The ARM11 Architecture

lan Davey
Payton Oliveri

Spring 2009
CS433

Why ARM Matters

Over 90% of the embedded market I1s based on
the ARM architecture

ARM Ltd. makes over $100 million USD
annually in royalties and licensing fees for this
technology

Over two billion units are shipped each year

We will focus primarily on the ARM1176JZF-S,
which is used in a number of smartphones as
well as the IPod Touch

General Overview

ARM stands for Advanced RISC Machine

The ARM11 is based on the ARMvVG6 Instruction
set architecture

Bi-endian — can operate in either little-endian or
big-endian format

Most devices today use little-endian

Actually uses two instruction sets — the 32-bit
ARM and the 16-bit Thumb

ARM and Thumb

Since many embedded devices have small
amounts of memory, a smaller, 16-bit
Instruction set can be used

This 16-bit "'Thumb” instruction set makes use
of implied operands and reduced functionality
to reduce code size

Thumb instructions are decoded into ARM
Instructions on the fly at execution time, though
consuming one additional cycle

CPU is either in "ARM state” or "Thumb state”

Registers — 32-bit ARM mode

16 general-purpose registers R0O-R15

R13 is the stack pointer and is often called SP

R14 holds return addresses and iIs often called LR
(for link register)

R15 Is the program counter and is often called PC
PC is always word-alighec

17 general-purpose "mode-specific”’ registers
(used for exception handling, etc.)

[status registers, one for each operating mode

Registers — 16-bit Thumb mode

/ sets of 11 reqisters each

8 general-purpose registers RO-R7
Stack pointer, link register, and program counter

Each set Is for a different operating mode
More on operating modes later

Status Register Specifics

Bits 0 through 4 determine the processor
operating mode

Bit 5 Indicates whether the processor is in ARM
or Thumb state

Bits 6 and 7 disable interrupts

Bits 28 through 31 are ALU condition code flags

N for negative ALU result

Z for zero ALU result

C for overflow after shift operation

V for overflow after signed arithmetic operation

Operating Modes

As mentioned before, each mode has its own
mode-specific registers, including a status
register

The 8 modes of operation consist of 7
"priviledged modes” - which are used to handle
exceptions and ease normal resource
restrictions — and 1 "user mode” which Is used

during normal operation and has all restrictions
In place

Operating Modes

User — normal operation

Fast interrupt — handling of "fast” interrupts
Interrupt — handling of all other interrupts
Supervisor — operating system protected mode

Abort — abortion of memory access

System — operating system privileged mode
Undefined — invalid instruction in stream
Secure monitor — on-chip security features

ARM Instruction Set Architecture

Each instruction is 32 bits long

Highest four bits determine condition (indicated
In status register) under which the instruction Is
executed

Can discard instruction immediately after decode
Only two pipeline stages are wasted (as seen next)
Fewer branch instructions needed, smaller code

Other fields contain operands, offset constants,
and various 1-bit flags

The Pipeline

8 stages Iin normal pipeline

el — Address is sent and instruction received
—~e2 — Much of the branch prediction goes here
De — Decode Instruction

Ss — Read registers and issue instruction

Sh — Perform shift operations

ALU — Perform integer operations

Sat — Saturate results

WB — Write back data to registers

The Shift Pipeline Stage

There are no explicit shift instructions

Each arithmetic instruction has a field to specify
amount to shift one operand

ARM microarchitecture contains a barrel shifter
that can perform shifts and rotates on operands

"his Is why the status register has separate
flags of shift and arithmetic overflow

Alternate Pipeline Paths

Sh, ALU, and Sat can be replaced with three
MAC stages, which perform multiplication
operations

These three stages can also be replaced with
different stages for memory operations:

ADD — calculate address
DC1 and DC2 — Access data cache

Parallelism within Instructions

Some Instructions, such as those which access
memory and increment a register at the same
time (useful for array operations), will use both
the memory access pathway and the arithmetic
pathway simultaneously

If the data cache misses and there is a stall In
the memory access pathway, the arithmetic
pathway will continue execution anyway

This frees up the ALU and saturation stage for
use with other instructions

Branches

Branch instruction contains condition field, link
flag, and 24-bit offset field

Target must be word-aligned, so offset Is
effectively 26 bits

Target address calculated by sign-extending
PC-8+offset (subtract 8 for pipeline)

Program can branch to addresses up to 32
megabytes away from PC

If the link flag Is set, store old PC in LR

Branch Prediction

While the condition attached to every
Instruction helps reduce costly explicit
branches, it does not eliminate them entirely

Naive approach in ARM9 is to always predict
that the branch will not be taken

This risks losing 3+ cycles if wrong!

This was more acceptable for the ARM9, which has
a shorter pipeline

Therefore, ARM11 implements more
aggressive techniques

Branch Target Address Cache

Direct-mapped, 128-entry cache which keeps
track of previous branch instructions (indexed
by address) and their results

Stores 2-bit prediction history, which it uses to
make next prediction

Lines only evicted from cache In the event of a
conflict with another branch address

Very effective for loops, where branches have
the same result many times in a row

Static Branch Prediction

Used when BTAC entry not available

Configured in hardware to take branches with
negative offsets, and not take branches with
positive offsets

Once again this would help loop performance,
since jumps backwards tend to follow the body

of a loop

The forward-not-taken choice accommodates
the way compilers handle conditionals

Branch Folding

Removes predicted branch instructions from
the instruction stream

Branches with "side effects” are not subject to
this optimization, since those effects (such as
links Into new procedures) must be carried out

Branches to branches cannot be folded, for
reasons that will become clear shortly

What happens on misprediction?

Pipeline is flushed and correct instructions are
fetched

Instructions following folded branches fail

Whenever there Is a chance a folded branch
has been mispredicted, address of the
alternative choice must be remembered

These alternatives are retrieved if it turns out
the branch was indeed mispredicted

This Is why branches to branches cannot be
folded — would need to store multiple
alternatives

Memory Access

Data must be moved to registers before it can
be manipulated

A memory word can be indexed by a register
plus or minus a 12-bit offset constant

A halfword or byte can be indexed the same
way, except the offset can only be 8 bits

Support for block-data transfer — can transfer
up to 16 registers to and from memory in a
single instruction

Memory Hierarchy

L1 cache involves separate instruction and data
caches and a write buffer

Each cache Is 4-way set-associative, ranging from
4KB to 64KB In size, with 8-word cache lines

Cache is virtually indexed, virtually tagged
Data cache misses are non-blocking

Upon eviction, if data needs to be written back to
memory, the line is added to the write buffer

Write buffer handles all RAW hazards that may
occur when holding needed data

Memory Hierarchy

L2 cache Is off-chip

Instruction controller, data controller, and DMA
hardware on-chip each has its own 64-bit wide port,
allowing for simultaneous accesses to the cache

An additional 32-bit peripheral interface connects to
processor peripherals such as coprocessors

Translation Lookaside Buffer

Actually has two levels

First level iIs known as Micro-TLB

2 10-entry, fully associative TLBs, one for I-cache,
one for D-cache

Performs translation in parallel
Second level is called the Main TLB

Next level up when Micro-TLB misses
64-entry, 2-way set associative buffer

Also has 8-entry, fully associative section, used
mainly in Secure Monitor mode

Hardware Stack

ARM also supports a hardware stack

Both upward and downward-growing stacks are
supported

Which direction to grow is specified by the flags In
the push and pop instructions

Stack Is used to store activation records

ARM Calling Conventions

RO through R3 hold the first four arguments

Additional arguments are passed Iin reverse order
on the stack

Values larger than 32 bits are passed as multiple
32-bit values

Floating-point values are passed In registers on the
floating-point coprocessor

R4 through R10 hold local variables
R11 serves as the frame pointer

ARM Calling Conventions

RO through R3 hold return values

Once again, data types larger than 32 bits are
treated as multiple 32-bit values

R12 holds intra-procedural intermediate values
as well as serves as a scratchpad register
between calls

Exception Handling

Uses vectored exception handling

Has a separate set of mode-specific registers
for each exception mode

Special instructions exist for storing and
reloading processor state to and from mode-

specific registers

When an Exception Occurs

Status register is copied into the mode-specific
counterpart

If processor Is In Thumb state, change to ARM
Store return address in mode-specific LR
Store appropriate handler address in PC

Returning from Exceptions

Copy mode-specific status register back into
user status register

Copy return address from mode-specific LR
back into PC

System Control Coprocessor

A set of 32 readable and writeable registers

Which registers can be written depends on

whether the processor is in the Secure Monitor
operating mode

Used In configuring various operations ranging
from DMA to cache control to performance
measurement

SIMD Capabilities

Vector Floating-Point coprocessor performs
operations on 8 single-precision or 4 double-

precision values simultaneously, in parallel with
CPU

Otherwise costly arithmetic operations such as
sguare root are bullt into hardware

Dedicated interface to main processor

Results of compare instructions are stored In
CPU status register

Could make interface bandwidth and latency a
bottleneck

VFP Pipelines

Each pipeline shares decode and issue stages,
but otherwise works independently and In
parallel

Multiply and ACcumulate (FMAC) pipeline has
[/ execution stages

Divide and Square root (DS) pipeline has 4
execution stages

Load/Store (LS) pipeline has 1 execution and 2
memory access stages, and is responsible for
communicating with the main processor

VFP Registers and Data Formats

Four banks of 8 32-bit registers
Each instruction operates on a bank of registers

Consecutive pairs of registers can store double-
precision floating-point data

Floating-point data format follows the IEEE
standard

