to recog-
nize idle resources or reduced bandwidth requirements and se-
lectively deactivate portions of the system.

This paper presents early work to demonstrate the benefits
of formal feedback control theory as a design methodology for
adaptive techniques, and to develop general guidelines for the
application of control theory in computer architecture.

Most adaptive schemes in the architecture literature use open
loop response. “Open loop” refers to the fact that the magni-
tude of response is fixed and cannot be adjusted at runtime to
ensure that the desired behavior is obtained. Open-loop tech-
niques work well when the application’s behavior is known be-
forehand, but open-loop techniques can perform poorly in un-
predictable systems and for unanticipated workloads. Feedback
control closes the loop by defining target metrics and error terms
for the system being controlled, monitoring the error, and guid-
ing adaptation to minimize this error. Feedback control can
therefore allow the adaptive response to adjust to a wide range
of behaviors and can respond to unanticipated workloads or be-
havior.

Feedback control can be designed without using formal con-
trol theory, leading to arbitrary control loops and empirically de-
termined control parameters. In many cases these systems work

perfectly well. Yet ad-hoc feedback systems are difficult to tune
(often requiring exhaustive parameter-space searches), are prone
to instability, and are difficult to analyze formally. Formal feed-
back control theory uses difference or differential equations as a
fundamental analysis tool. It is often no more difficult—and of-
ten easier—to take a formal approach to controller design. Con-
trol theory as proven successful in the engineering community
in controlling a vast variety of nonlinear, stochastic, and time-
varying physical systems. The popularity and success of con-
trol theory is in part due to the wealth of developed results that
provide well-known controller designs that are easy to tune and
analyze, allow designers to reason about the behavior of their
control loops and prove bounds on their behavior, � and allow
designers to use closed-loop properties to force that behavior to
adhere to a set of performance and stability specifications us-
ing a well-understood analytic approach. An equally important
factor to the success of control theory lies in its robustness in
the face of modeling errors and external disturbances. The per-
formance guarantees obtained from control-theoretical analysis
remain largely unaffected even when the controlled system has
not been accurately modeled in the analysis, or when external
factors that have not been accounted for at design time interfere
with its operation.

Related Work. The design of control systems is of course
a mature field with a history dating back at least as far as the
1600s. Numerous textbooks exist that describe its basic prin-
ciples, e.g. [5, 6]. Control-theoretic approaches have been ap-
plied to a variety of aspects of computer systems design out-
side the computer-architecture realm, including CPU schedul-
ing [14, 24], web server quality-of-service management [13, 15],
and Internet congestion control [8]. At the circuit level, voltage
scaling [4] and current-canceling for leakage control [25] use
feedback control, but without using control theory to derive sta-
ble control or to prove properties about the resulting system. The
only use of formal feedback control that we are aware of in the
architecture literature is our own prior work on temperature reg-
ulation [19].

Contributions. This paper provides general guidelines on
how to apply formal controller-design techniques to a desired
adaptive behavior, including how to model the underlying sys-
tem behavior, how to select a setpoint (target metric), how to
select sampling rates, and how to implement controllers in hard-
ware. This is most easily demonstrated using a concrete exam-
ple, for which we choose cache decay.

Formal feedback control is not a panacea. It can be difficult
to find the correct runtime metric to control, difficult to find a
suitable controller design, and difficult to tune the controller to
provide acceptable performance. However, the formal part of

� Other ways of proving bounds are of course possible, e.g. the
competitive-algorithms approach in [10].

feedback control is usually not the problem, but rather under-
standing the system and the right way to abstract it into a con-
trol loop. These problems are present regardless of whether any
formal control techniques are even being considered. Although
the formalism of control theory can be intimidating, we have al-
ways found that it helps to guide our design and understanding
of the system, and found that once we discover suitable control
mechanisms, the formal analysis is straightforward and usually
simplifies tuning of the final design.

Despite the occasional challenges of formulating feedback
control, we argue that with the increasing use of adaptive mecha-
nisms, the need for closed-loop response to ensure robust behav-
ior is inevitable. We propose that the design of these feedback
control systems should start from formal, control-theoretic for-
mulations. These formulations are no harder to work with than
ad-hoc control loops, are often able to simplify the design and
tuning process, and make the system easier to analyze.

2 Cache Decay
Cache decay [10]—the running example throughout this
paper—is a technique for leakage-energy savings that waits for
some pre-determined time, the decay interval, before conclud-
ing that a cache line’s data is no longer in use and that the line
can be deactivated. In almost all formulations of cache decay, re-
gardless of whether cache decay is performed using gated-V ���
or lower-overhead techniques like reverse body bias [11, 17], the
decay interval is a fixed parameter that is determined empirically
at design time, thus creating open-loop response. For example,
an application that strides through some portion of the cache at a
rate just slower than the decay interval will miss on every cache
line even if the data fits in the cache. Even if the decay interval
is reasonable for all anticipated applications, this average setting
may be substantially sub-optimal compared to the ideal value for
each individual application, as we show for perl in Section 5.

Feedback Control for Cache Decay. Zhou et al. [27] ob-
served this variable application behavior for cache decay, and
proposed an informal feedback-control cache-decay scheme that
they call Adaptive Mode Control (AMC). Unlike open-loop
cache decay, which decays both the tag and data portions of a
cache line, AMC keeps the tags powered on to track the rate of
induced misses (misses caused by mistakenly deactivating lines
that contain data still in use) relative to the true miss rate. AMC
doubles or halves the decay interval if the induced-miss ratio ex-
ceeds a specified threshold. Unfortunately, the AMC work did
not go on to directly evaluate whether the proposed feedback-
control scheme actually adapts to changing application behav-
ior, nor did they evaluate the hardware cost for implementing
feedback control.

This paper shows how to develop a formal feedback-control
design for cache decay that uses the same tag-based technique
for identifying and controlling induced misses. We show that
both the formal and AMC feedback designs do adapt to chang-
ing application behavior, shows that they both guard against di-
vergent behavior that makes open-loop decay behave badly, and
evaluates the hardware cost. The formal controller, which we
call IMC (integral miss control), gives almost the same perfor-
mance as AMC, and IMC was easy to design and tune. These
observations suggest that the ad-hoc approach confers no advan-
tage, and so there is no reason not to use the control-theoretic
approach when designing closed-loop response.

Cache-Decay Background. Cache decay using gated-V ��� ,
proposed by Kaxiras et al. [10], builds on prior, coarser-
granularity work by Yang et al. [26]. The basic idea is to use

counters to detect when a line in the cache has been idle for some
time and from this, infer that the data stored there is decayed—
no longer in use. Gated-V ��� saves leakage by disconnecting idle
lines from the supply voltage when a line’s idle counter reaches
its maximum. This loses state within the cache line and requires
the valid bit to be turned off. This is harmless if the next access
to that line would have been an eviction; but if useful data was
discarded, the next access will be an induced miss.

Kaxiras et al. use a global counter that counts from zero up
to one-fourth the decay interval and then starts over. Each line
uses a local two-bit counter; when the global counter reaches its
maximum value, all two bit counters are incremented. When a
two-bit counter reaches its maximum, the line has been idle for
the full decay interval; it is assumed that the line’s usefulness
has decayed, and the line is deactivated. The AMC decay mech-
anism also uses a global counter to track elapsed time and local,
per-line counters to track per-line idleness. The details differ
slightly from the technique proposed by Kaxiras et al., but the
essence of its operation is the same.

AMC [27] and the per-line adaptive scheme from the orig-
inal cache decay paper [10] are the only cache-decay mecha-
nisms that we know of using feedback control. Like AMC, the
per-line scheme from [10] adapts by multiplying or dividing by
two. Instead of storing the per-line decay interval or doing the
arithmetic within each line, per-line decay uses a set of global
decay counters and each line chooses the decay interval that it
wants: if the per-line counter is at either extreme, the interval
selects the twice-larger or half-smaller interval. Unfortunately,
this requires a somewhat expensive multiplexor per line. The
dependence upon the local counters also means that the sensitiv-
ity of this scheme to noise cannot be tuned for performance or
stability.

3 Evaluation Framework

3.1 Performance, Power, and Temperature
Simulation

Performance and Miss/Decay Rates. To model cache
decay, we extend the cache-decay simulator that Kaxiras et al.
used in their work [10]. Our extensions consist of supporting as-
sociativity for cache decay, adding the AMC technique, and of
course adding our controllers. For our work here, we approxi-
mately model the Alpha 21264, as shown in Table 1. The hybrid
branch predictor [16] is SimpleScalar’s slightly simplified ver-
sion, using bimodal predictors as the chooser and as one of the
components. We do not model the register-cluster aspect of the
21264.

AMC Modeling and Validation. AMC proposed the idea
that we have adopted, that the cache tags are never put to sleep.
This allows the separation of overall misses into ideal misses
and induced misses. AMC achieves adaptivity by doubling or
halving the decay interval in response to induced misses. This
heuristic operates as follows: using a sampling interval of one
million cycles, the number of induced misses is compared to
the number of ideal misses. If the number of induced misses
is within a specified tolerance, the decay interval in left un-
changed; otherwise it is doubled or halved in the appropriate
direction. The tolerance, or performance factor (PF), is speci-
fied as a fraction–50% in the AMC work. In other words, the
observed miss rate can vary within

�����	�
of the ideal miss rate.

Large PFs yield very high turn-off ratios and for high miss rates,
this results in poor energy savings for a number of benchmarks.
We selected a PF for our experiments by testing a range of PFs
and choosing the value that gives the best overall energy sav-

2

Processor Core
Instruction Window 80-RUU, 40-LSQ
Issue width 6 instructions per cycle

(4 Int, 2 FP)
Functional Units 4 IntALU,1 IntMult/Div,

2 FPALU,1 FPMult/Div,
2 mem ports

Memory Hierarchy
L1 D-cache Size 64 KB, 2-way LRU, 64 B blocks
L1 I-cache Size 64 KB, 2-way LRU, 64 B blocks

both 1-cycle latency
L2 Unified, 2 MB, 4-way LRU,

32B blocks, 11-cycle latency, WB
Memory 100 cycles

Branch Predictor
Branch predictor Hybrid:

4K bimod and 4K/12-bit/GAg
4K bimod-style chooser

Branch target buffer 1 K-entry, 2-way

Table 1: Configuration of simulated processor microar-
chitecture.

ings. Because energy is a function of execution time, this same
PF also gave good execution performance, with small degrada-
tions in IPC. (For zero degradation, of course, the PF can simply
be set to zero, disabling decay.)

We replicated as exactly as possible the AMC technique. We
validated our implementation by using the processor configura-
tion specified in the AMC work and compared results for our
four SPEC95 benchmarks to those reported in the AMC work.
All of the data cache configurations in that paper were simulated.
The IPC degradation and the turn-off ratios (mean ratio of deac-
tivated to active lines) match very closely with results from [27].

Leakage. Some other work on leakage energy, like [7, 10],
has already explored the sensitivity of cache-decay techniques
to various technology parameters. This paper instead focuses on
design and performance issues for feedback control, so we take
a single set of energy parameters. The behaviors we observe and
the guidelines we present are not closely tied to any particular
set of assumptions about energy modeling.

For cache decay, we are primarily interested in modeling
leakage energy. As in [10], we use data from Yang et al. [26].
For leakage power, they have estimated that with a ��� ��� C oper-
ating temperature, a 1GHz operating frequency, a supply voltage
of 1.0V and a threshold voltage of 0.2V, an SRAM cell consumes
about ����� �	� � ��

� nJ leakage energy per cycle. This is roughly
in line with industry data we obtained from Agere’s COM3 and
COM4 process generations [9]. Based on this data, we com-
puted that each line in the cache leaks ��� � � � �
�� nJ per cycle.
The operating temperature of ��� � � C is a reasonable expectation
for a next-generation process generation according to the SIA
roadmap [18].

When applying gated-V ��� , typically only about half this leak-
age energy is saved. This is because, when the gate transistor is
between V ��� and the cell, as proposed in [26], there are still
some paths to ground for leakage. The most significant is leak-
age from the precharged bit lines to ground. Gated-V ��� is much
more effective, because it puts one more off transistor on the path
to ground, reducing leakage by about 90–95%. Gated-V ��� how-
ever has a higher cost to reactivate a line. This is due to charge
accumulation. Agere data suggests that a reasonable estimate for
the per-line reactivation cost for gated-V ��� is 1.89 nJ [9]. Pre-
vious cache-decay studies have not accounted for either of these
effects (the need to use gated-V ��� rather than gated-V ��� and the
corresponding reactivation cost).

To compute total energy savings—which we refer to as en-
ergy profit or ��� —we first compute the leakage energy saved
using the per-line leakage numbers detailed above, the number
of lines decayed, and the number of cycles the lines stay de-
cayed. In doing so, we assume that it takes 5 cycles for a line
to be deactivated or reactivated [9]. To account for the costs of
decay, we subtract the energy overheads caused by the induced
misses and induced writebacks due to the extra accesses to the
lower level (L2 in our case). The energy estimate we use for an
L2 access is 8 nJ. For any line that is reactivated, regardless of
whether it is for an induced or an ideal miss, we charge the reac-
tivation cost. Finally, we factor in the effect of performance loss
due to induced misses and induced misses in our energy calcu-
lations. We assume an average CPU dynamic energy dissipation
of 31.8 nJ per-cycle (This number was obtained by running var-
ious benchmarks on the Wattch simulator [3] for a 0.18 � pro-
cess, 2.0V � ��� , and 1 GHz clock rate) and multiply this by the
performance degradation (in number of CPU cycles) due to de-
caying cache lines. We then subtract this from the energy value
above to obtain the total energy savings or the profit that takes
into account both the energy saved and the energy overhead due
to induced misses.

Why Gated-V ��� ? Since the original cache-decay work,
Hanson et al. [7] have explored techniques for saving leakage
energy in the cache without losing state, and many other research
groups are searching for even better techniques. Hanson et al.
examine dual-V � and reverse-body-bias (RBB) designs (which
they call MTCMOS). Dual-V � is a static design that imposes
a high-threshold (that is, high V �) transistor on the periphery of
the cache circuitry, reducing leakage from the low-V � transistors
at the cost of slower read times. RBB [11, 17] controls the back-
gate bias to raise the effective V � . Like gated-V ��� , RBB does
not increase the cost of cache accesses for active lines, and RBB
has the added advantage that deactivated lines do not lose state.
But deactivated lines take some time to be reactivated, which is
similar in some ways to an L2 cache miss. RBB also has a much
higher cost to activate and deactivate lines. Both effects mean
that, just like with gated-V ��� , deactivation must be performed
judiciously using a decay interval.

For this paper, we use the original, gated-V ��� instead of some
other technique like RBB for two reasons. First, we wish to com-
pare our formal controller against the AMC technique proposed
by Zhou et al., who studied the original decay mechanism. Sec-
ond, there is a greater range of literature available, which we
found helpful in validating our decay and energy models.

It is important to note that the focus of this paper is on the
versatility of control theory. Our work is not intimately tied to
the use of gated-V ��� . The controllers and analysis we present
are common formulations that are straightforward to map to
other adaptive mechanisms within a computer system that have
nothing to do with caches—for example, resizing of the instruc-
tion queue [1] or choosing a voltage/frequency scaling level [4].
Mapping these formulations to an alternative cache-decay mech-
anism like RBB is even easier, because the same dynamic model
can be used and only a few parameters need be changed.

3.2 Benchmarks
We evaluate our results using a mixture of benchmarks from the
SPECcpu95 [23] and SPEcpu2000 [22] suites. Summary statis-
tics are given in Table 2. Because our department has a mix-
ture of big-endian and little-endian machines, we used a mix-
ture of benchmarks compiled for the Alpha and PISA instruc-
tion sets. The benchmarks are compiled and statically linked
using either the Compaq Alpha compiler (with peak settings) or
SimpleScalar gcc-PISA compiler (with -O3 -funroll-loops) and

3

FF Miss rate Miss rate IPC � �
(Dcache) (Icache) (best)

spec95
gcc 221 M 1.46% 0.23% 1.82 32 K
go 926 M 0.47% 0.05% 1.76 64 K
ijpeg 824 M 0.36% 0.00% 2.31 16 K
li 271 M 0.42% 0.00% 1.94 64 K
spec2k
crafty 2 B 1.23% 0.02% 2.36 32 K
parser 2 B 2.15% 0.00% 1.69 32 K
perl 2 B 0.43% 0.16% 1.89 512 K
vpr 2 B 4.38% 0.00% 1.78 8 K

Table 2: Summary statistics used for the benchmarks in
this study. All benchmarks use reference inputs. Note
that the best fixed decay interval is probably not actually
a power of two.

include all linked libraries. A given program was always run on
the same system type and environment to preserve reproducibil-
ity. For each program, we skip some fast-forward interval to
avoid unrepresentative startup behavior at the beginning of the
program’s execution, and then simulate 500 million (committed)
instructions using the reference input set. SPEC95 fast-forward
intervals were taken from [20] and SPEC00 fast-forward inter-
vals were set at two billion committed instructions, which seems
to be a common value.

The benchmarks in the AMC work used only SPEC training
inputs which ran for a very short time. The use of reference
inputs and longer simulation times gives the controllers more
opportunity to demonstrate their adaptability—or to demonstrate
oscillating or saturating behavior.

4 A Roadmap for Applying Control
Theory in Computer Architecture

In this section we give a framework for designing feedback con-
trol by describing the process for designing a simple but ef-
fective digital integral controller for cache decay. In the rest
of the paper, we evaluate this controller against open-loop and
AMC cache decay. Because, to the best of our knowledge, the
formalities of digital feedback control have not been presented
elsewhere in the computer-architecture literature, this section
presents these formalities in some detail for instructive and easy
reference purposes. Although the formalism of control theory
can be intimidating, in practice we have found that its use is in
fact easily learned and usually amenable to a straightforward,
“cookbook” approach. Furthermore, we have always found that
the formalism helps to guide our design and understanding of
the system, forcing us to attend to potential problems that we
would otherwise have only found much later.

actuator
 (Ka)

system
dynamics
 (Kp)

sensor
 (Ks)

controller
 (Kc)

setpoint e[k−1]

measured value

(physical plant)

y[k] (controlled parameter)

(manipulated parameter)

(error)
u[k−1]

Figure 1: A typical feedback control system.

4.1 Mapping Adaptive Techniques onto
Control Loops

The Control Loop. A typical feedback control system,
shown in Figure 1, is composed of a control loop with a setpoint,
a controller, a system or “physical plant” being controlled, an
actuator which manipulates some parameter within the system,
and a sensor. The setpoint of the control loop is the target value
of the controlled parameter, which for example might be a spec-
ified number of induced misses. The controller output is com-
puted from the error between the setpoint and the value mea-
sured by the sensor for the controlled parameter. This output is
translated by the actuator into some change in the manipulated
parameter—a change in the decay interval � � in our example.
This change then affects behavior of the system (more or fewer
lines are deactivated) and hence changes the behavior of the con-
trolled parameter (more or fewer induced misses are observed).

In many systems, the actuator and sensor do not disturb the
signal, so they can be omitted from the control loop. That is the
case here. Typically, the sensor and actuator are only relevant
if they scale the input, in which case their gain is equal to their
scaling factor. Note also that the units going around the loop
must be consistent. This is essential for analysis and an accurate
computation of ��� . It is also an excellent sanity check that has
uncovered many flaws in our early controller designs.

For straightforward design, the setpoint must be a value that
can be tracked, rather than an unquantifiable minimization or
maximization. The manipulated variable is the parameter that
is implementing the adaptation; for cache decay it is the de-
cay interval � � . The choice of setpoint dictates the controlled
variable. For cache decay we chose the setpoint in terms of a
reference rate of induced misses.

�
The controller therefore at-

tempts to keep the induced miss rate as close to this setpoint as
possible. Note that the setpoint is not zero. This would drive a
feedback system to values of � � high enough to stop deactiva-
tion altogether. We chose a rate because it yields the simplest
control loop. Note that the AMC target that is based on a rate
with a performance factor does not easily translate to a setpoint.
It yields a non-linear controller, as seen in Figure 2, that is more
difficult to analyze. More discussion of these two different tar-
gets for the controlled parameter appears in Section 5.

For our implementation, we chose the value for the setpoint
by first determining the best constant (non-adaptive) decay in-
terval data for various benchmarks. Then the induced miss rate
that corresponds to the best average performance in terms of IPC
and energy savings was selected as the setpoint. Closed-loop
control then adapts to varying application behavior by holding
the induced-miss rate to the setpoint.

Continuous vs. Digital Control. Linear control tech-
niques can generally be classified into continuous or analog con-
trol and digital or discrete control. The two techniques differ in
the way they model the underlying system for the purposes of
controller design. Analog control assumes that the controlled
system produces a continuous output described by a differential
equation. Examples of such systems include physical processes
operating in continuous time. Digital control assumes that the
output of the controlled system is relevant (or known) only at
discrete (usually equidistant) points in time. The output is there-
fore described by a sequence of numbers generated by a differ-
ence equation. Sampled systems, like the one we develop here,
are often described by discrete time models.
�
For units agreement, the control loop requires the setpoint to be in

terms of number of misses rather than a rate. Since we used a fixed
sampling rate, this is straightforward.

4

e[k−1] y[k] Kp

integrate

measured misses

misses Td[k−1] log Td log Td xe

Figure 2: The AMC control loop.

Proportional Response. The most common controller de-
sign is proportional response, which for digital control can be
expressed by: ��� �������
	��

� ��
 � ��� (1)

Where
��� ���

is the value of the manipulated parameter (decay
interval for cache decay) for sampling period

�
,
� 	

is some fixed
offset determined off-line, ��� is the controller gain, and
 � ��� is
the error observed at sampling period

�
. The gain of this system

is � � . The relationship between the manipulated variable
��� ���

and the controlled variable � � ��� is modeled by a process gain
� � such that we expect:

� � ���
� � � ��� ��� �
�

(2)

(For linear control theory, � � is a constant. Many non-linear
systems can be linearized, but that is beyond the scope of this
paper.)

Proportional response works well when the system is ex-
pected to fluctuate about a steady-state value

� 	
for the manip-

ulated variable. Because integral response is more flexible and
the analysis is more interesting, we will not further consider pro-
portional control.

More About Process Gain. � � is an inherent property of
the physical plant that conveys the magnitude of the system’s
response to a change in the manipulated parameter—in our ex-
ample, � � conveys how a change in � � affects the expected
induced-miss rate. 5observed at sampling instant

�
, is deter-

mined
The purpose of control-theoretic analysis is to choose � � to

match � � and avoid unstable behavior. If � � is chosen with-
out consideration for the system’s magnitude of response and
� � is too large, then a sufficiently large error (due to unantici-
pated system behavior or noise) can cause the system to become
unstable and oscillate: a large error causes a large change in��� ���

, which causes a large error in the other direction and so on.
Even if oscillation does not ensue, the large gain often means
that the controller has difficulty tracking the setpoint and infe-
rior performance results. One of the major benefits of this sim-
ple control theoretic analysis is therefore not just the guarantee
of stability, but the formal determination of controller gain to
efficiently track the setpoint. With adequate dynamic models of
the system, control theoretic analysis therefore provides the cor-
rect value of gain “for free”—a major motivation to use formal
rather than ad-hoc feedback control. We consistently found that
tuning the gain empirically was extraordinarily difficult, requir-
ing large parameter-space searches, but with control theory and
an adequate model of the system’s dynamics, the correct gain
simply “falls out” of the analysis.

Deriving � � is the subject of Section 4.2.

Integral Response. A more flexible and responsive con-
troller that is better suited for cache decay is integral response,
which for digital control can be expressed by:��� ���
����� ���

�
���
� ��
 � ��� �

�
(3)

The only change from equation 1 is that the value of the manip-
ulated parameter remembers all the previous changes:

��� �����

��� � ��� � �
 � � ��� � �
 � ����� � � �
�
� �
 � ��� For cache decay, equa-

tion 3 becomes:

� �
� �����

� �
� ���

�
���
� �
 � ��� �

�
(4)

where � � is the decay interval. This is an intuitive way to make
cache decay adaptive. Regardless of the initial state of the sys-
tem, � � will converge to track the system behavior. Once a value
of � � is found that eliminates the error, � � will become constant
until the system behavior again changes. This controller is pic-
tured in Figure 3.

e[k−1] y[k] KpKc

integrate

measured misses

misses Td Td[k−1]

Figure 3: The control loop for our revised cache-decay
controller in equation 4

Next we take the � -transform of Equations (2) and (3) to com-
pute a transfer function for the individual blocks and the loop as
a whole in Figure 3. The transfer function simply gives the rela-
tionship between the input and output signals and are typically
expressed using the � -transform. The � -transform is a widely
used technique in digital control literature that transforms dif-
ference equations into equivalent algebraic equations that are
easier to manipulate. It is the digital equivalent of the Laplace
transform for frequency-domain analysis. While a review of � -
transform is outside the scope of this paper, the two main prop-
erties that make it extremely useful for difference equation anal-
ysis are presented for completeness below:� Property 1: If the � -transform of a sampled function � � ���

in the discrete time domain is denoted by � �!��" , the time-
shifted function � � � �$#
� has the transform �
&% �'�!��" .
Translation of time-shifts into powers of � allows trans-
lating difference equations into algebraic ones by means
of � -transform.� Property 2: If (� and (� are two functions in the discrete
time domain, the � -transform of (� �)(� �

� "*" is + � �!��",+ � �!��" ,where + � �!��" and + � �!��" are the � -transforms of (� and (� .
This property allows the reduction of large signal flow di-
agrams of cascaded blocks into the product of the block’s
respective � -transforms.

From the above rules, it is easy to see that the � -transform of
Equations (2) and (3) lead to the relations:

���!��"� �!��"
� �
 � � � (5)� �!��"

 �!��"
� �
 � � �

�
� �
 �

(6)

giving us the transfer functions for the two major blocks in Fig-
ure 3. That loop can now be redrawn to show these transfer
functions, as in Figure 4.

5

integrate

measured misses

misses Td−1
−1

z Kc
1 − z

−1z Kpe(z) u(z) y(z)
r(z)

Figure 4: The control loop from Figure 3 showing the
transfer equations for the control and process blocks.

Selecting the Controller Gain and Stability Analysis.
To select the gain � � , we wish to choose a value that is commen-
surate with the behavior of the system to rapidly track changes
while giving stable behavior. Stability analysis meets both of
these goals by relating the � � to the impact of any other trans-
formations in the control loop. From the product of Equation (5)
and Equation (6), and because
 �!��" ��� �!��" � ���!��" , we follow
the loop in Figure 4 to obtain:

���!��" � � � � ���

 �

�
� �
 �

� � �!��" � ���!��"*" (7)

���!��"� �!��"
� �������	��

�

�

 �
��

�
� �������	�

�

�

 �
�� (8)

This gives the transfer function for the loop as a whole and puts
the equation in the form needed for stability analysis. The sig-
nificance of the above expression lies in that it relates the set
point or design objective

�
, to the actual value of the controlled

variable � . If � were to track
�

perfectly at all times, the above
transfer function would have been equal to unity. This, how-
ever, is not realizable due to system delays, inertia, and similar
factors. Instead, stability analysis defines the conditions under
which � asymptotically approaches

�
. Stability analysis begins

by computing the values of � that set the denominator of Equa-
tion (8) equal to zero, i.e, solving the equation:

� � � � � � � � � � �
(9)

This is known as the characteristic equation and in this case
gives us a quadratic formula. Because of the square root in the

quadratic formula
��� ��� � �

��� �� � , the roots lie somewhere in

the complex plane. Stability requires that the roots of the char-
acteristic equation be within a unit circle from the origin of the
complex number plane. Rather than solving this manually, once
the characteristic equation (equation 9) is known, Jury’s test [12]
is a simple way to derive the stability constraint. For quadratic
equations (��!��" ���

� � � ��� � �
����	

, with
�
��� �

, no root will
be on or outside the unit circle provided that:

(���� " � �
(10)

(�� � � " � �
(11)� � 	 � � � � (12)

For equation 9, (10) requires that ��� � � � �
; (11) that

� � � � � � � , and (12) requires that � � � � � � .

4.2 Establishing Dynamic Models
Determining � � , � � , and � � requires a model for the dynam-
ics of the plant, actuator, and sensor. For cache-decay mecha-
nisms, the controller computes � � directly. The actuator sim-
ply enforces � � and hence does not contribute to loop dynam-
ics. For simplicity, we also assume an exact sensor that uses the
cache tags to distinguish induced misses from genuine misses,
so � �

�
� .

We also assume for simplicity that � � is a scalar, which is
required for the linear analysis given above and implies that the
system response in terms of induced misses is linear with re-
spect to the decay interval. In fact, as Figure 5 shows, the re-
sponse is exponential (note the logarithmic x-axis). Yet � � need
only be an approximate model of the system. Inaccuracies in the
controller’s runtime estimation of � � will be corrected by feed-
back. We want to design a conservative controller that will be
stable regardless of how strongly � � affects the number of in-
duced misses; as long as we design for a worst-case value of � �
that represents the system’s strongest response to a change in � � ,
then when we have less than worst case behavior, the controller
will adapt somewhat more slowly.

For the control loop in Figure 3, � � must be in units of
lines/cycle. The input to the physical plant is � � in units of
clock cycles, and the output is the number of induced misses
in terms of cache lines. We use units of “lines” to avoid confu-
sion between induced and genuine misses; a cache line can have
at most one induced miss per decay interval, because lines can
only be deactivated at the end of each decay interval.

Some systems have an inherent or natural response that re-
quires no further modeling. For example, the thermal work
in [19] takes advantage of the thermodynamic fact that the
steady-state response of temperature as a function of power dis-
sipation is given by the thermal resistance. � � is therefore sim-
ply the thermal resistance, and this step is trivial.

More generally, the system model may be computed dynam-
ically from input-output measurements. Such measurements
must be taken over a sufficiently large interval of time to aver-
age out noise. When the input is varied randomly, the resulting
change in the output (controlled variable) gives the system re-
sponse. Least-squares estimation is commonly used to fit input-
output measurements to a difference equation. This is called
model estimation. The resulting equation can be used for the
control analysis demonstrated above (in place of Equation (2)).

A difference equation model inherently assumes that the cur-
rent value of the controlled variable is correlated to a finite se-
quence of past inputs. If the system has no “memory”, the cur-
rent value of the controlled variable is unlikely to be correlated
with old inputs. Hence, the difference equation model collapses
to a single coefficient that relates the current input to the current
output (without consideration to the past). In many cases, a suffi-
cient way to estimate system response is to measure the slope of
the curve relating the steady-state or average values of the con-
trolled variable to the corresponding values of the manipulated
(input) variable. The advantage of using average response is that
it cancels out noise and prevents it from giving erroneous values
for � � . Measuring average response is easy to do for cache de-
cay. We simply run, for a representative sample of benchmarks,
simulations in which we measure the average rate of induced
misses for a given � � . If we repeat this for several values of � � ,
we obtain curves like the one for SPEC95 perl in Figure 5. Perl
is the benchmark that gives the steepest slope, although the slope
for several other benchmarks is nearly as steep.

Perl (95)

0

50

100

150

200

250

300

4k 8k 16k 32k 64k 128k 256k 512k 1m
Td

In
d

u
ce

d
 M

is
se

s
p

er
 S

am
p

le Arith. Mean Stdev

Figure 5: Average number of induced misses as a function
of decay interval for SPEC95 perl.

6

The worst-case � � (the steepest slope) here is -0.033. Our
stability criterion requires that � � � � � � , or � �

�
��� � � . So

� ����� � . This is the threshold for stability, so we reduce � � by
a damping factor of 4 (a typical value) to choose a gain of 8.

We did test the effect of different gains; in practice, we find
that the system’s performance is insensitive to gain in the range
4–32, but above 64 we begin to get more energy savings for
some benchmarks (the controller can change � � faster in re-
sponse to a change in program behavior), but oscillation for
other benchmarks.

Often the best method to determine system response is ob-
vious, as with the cache decay and thermal examples. If not,
it may be necessary to try measuring both impulse and average
response to determine which is better.

4.3 Sampling Rate
For digital control, the final aspect of designing the controller
is the choice of sampling rate. For some systems, the sampling
rate may be dictated by the system or by physical limitations of
the sensor. In our case, the decay interval dictates a lower bound
on sampling rate, because we do not wish to change � � in the
midst of a counting interval and hence the fastest rate we can
use corresponds to the largest � � we consider. For two-bit line
counters and a max � � of 512 Kcycles, the minimum sampling
rate is 128 Kcycles.

Our cache-decay system accumulates a count of induced
misses over the last � � . If samples are an accumulated measure-
ment like this, slower sampling rates average out bursty behav-
ior but slow the controller’s response, creating a tradeoff. The
sampling rate needs to be fast enough to respond to important
changes in the program’s behavior. For example, for programs
with phase behavior, like the time-domain plot for compress in
Figure 6, we want � � to adapt early in each phase. Otherwise
� � lags significantly and its value is often a mismatch for the
program’s actual behavior. Ijpeg has an even more prominent

Time Domain Data (compress)

0

500

1000

1500

2000

2500

0 50000000 100000000 150000000 200000000 250000000

cycles

in
d

u
ce

d
 m

is
se

s
p

er
 s

am
p

lin
g

8 K

Figure 6: Time-domain data for the induced miss rate in
compress with a fixed, 8 Kcycle decay rate and a sampling
rate of 512 Kcycles.

period of about 2 million cycles. Gcc in contrast has no obvi-
ous period in the time-domain data, and other benchmarks fall
between these examples.

We set our � � at 512 Kcycles. This is slow enough to average
out some noise (because the maximum rate is every 128 Kcycles,
we are effectively taking a boxcar average of each 4 samples),

but fast enough to respond promptly even to the short phases of
ijpeg.

We also found that clipping was essential due to occasional,
high-amplitude noise (for example, when the working set is
changing but the underlying decay rate that corresponds to the
program’s usage pattern does not change). We settled on a clip-
ping value of +/- 50% of the setpoint.

4.4 How to Build Practical Systems
The only remaining question is how to implement formal feed-
back control in a practical way within a microprocessor—the
control computation from equation 4 must be computed every
sampling interval. The main issue is the potential cost in terms
of execution time (if done in software) or area and power (if done
in hardware). Although the above derivation may have made it
appear that the resulting controller is complex, in fact many con-
trol loops are so simple that they consist only of a few adds and
multiplies. For example, assembly code for our sample cache
decay controller appears in Figure 7.

Controller Implementation. The simplest solution is a
purely hardware implementation using dedicated arithmetic
units. Although the integer execution unit in most micropro-
cessors is large, this is because these units are part of a large and
complex datapath, and designers typically maximize the perfor-
mance to maximize clock rate. This leads to transistor sizings
of 10 X or more [21]. Dedicated hardware need not drive large
capacitive loads and need not compute so fast, allowing close to
minimum sizing. This makes the area and power of the requisite
controller hardware negligible.

The hardware requirements for our controller and for AMC
are fairly similar. For cache decay, note that any feedback sys-
tem requires registers for the current value of the controlled vari-
able (� �), and the current value of the observed variable � � ��� (the
number of induced misses). The implementation of our integral
controller only requires the addition of an adder, a multiplier, a
comparator, a shifter, and a PLA or ROM to drive them (note
that for low-speed design, neither PLA nor ROM will have sig-
nificant leakage). The size of the PLA/ROM is proportional to
the size of the state machine needed to drive the computation in
Figure 7. Typically, these can be fixed-point units with modest
precision; for our controller, integer units suffice.

Other Costs. The control computation itself can be imple-
mented at negligible area and power cost. But other aspects of
the controller design may present significant expense, and these
must be accounted for as well.

Cache decay presents an example. Both our controller design
and the AMC design require that the tags not be decayed, so that
induced misses can be distinguished. Since the leakage in the
tags is about 3.5% of the entire leakage of the cache (for 32-
bit addresses and 64-byte lines), this presents a substantial lost
opportunity. And as we see in the next section, this expense is
so large that it causes both feedback-control techniques to give
lower energy profit for some benchmarks than does simple open-
loop decay.

5 Evaluating Cache-Decay Control
In this section, we evaluate the integral controller (IMC) de-
scribed in the previous sections, comparing it to AMC and to
a simple open-loop controller that uses a single fixed � � of 32
Kcycles. On the assumptions that these parameters must be set
at the processor’s design time and that in any case profile-guided
feedback is unlikely, we have chosen tuning parameters for all

7

IM <- IM - 472 ; compute error
IM <- IM & 0xff ; clip error to +/- 255
IM <- IM << 3 ; apply controller gain by computing Kc * error
TD <- TD + IM ; Td[k] = Td[k-1] + Kc * error
TD <- TD & 512k ; clip Td at upper bound = 512k
tmp <- Td & 0xfffff000 ; test whether new value of Td < 4k
if (tmp == 0)

then Td <- 4k ; if so, clip Td to lower bound = 4k
IM <- 0 ; reset IM for next sample

Figure 7: Pseudocode for the sample cache-decay controller.

three cache-decay schemes that give the best behavior overall:
the fixed value of � �

�
32K for open-loop decay; and the val-

ues of 0.001 induced misses/cycle and PF = 0.3 for IMC and
AMC respectively. Note that for open-loop decay, no informa-
tion about induced misses is required and the tags can be de-
cayed in addition to the data array. The IMC and AMC schemes,
on the other hand, require information about which misses are
induced, and the tags must be left active at all times.

We evaluate the three techniques in terms of normalized
leakage savings, percent degradation in IPC, and turn-off ratio
(TOR). Normalized leakage savings is simply the fraction of to-
tal cache leakage (in the tag and data arrays) that is saved after
all overheads (induced fetches to L2, increased execution time,
etc.) have been subtracted. Percent degradation in IPC is of
course with reference to execution that does not use decay. And
turn-off ratio is the average fraction of lines that are deactivated
over the running time of the program. It quantifies, in a tech-
nology independent way, the leakage energy saved due to clos-
ing the cache lines. However, it does not indicate the overhead
incurred in closing them and more importantly the effect of per-
formance loss. For these reasons, our results show that TOR is
not a useful metric for evaluating leakage-savings schemes.

5.1 Effectiveness for Data Cache
Figure 8 shows the IPC degradation, normalized leakage sav-
ings (���) and TOR for the open-loop, IMC and AMC con-
trollers across the benchmarks. Table 4 summarizes the IPC-
degradation and leakage-savings results. Despite the negligi-
ble differences among all three schemes’ overall behavior that
is apparent from Table 4, Figure 8 shows that from an average
energy-profit standpoint, open-loop decay is actually slightly
better than the feedback controllers for the majority of bench-
marks. This is due to extra leakage savings from decaying the
tags. The notable exception is perl, which prefers a much larger
� � (128 Kcycles) than the fixed value that was chosen (32 Kcy-
cles, which happens to be the best constant interval for 6 of the 8
benchmarks). The feedback controllers are comparable in terms
of the normalized energy savings. IMC usually performs bet-
ter with respect to maintaining IPC, while AMC attains slightly
better � � .

Despite the better overall energy profits for open-loop decay,
its non-adaptive nature also leads to very poor behavior for pro-
grams like perl, whose characteristics differ significantly from
the “average” behaviour that dictated the fixed � � . Adaptivity
is essential to prevent such cases and ensure robust behavior. It
does, however, come at a cost of as much as 3.5% in reduced
leakage savings for some programs: so far, the only closed-loop
schemes that have been devised—AMC and IMC—require that
the tags stay powered on to provide the necessary feedback. The
above results therefore demonstrate both the potential benefits
(robustness and better adaptivity) and costs (conservative behav-
ior and controller-implementation overheads) of closed-loop de-
signs.

Better sensors that avoid this problem are an interesting area

IMC AMC const best
crafty 74.4 28.2 64
gcc 60.7 34.3 32
go 130.4 138 32
ijpeg 47.3 73.9 32
li 174.2 131 32
parser 51 24.3 32
perl 150 130.8 128
vpr 37.3 5 16

Table 3: Mean Decay Intervals. “Const best” refers to the
per-benchmark best value for open-loop decay.

Open-loop IMC AMC
Mean IPC
degradation 0.70% 0.30% 0.49%
Mean ���
(normalized) 30.39% 31.19% 32.32%

Table 4: Overall results for open-loop decay, IMC, and
AMC.

for future work.
To illustrate how the two controllers vary � � during execu-

tion, Figure 9 plots, for two representative SPEC benchmarks,
the decay intervals as selected by the IMC and AMC controllers
over time. The behavior of parser is representative of programs
for which IMC performs better in terms of energy saved com-
pared to AMC. Vpr is representative of programs in which AMC
performs better. In both the cases, IMC has a lower IPC degra-
dation. Generally, for benchmarks like parser with very noisy
behavior of misses per cycle we find that IMC is more stable
than AMC, thereby giving more gains and demonstrating one
advantage of using a linear controller like IMC rather than the
non-linear step function that corresponds to AMC (see Figure 2).

IMC does not perform as well for benchmarks like vpr. This
is partly because of the formulation of the setpoint: the IMC
controller tries to bound the number of induced misses per cy-
cle, whereas AMC tracks the true miss rate. In cases where the
true miss rate is quite high, extra induced misses will have a mi-
nor impact on performance, and AMC is aggressive in selecting
a shorter decay interval. The setpoint for IMC places possibly
too much emphasis on the acceptable performance loss. So the
decay interval selected is generally longer than that picked by
AMC, at the expense of some leakage savings. To illustrate the
different “philosophies” of these controllers, the mean � � se-
lected by IMC and AMC over the course of each simulation is
summarized in Table 3. This table also shows the per-program
best open-loop decay interval as a reference. Note that the best
fixed decay interval is probably not actually a power of two; find-
ing the best � � is therefore a large search problem (another ar-
gument for feedback control).

Figure 10 shows the number of induced misses over the
course of the program. The fixed line of 0.001 misses per cycle

8

IP C d e g r a d a tio n

0

0 .5

1

1 .5

2

2 .5

c r a fty g c c g o ijp e g li p a r s e r p e r l v p r

(a)

IP
C

 d
e
g

ra
d

a
ti

o
n

(%
)

C O N S T IM C A M C

No r m a liz e d L e a k a g e S a v in g s

-2 0

-1 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

c r a fty g c c g o ijp e g li p a r s e r p e r l v p r

(b)

P
e
rc

e
n

ta
g

e

C O NS T IM C A M C
Tu r n o ff R a tio

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

c r a fty g c c g o ijp e g li p a r s e r p e r l v p r

(c)

P
e

rc
e
n

ta
g

e

C O N S T IM C A M C

Figure 8: (a) IPC degradation, (b) Normalized leakage savings and (c) Turnoff ratio for the open-loop (“CONST”),
IMC and AMC controllers.

0

20000

40000

60000

80000

100000

120000

140000

0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

de
ca

y
in

te
rv

al

time

parser

imc
amc

0

20000

40000

60000

80000

100000

120000

140000

0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

de
ca

y
in

te
rv

al

time

vpr

imc
amc

Figure 9: Decay interval over time for parser (left) and vpr (right). (IMC is the black, jagged line; AMC is the grey,
squared-off line.)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

m
is

se
s

pe
r c

yc
le

time

parser

imc
amc

setpoint

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

m
is

se
s

pe
r c

yc
le

time

vpr

imc
amc

setpoint

Figure 10: Induced misses per cycle for parser (left) and vpr (right). The IMC setpoint of 0.001 misses per cycle is the
flat, gray line. IMC’s observed miss rate is the line that stays very close to this setpoint. AMC appears to vary more
widely because it is using a different setpoint and is merely included here to show their differing behavior.

denotes the IMC setpoint. We can see that the IMC controller
tracks the setpoint very well. This is one of the reasons why the
performance loss with IMC controller is almost always less than
the performance loss with AMC controller or when using fixed
decay intervals.

The choice of setpoint is a crucial issue in the design on a
controller. With the IMC controller we have chosen a setpoint
that targets a specified induced miss rate. From the Figure 10 we
can see that the IMC controller tracks this setpoint very closely.
Such a setpoint places more emphasis on the performance aspect
(by controlling the additional induced misses) rather than the
savings achievable. A different choice of the setpoint could be
used when trying to improve energy savings at the expense of

performance.
We also found that our setpoint lets us prove a nice bound

on system behavior. Empirically, we observe that the IMC con-
troller does well at what it is asked, namely holding the induced-
miss rate to 0.001 per cycle. Assuming that this rate will success-
fully be enforced for other applications, IMC will never induce
a performance loss of more than ��� �������	�
�����
��� if the miss
latency of the cache is � cycles. For the 11-cycle L1 miss la-
tency we used, IMC never induces an IPC degradation of more
than 1.1%—an observation borne out by our measurements.

A final comment is that our results also show that turn-off
ratio is a poor metric for evaluating cache-decay schemes. Al-
though an informative measure, it cannot be used in isolation,

9

because it does not accurately represent the energy costs of de-
cay. In some cases in Figure 8, the turnoff-ratio and the energy
profit are inversely related.

6 Conclusions and Future Work
This paper has presented an overview of how to apply formal
digital control to adaptive techniques that are based on sampling,
and used cache decay as a running example. We derived an inte-
gral controller for cache decay that we call IMC, and compared
its behavior to both open-loop decay and AMC, which is an ad-
hoc feedback-control mechanism.

We found IMC easy to model, derive, and tune—easier than
implementing AMC (even though its operation was already de-
scribed in [27]) and tuning it for the fairest comparison. In
terms of behavior, we found that open-loop decay is vulnera-
ble to unanticipated or very diverse behaviors. Feedback control
guards against these problems, but comes at some cost in tag en-
ergy (3.5%). This causes IMC and AMC to give slightly inferior
energy savings for some benchmarks, although overall they are
3–6% better, and have the important benefit of reliable behav-
ior. We argue that a slight reduction in energy savings for some
applications is a reasonable cost to pay for security against bad
open-loop behavior. As for comparing IMC against AMC, from
the standpoint of energy savings and performance degradation,
neither controller design is clearly superior for our limited set of
benchmarks. We interpret this to mean that there is no reason
not to use a formal controller in this case.

Adaptivity is a valuable tool for power and energy efficiency.
Feedback control is valuable because it guides the adaptation to
match program behavior to a desired behavior. As adaptivity
becomes a major research area, the use of feedback control is
certain to increase. We argue that feedback control should be
designed using formal control theory. Even if not all the formal-
ism is needed, portraying the system as a control loop and using
standard control designs helps in understanding the system’s be-
havior and ensures that the system is easy to analyze later should
this be necessary.

We do recommend the stability analysis. In addition to choos-
ing the gain for stability, the analysis tends to give a value for
gain that gives good performance as well. The stability analysis
therefore simplifies the task of tuning the controller.

We only implemented a simple integral controller. Even
better results can probably be obtained using an optimization
scheme that balances the marginal benefit of deactivating addi-
tional lines against the potential costs in terms of energy and
performance loss.

Another open issue is the best way to choose a setpoint. Our
current setpoint is performance-oriented. We were not able to
fully explore this design space to find a way to balance energy
and performance considerations. We also believe that a better
choice of setpoint would have allowed us to prove a stronger
bound on IPC degradation, without resorting to the assumption
we used in Section 5.

Overall, we have shown that formal feedback-control tech-
niques provide a range of benefits, and we hope that this paper
will motivate its use in the architecture community for future
work on adaptive designs.

Acknowledgements
This work is supported in part by the National Science Foundation under
grant nos. CCR-0105626, CCR-0133634, and CCR-0098269. We would
like to thank Stefanos Kaxiras, Margaret Martonosi, and Mircea Stan for
their assistance and feedback, and Zhigang Hu for providing access to
the simulator used in [10]. We would also like to thank the anonymous
reviewers for their helpful comments.

References
[1] D. H. Albonesi. Dynamic IPC/clock rate optimization. In Proc.

ISCA-25, pages 282–92, June 1998.
[2] D. Brooks and M. Martonosi. Dynamic thermal management for

high-performance microprocessors. In Proc. HPCA-7, pages 171–
82, Jan. 2001.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. In Proc.
ISCA-27, pages 83–94, June 2000.

[4] N. Dragone, A. Aggarwal, and L. R. Carley. An adaptive on-chip
voltage regulation technique for low-power applications. In Proc.
ISLPED 2000, pages 20–24, July 2000.

[5] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Con-
trol of Dynamic Systems. Addison-Wesley, third edition, 1994.

[6] G. F. Franklin, J. D. Powell, and M. L. Workman. Digital Control
of Dynamic Systems. Addison-Wesley, third edition, 1998.

[7] H. Hanson et al. Static energy reduction techniques for micropro-
cessor caches. In Proc. ICCD 2001, pages 276–83, Sept. 2001.

[8] C. V. Hollot, V. Misra, D. Towsley, and W. Gong. A control theo-
retic analysis of RED. In Proc. IEEE INFOCOM, Apr. 2001.

[9] S. Kaxiras. Personal communication, Oct. 2001.
[10] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploiting

generational behavior to reduce cache leakage power. In Proc.
ISCA-28, July 2001.

[11] T. Kobayashi and T. Sakurai. Self-adjusting threshold-voltage
scheme (sats) for low-voltage high-speed operation. In Proc. IEEE
1994 CICC, pages 271–274, May 1994.

[12] J. R. Leigh. Applied Digital Control. Prentice Hall, 1985.
[13] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son. A feedback

control approach for guaranteeing relative delays in web servers.
In Proc. IEEE Real-Time Technology and Applications Symp., June
2001.

[14] C. Lu, J. A. Stankovic, G. Tao, , and S. H. Son. Feedback con-
trol real-time scheduling: Framework, modeling, and algorithms.
Real-Time Systems J., Mar.-Apr. 2002. To appear.

[15] Y. Lu, A. Saxena, and T. F. Abdelzaher. Differentiated caching
services; a control-theoretical approach. In Proc. Int’l Conf. on
Distributed Computing Systems, Apr. 2001.

[16] S. McFarling. Combining branch predictors. Tech. Note TN-36,
DEC WRL, June 1993.

[17] K. Nii et al. A low power SRAM using auto-backgate-controlled
MT-CMOS. In Proc. ISLPED 1998, pages 293–98, Aug. 1998.

[18] SIA. International Technology Roadmap for Semiconductors,
1999.

[19] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-theoretic tech-
niques and thermal-RC modeling for accurate and localized dy-
namic thermal management. In Proc. HPCA-8, pages 17–28, Feb.
2002.

[20] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark. Branch
prediction, instruction-window size, and cache size: Performance
tradeoffs and simulation techniques. IEEE Trans. Computers,
48(11):1260–81, Nov. 1999.

[21] M. R. Stan. Personal communication, Mar. 2002.
[22] Standard Performance Evaluation Corporation. SPEC CPU2000

Benchmarks. http://www.specbench.org/osg/cpu2000.
[23] Standard Performance Evaluation Corporation. SPEC CPU95

Benchmarks. http://www.specbench.org/osg/cpu95.
[24] D. C. Steere et al. A feedback-driven proportion allocator for real-

rate scheduling. In Proc. SOSP, Feb. 1999.
[25] L. S. Y. Wong, S. Hossain, and A. Walker. Leakage current can-

cellation technique for low power switched-capacitor circuits. In
Proc. ISLPED 2001, pages 310–15, Aug. 2001.

[26] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N. Vi-
jaykumar. An integrated circuit/architecture approach to reducing
leakage in deep-submicron high-performance I-caches. In Proc.
HPCA-7, Feb. 2001.

[27] Huiyang Zhou, Mark Toburen, Eric Rotenberg, and Thomas Conte.
Adaptive mode control: A static-power-efficient cache design. In
Proc. PACT 2001, Sept. 2001.

10

