Roadrunner

By
Diana Lleva
Julissa Campos
Justina Tandar
Overview

• Roadrunner background
• On-Chip Interconnect
• Number of Cores
• Memory Hierarchy
• Pipeline Organization
• Multithreading Organization
Roadrunner Background

• Currently fastest supercomputer in the world
• Completed in 2009
• 3 Phase Project:
 – 1 – Base System – 76 Teraflops
 – 2 – Advanced algorithms – evaluate cell
 – 3 – Roadrunner – 1.3 Petaflops, cell clustered, Opteron Cluster
Roadrunner at a Glance

• Structure:
 ▪ 6,912 AMD Opteron 2210 Processors
 ▪ 12,960 IBM PowerXCell 8i cells

• Speed: 1.71 petaflops (peak)

• Rank: 1 (Top500) as of June 2008

• Cost: $133 M

• Memory: 103.6 TiB

• Power: 2.35 MW
On-Chip Interconnect
On-Chip Interconnect
Power Processor Element (PPE)

- 1 PPE/chip
- 1 IBM’s VMX unit
- 32k L1 Cache
- 512k L2 Cache
- 2 way simultaneous multithreading
On-Chip Interconnect
Synergistic Processing Elements (SPE)

- 8 SPE’s/chip
- 128 bit SIMD ISA
- 128x128 bit Register File
- 256k Local Store
- 1 Memory Flow Controller
- Isolation Mode (Security)
On-Chip Interconnect
Element Interconnect Bus (EIB)

- 1 bus/chip
- Bandwidth: 96 B/cycle
 - Four 16 B data rings for internal communication
- Data port supports 25.6 GB/sec in each direction
- Command bus supports:
 - 102.4 GB/sec – coherent commands
 - 307.2 GB/sec – between units
Example of EIB running 8 transactions concurrently
On-Chip Interconnect
System Memory Interface

- Memory Controller & Rambus XDRAM Interface
- Bandwidth: 16 B/cycle
- Speed: 25.6 GB/s
On-Chip Interconnect
Input/Output Interface

- I/O Controller & Rambus FlexIO
- Bandwidth: 2*(16 B/cycle)
Number of Cores

- 6,912 dual-core AMD Opteron processors and 12,960 of IBM’s Cell eDP accelerators
- Not including the cores in the operations and communication nodes:
 - 6,120 Opteron (2 cores) + 12,240 PowerXCell 8i (9 cores) = 122,400 cores
Pipeline Organization

• 6 Stages
• In-order Execution
• Dual Issue Pipeline
 – 2 Pipes
 – In case of instruction swap → Single issue
 – 9 Units per Pipeline
Pipeline Organization

[Diagram of pipeline organization with blocks labeled such as Fetch, Decode, Dep, Issue, Route, RF1, RF2, FP1, FP2, FP3, FX1, FX2, FX3, BYTE1, BYTE2, BYTE3, FWE3, PERM1, PERM2, PERM3, LS-Ag, LS-Ax, LS-Dec, LS-Ary, Ld-Mx, Ld-Rx, ILB Rd, ILB Wr, LS Arb, LS-Ag, LS-Ax, LS-Dec, LS-Ary, LR-Rx, ILB Wr, FF4, FF5, FF6, FF7, FWE4, FWE5, FWE6, FWE7, FWE8, RF-Wr0, RF-Wr1, FWO4, FWO5, FWO6, FWO7, ILB Wr, FWC4, FWC5, FWC6, FWC7, LS-Ary, Result staging in forward macro]
Pipeline Organization

Permute Unit
Pipeline Organization

Load-Store Unit

[Diagram showing the pipeline organization with various stages including Fetch, Decode, Dep, Issue, Route, RF1, RF2, FP1, FX1, BYTE1, FX1, FP2, FX2, BYTE2, FX2, FP3, FX3, BYTE3, FWE3, FP4, FP5, FP6, FP7, FWE4, FWE5, FWE6, FWE7, ILB Wr, PERM1, PERM2, PERM3, PERM4, LS-Ag, LS-Ax, LS-Dec, LS-Ary, LS-Rx, LR-Rx, ILB Rd, ILB Wr, Ld-Mx, Ld-Rx, FW04, FW05, FW06, FW07]
Pipeline Organization

Channel Unit

Branch Unit
Pipeline Organization

Fixed Point Unit

Floating Point Unit

Note: These are not the only locations for these units
Pipeline Organization

Instruction Issue Unit
Pipeline Organization

Register File Unit
Pipeline Organization

More detailed look into the pipeline
SPE & PPE

Cell/B.E.
SPE & PPE

- This implementation was based on issues of memory latency
- PPE has 32 KB L1 instruction and data caches
- PPE has 512 KB L2 unified (instruction and data) cache
- Each SPE's DMA controllers can maintain up to 16 DMA transfers in flight simultaneously
PPE vs. SPE

• PPE:
 – Accesses memory like a conventional processor
 – Uses load and store commands
 – Moves data between main storage and registers

• SPE:
 – Uses direct memory access commands
 – Moves data between main storage and a private local memory
PPE vs. SPE

• PPE:
 – Faster at task switching

• SPE:
 – More adept at compute intensive tasks

• Specialization is a factor for improvement in performance and power efficiency
Double Buffering

- DMA commands are processed in parallel with software execution
SIMD Organization

- IBM PowerXCell 8i:
 - 8 Synergistic Processor Elements (SPE) + 1 PowerPC Processing Elements (PPE)
Synergistic Processing Elements

• Optimized for computing intensive code using SIMD
• Lots of SIMD registers (128 x 128-bit)
• Operations (per cycle):
 – sixteen 8-bit integers
 – eight 16-bit integers
 – four 32-bit integers
 – four single-precision floating-point numbers
PowerPC Processing Elements

• Optimized for control intensive code
• VMX SIMD unit: 128-bit SIMD register
• Operations (per cycle):
 – sixteen 8-bit integers
 – eight 16-bit integers
 – four 32-bit integers
SIMD in VMX and SPE

• 128 bit-wide datapath
• 128 bit-wide registers
TriBlade

• One IBM LS21 Opteron blade
• Two IBM BladeCenter QS22 Cell/B.E. blades
• One blade that houses the communications fabric for the compute node
TriBlade
TriBlade
TriBlade

- One Cell/B.E. chip for each Opteron core
- Hierarchy: Opteron processors establish a master-subordinate relationship with the Cell/B.E. processors.
- Each TriBlade node is capable of 400 gigaflops of double precision compute power
Multithreading

- Threads alternate fetch and dispatch cycles
- To run multithreaded programs, multiple SPEs run simultaneously
- Usually, these programs create and organize the SPE threads as needed
- Each SPE supports one thread
- The PPE can support two threads without a program creating them
Multithreading

ALF -
Synchronization
constructs