Roadrunner

By Diana Lleva Julissa Campos Justina Tandar

Overview

- Roadrunner background
- On-Chip Interconnect
- Number of Cores
- Memory Hierarchy
- Pipeline Organization
- Multithreading Organization

Roadrunner Background

- Currently fastest supercomputer in the world
- Completed in 2009
- 3 Phase Project:
 - 1 Base System 76 Teraflops
 - 2 Advanced algorithms evaluate cell
 - 3 Roadrunner 1.3 Petaflops, cell clustered,
 Opteron Cluster

Roadrunner at a Glance

- Structure:
 - 6,912 AMD Opteron 2210 Processors
 - 12,960 IBM PowerXCell 8i cells
- Speed: 1.71 petaflops (peak)
- Rank: 1 (Top500) as of June 2008
- Cost: \$133 M
- Memory: 103.6 TiB
- Power: 2.35 MW

On-Chip Interconnect

On-Chip Interconnect

Power Processor Element (PPE)

- 1 PPE/chip
- 1 IBM's VMX unit
- 32k L1 Cache
- 512k L2 Cache
- 2 way simultaneous multithreading

On-Chip Interconnect

Synergistic Processing Elements (SPE)

- 8 SPE's/chip
- 128 bit SIMD ISA
- 128x128 bit Register File
- 256k Local Store
- 1 Memory Flow Controller
- Isolation Mode (Security)

On-Chip Interconnect

Element Interconnect Bus (EIB)

- 1 bus/chip
- Bandwidth: 96 B/cycle

– Four 16 B data rings for internal communication

- Data port supports 25.6 GB/sec in each direction
- Command bus supports:
 - 102.4 GB/sec coherent commands
 - 307.2 GB/sec between units

EIB

Example of EIB running 8 transactions concurrently

On-Chip Interconnect

System Memory Interface

- Memory Controller & Rambus XDRAM
 Interface
- Bandwidth: 16 B/cycle
- Speed: 25.6 GB/s

On-Chip Interconnect

Input/Output Interface

- I/O Controller & Rambus FlexIO
- Bandwidth: 2*(16 B/cycle)

Number of Cores

- 6,912 dual-core AMD Opteron processors and 12,960 of IBM's Cell eDP accelerators
- Not including the cores in the operations and communication nodes:
 - 6,120 Opteron (2 cores) + 12,240 PowerXCell 8i (9 cores) = 122,400 cores

- 6 Stages
- In-order Execution
- Dual Issue Pipeline
 - 2 Pipes
 - In case of instruction swap \rightarrow Single issue
 - 9 Units per Pipeline

Note: These are not the only locations for these units

Register File Unit

*More detailed look into the pipeline

SPE & PPE

Cell/B.E.

SPE & PPE

- This implementation was based on issues of memory latency
- PPE has 32 KB L1 instruction and data caches
- PPE has 512 KB L2 unified (instruction and data) cache
- Each SPE's DMA controllers can maintain up to 16 DMA transfers in flight simultaneously

PPE vs. SPE

- PPE:
 - Accesses memory like a conventional processor
 - Uses load and store commands
 - Moves data between main storage and registers
- SPE:
 - Uses direct memory access commands
 - Moves data between main storage and a private local memory

PPE vs. SPE

• PPE:

Faster at task switching

• SPE:

– More adept at compute intensive tasks

• Specialization is a factor for improvement in performance and power efficiency

Double Buffering

 DMA commands are processed in parallel with software execution

SIMD Organization

- IBM PowerXCell 8i:
 - 8 Synergistic Processor Elements (SPE) + 1
 PowerPC Processing Elements (PPE)

Syne	ergistic Processor Unit (SPU
	Local Store (LS)
Mei	mory Flow Controller (MFC
	DMA Controller

FOWEIFC FICES	sor Unit (PPU
L1 Instruction	L1 Data
Cache	Cache
PowerPC F	Processor
Storage Subsy	stem (PPSS)

Synergistic Processing Elements

- Optimized for computing intensive code using SIMD
- Lots of SIMD registers (128 x 128-bit)
- Operations (per cycle):
 - sixteen 8-bit integers
 - eight 16-bit integers
 - four 32-bit integers
 - four single-precision floating-point numbers

PowerPC Processing Elements

- Optimized for control intensive code
- VMX SIMD unit: 128-bit SIMD register
- Operations (per cycle):
 - sixteen 8-bit integers
 - eight 16-bit integers
 - four 32-bit integers

SIMD in VMX and SPE

- 128 bit-wide datapath
- 128 bit-wide registers

- One IBM LS21 Opteron blade
- Two IBM BladeCenter QS22 Cell/B.E. blades
- One blade that houses the communications fabric for the compute node

- One Cell/B.E. chip for each Opteron core
- Hierarchy: Opteron processors establish a master-subordinate relationship with the Cell/B.E. processors.
- Each TriBlade node is capable of 400 gigaflops of double precision compute power

Multithreading

- Threads alternate fetch and dispatch cycles
- To run multithreaded programs, multiple SPEs run simultaneously
- Usually, these programs create and organize the SPE threads as needed
- Each SPE supports one thread
- The PPE can support two threads without a program creating them

Multithreading

