

The ARM11 Architecture

Ian Davey

Payton Oliveri

Spring 2009

CS433

Why ARM Matters

 Over 90% of the embedded market is based on
the ARM architecture

 ARM Ltd. makes over $100 million USD
annually in royalties and licensing fees for this
technology

 Over two billion units are shipped each year
 We will focus primarily on the ARM1176JZF-S,

which is used in a number of smartphones as
well as the iPod Touch

General Overview

 ARM stands for Advanced RISC Machine
 The ARM11 is based on the ARMv6 instruction

set architecture
 Bi-endian – can operate in either little-endian or

big-endian format
 Most devices today use little-endian

 Actually uses two instruction sets – the 32-bit
ARM and the 16-bit Thumb

ARM and Thumb

 Since many embedded devices have small
amounts of memory, a smaller, 16-bit
instruction set can be used

 This 16-bit 'Thumb” instruction set makes use
of implied operands and reduced functionality
to reduce code size

 Thumb instructions are decoded into ARM
instructions on the fly at execution time, though
consuming one additional cycle

 CPU is either in ”ARM state” or ”Thumb state”

Registers – 32-bit ARM mode

 16 general-purpose registers R0-R15
 R13 is the stack pointer and is often called SP
 R14 holds return addresses and is often called LR

(for link register)
 R15 is the program counter and is often called PC
 PC is always word-aligned

 17 general-purpose ”mode-specific” registers
(used for exception handling, etc.)

 7 status registers, one for each operating mode

Registers – 16-bit Thumb mode

 7 sets of 11 registers each
 8 general-purpose registers R0-R7
 Stack pointer, link register, and program counter

 Each set is for a different operating mode
 More on operating modes later

Status Register Specifics

 Bits 0 through 4 determine the processor
operating mode

 Bit 5 indicates whether the processor is in ARM
or Thumb state

 Bits 6 and 7 disable interrupts
 Bits 28 through 31 are ALU condition code flags

 N for negative ALU result
 Z for zero ALU result
 C for overflow after shift operation
 V for overflow after signed arithmetic operation

Operating Modes

 As mentioned before, each mode has its own
mode-specific registers, including a status
register

 The 8 modes of operation consist of 7
”priviledged modes” - which are used to handle
exceptions and ease normal resource
restrictions – and 1 ”user mode” which is used
during normal operation and has all restrictions
in place

Operating Modes

1. User – normal operation

2. Fast interrupt – handling of ”fast” interrupts

3. Interrupt – handling of all other interrupts

4. Supervisor – operating system protected mode

5. Abort – abortion of memory access

6. System – operating system privileged mode

7. Undefined – invalid instruction in stream

8. Secure monitor – on-chip security features

ARM Instruction Set Architecture

 Each instruction is 32 bits long
 Highest four bits determine condition (indicated

in status register) under which the instruction is
executed
 Can discard instruction immediately after decode
 Only two pipeline stages are wasted (as seen next)
 Fewer branch instructions needed, smaller code

 Other fields contain operands, offset constants,
and various 1-bit flags

The Pipeline

 8 stages in normal pipeline

1. Fe1 – Address is sent and instruction received

2. Fe2 – Much of the branch prediction goes here

3. De – Decode instruction

4. Iss – Read registers and issue instruction

5. Sh – Perform shift operations

6. ALU – Perform integer operations

7. Sat – Saturate results

8. WB – Write back data to registers

The Shift Pipeline Stage

 There are no explicit shift instructions
 Each arithmetic instruction has a field to specify

amount to shift one operand
 ARM microarchitecture contains a barrel shifter

that can perform shifts and rotates on operands
 This is why the status register has separate

flags of shift and arithmetic overflow

Alternate Pipeline Paths

 Sh, ALU, and Sat can be replaced with three
MAC stages, which perform multiplication
operations

 These three stages can also be replaced with
different stages for memory operations:

1. ADD – calculate address

2. DC1 and DC2 – Access data cache

Parallelism within Instructions

 Some instructions, such as those which access
memory and increment a register at the same
time (useful for array operations), will use both
the memory access pathway and the arithmetic
pathway simultaneously

 If the data cache misses and there is a stall in
the memory access pathway, the arithmetic
pathway will continue execution anyway

 This frees up the ALU and saturation stage for
use with other instructions

Branches

 Branch instruction contains condition field, link
flag, and 24-bit offset field

 Target must be word-aligned, so offset is
effectively 26 bits

 Target address calculated by sign-extending
PC-8+offset (subtract 8 for pipeline)

 Program can branch to addresses up to 32
megabytes away from PC

 If the link flag is set, store old PC in LR

Branch Prediction

 While the condition attached to every
instruction helps reduce costly explicit
branches, it does not eliminate them entirely

 Naive approach in ARM9 is to always predict
that the branch will not be taken
 This risks losing 3+ cycles if wrong!
 This was more acceptable for the ARM9, which has

a shorter pipeline

 Therefore, ARM11 implements more
aggressive techniques

Branch Target Address Cache

 Direct-mapped, 128-entry cache which keeps
track of previous branch instructions (indexed
by address) and their results

 Stores 2-bit prediction history, which it uses to
make next prediction

 Lines only evicted from cache in the event of a
conflict with another branch address

 Very effective for loops, where branches have
the same result many times in a row

Static Branch Prediction

 Used when BTAC entry not available
 Configured in hardware to take branches with

negative offsets, and not take branches with
positive offsets

 Once again this would help loop performance,
since jumps backwards tend to follow the body
of a loop

 The forward-not-taken choice accommodates
the way compilers handle conditionals

Branch Folding

 Removes predicted branch instructions from
the instruction stream

 Branches with ”side effects” are not subject to
this optimization, since those effects (such as
links into new procedures) must be carried out

 Branches to branches cannot be folded, for
reasons that will become clear shortly

What happens on misprediction?

 Pipeline is flushed and correct instructions are
fetched

 Instructions following folded branches fail
 Whenever there is a chance a folded branch

has been mispredicted, address of the
alternative choice must be remembered

 These alternatives are retrieved if it turns out
the branch was indeed mispredicted

 This is why branches to branches cannot be
folded – would need to store multiple
alternatives

Memory Access

 Data must be moved to registers before it can
be manipulated

 A memory word can be indexed by a register
plus or minus a 12-bit offset constant

 A halfword or byte can be indexed the same
way, except the offset can only be 8 bits

 Support for block-data transfer – can transfer
up to 16 registers to and from memory in a
single instruction

Memory Hierarchy

 L1 cache involves separate instruction and data
caches and a write buffer
 Each cache is 4-way set-associative, ranging from

4KB to 64KB in size, with 8-word cache lines
 Cache is virtually indexed, virtually tagged
 Data cache misses are non-blocking
 Upon eviction, if data needs to be written back to

memory, the line is added to the write buffer
 Write buffer handles all RAW hazards that may

occur when holding needed data

Memory Hierarchy

 L2 cache is off-chip
 Instruction controller, data controller, and DMA

hardware on-chip each has its own 64-bit wide port,
allowing for simultaneous accesses to the cache

 An additional 32-bit peripheral interface connects to
processor peripherals such as coprocessors

Translation Lookaside Buffer

 Actually has two levels
 First level is known as Micro-TLB

 2 10-entry, fully associative TLBs, one for I-cache,
one for D-cache

 Performs translation in parallel

 Second level is called the Main TLB
 Next level up when Micro-TLB misses
 64-entry, 2-way set associative buffer
 Also has 8-entry, fully associative section, used

mainly in Secure Monitor mode

Hardware Stack

 ARM also supports a hardware stack
 Both upward and downward-growing stacks are

supported
 Which direction to grow is specified by the flags in

the push and pop instructions

 Stack is used to store activation records

ARM Calling Conventions

 R0 through R3 hold the first four arguments
 Additional arguments are passed in reverse order

on the stack
 Values larger than 32 bits are passed as multiple

32-bit values
 Floating-point values are passed in registers on the

floating-point coprocessor

 R4 through R10 hold local variables
 R11 serves as the frame pointer

ARM Calling Conventions

 R0 through R3 hold return values
 Once again, data types larger than 32 bits are

treated as multiple 32-bit values

 R12 holds intra-procedural intermediate values
as well as serves as a scratchpad register
between calls

Exception Handling

 Uses vectored exception handling
 Has a separate set of mode-specific registers

for each exception mode
 Special instructions exist for storing and

reloading processor state to and from mode-
specific registers

When an Exception Occurs

 Status register is copied into the mode-specific
counterpart

 If processor is in Thumb state, change to ARM
 Store return address in mode-specific LR
 Store appropriate handler address in PC

Returning from Exceptions

 Copy mode-specific status register back into
user status register

 Copy return address from mode-specific LR
back into PC

System Control Coprocessor

 A set of 32 readable and writeable registers
 Which registers can be written depends on

whether the processor is in the Secure Monitor
operating mode

 Used in configuring various operations ranging
from DMA to cache control to performance
measurement

SIMD Capabilities

 Vector Floating-Point coprocessor performs
operations on 8 single-precision or 4 double-
precision values simultaneously, in parallel with
CPU

 Otherwise costly arithmetic operations such as
square root are built into hardware

 Dedicated interface to main processor
 Results of compare instructions are stored in

CPU status register
 Could make interface bandwidth and latency a

bottleneck

VFP Pipelines

 Each pipeline shares decode and issue stages,
but otherwise works independently and in
parallel

 Multiply and ACcumulate (FMAC) pipeline has
7 execution stages

 Divide and Square root (DS) pipeline has 4
execution stages

 Load/Store (LS) pipeline has 1 execution and 2
memory access stages, and is responsible for
communicating with the main processor

VFP Registers and Data Formats

 Four banks of 8 32-bit registers
 Each instruction operates on a bank of registers
 Consecutive pairs of registers can store double-

precision floating-point data
 Floating-point data format follows the IEEE

standard

