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Why ARM Matters

 Over 90% of the embedded market is based on 
the ARM architecture

 ARM Ltd. makes over $100 million USD 
annually in royalties and licensing fees for this 
technology

 Over two billion units are shipped each year
 We will focus primarily on the ARM1176JZF-S, 

which is used in a number of smartphones as 
well as the iPod Touch



  

General Overview

 ARM stands for Advanced RISC Machine
 The ARM11 is based on the ARMv6 instruction 

set architecture
 Bi-endian – can operate in either little-endian or 

big-endian format
 Most devices today use little-endian

 Actually uses two instruction sets – the 32-bit 
ARM and the 16-bit Thumb



  

ARM and Thumb

 Since many embedded devices have small 
amounts of memory, a smaller, 16-bit 
instruction set can be used

 This 16-bit 'Thumb” instruction set makes use 
of implied operands and reduced functionality 
to reduce code size

 Thumb instructions are decoded into ARM 
instructions on the fly at execution time, though 
consuming one additional cycle

 CPU is either in ”ARM state” or ”Thumb state”



  

Registers – 32-bit ARM mode

 16 general-purpose registers R0-R15
 R13 is the stack pointer and is often called SP
 R14 holds return addresses and is often called LR 

(for link register)
 R15 is the program counter and is often called PC
 PC is always word-aligned

 17 general-purpose ”mode-specific” registers 
(used for exception handling, etc.)

 7 status registers, one for each operating mode



  

Registers – 16-bit Thumb mode

 7 sets of 11 registers each
 8 general-purpose registers R0-R7
 Stack pointer, link register, and program counter

 Each set is for a different operating mode
 More on operating modes later



  

Status Register Specifics

 Bits 0 through 4 determine the processor 
operating mode

 Bit 5 indicates whether the processor is in ARM 
or Thumb state

 Bits 6 and 7 disable interrupts
 Bits 28 through 31 are ALU condition code flags

 N for negative ALU result
 Z for zero ALU result
 C for overflow after shift operation
 V for overflow after signed arithmetic operation



  

Operating Modes

 As mentioned before, each mode has its own 
mode-specific registers, including a status 
register

 The 8 modes of operation consist of 7 
”priviledged modes” - which are used to handle 
exceptions and ease normal resource 
restrictions – and 1 ”user mode” which is used 
during normal operation and has all restrictions 
in place



  

Operating Modes

1. User – normal operation

2. Fast interrupt – handling of ”fast” interrupts

3. Interrupt – handling of all other interrupts

4. Supervisor – operating system protected mode

5. Abort – abortion of memory access

6. System – operating system privileged mode

7. Undefined – invalid instruction in stream

8. Secure monitor – on-chip security features



  

ARM Instruction Set Architecture

 Each instruction is 32 bits long
 Highest four bits determine condition (indicated 

in status register) under which the instruction is 
executed
 Can discard instruction immediately after decode
 Only two pipeline stages are wasted (as seen next)
 Fewer branch instructions needed, smaller code

 Other fields contain operands, offset constants, 
and various 1-bit flags



  

The Pipeline

 8 stages in normal pipeline

1. Fe1 – Address is sent and instruction received

2. Fe2 – Much of the branch prediction goes here

3. De – Decode instruction

4. Iss – Read registers and issue instruction

5. Sh – Perform shift operations

6. ALU – Perform integer operations

7. Sat – Saturate results

8. WB – Write back data to registers



  

The Shift Pipeline Stage

 There are no explicit shift instructions
 Each arithmetic instruction has a field to specify 

amount to shift one operand
 ARM microarchitecture contains a barrel shifter 

that can perform shifts and rotates on operands
 This is why the status register has separate 

flags of shift and arithmetic overflow



  

Alternate Pipeline Paths

 Sh, ALU, and Sat can be replaced with three 
MAC stages, which perform multiplication 
operations

 These three stages can also be replaced with 
different stages for memory operations:

1. ADD – calculate address

2. DC1 and DC2 – Access data cache



  

Parallelism within Instructions

 Some instructions, such as those which access 
memory and increment a register at the same 
time (useful for array operations), will use both 
the memory access pathway and the arithmetic 
pathway simultaneously

 If the data cache misses and there is a stall in 
the memory access pathway, the arithmetic 
pathway will continue execution anyway

 This frees up the ALU and saturation stage for 
use with other instructions



  

Branches

 Branch instruction contains condition field, link 
flag, and 24-bit offset field

 Target must be word-aligned, so offset is 
effectively 26 bits

 Target address calculated by sign-extending 
PC-8+offset (subtract 8 for pipeline)

 Program can branch to addresses up to 32 
megabytes away from PC

 If the link flag is set, store old PC in LR



  

Branch Prediction

 While the condition attached to every 
instruction helps reduce costly explicit 
branches, it does not eliminate them entirely

 Naive approach in ARM9 is to always predict 
that the branch will not be taken
 This risks losing 3+ cycles if wrong!
 This was more acceptable for the ARM9, which has 

a shorter pipeline

 Therefore, ARM11 implements more 
aggressive techniques



  

Branch Target Address Cache

 Direct-mapped, 128-entry cache which keeps 
track of previous branch instructions (indexed 
by address) and their results

 Stores 2-bit prediction history, which it uses to 
make next prediction

 Lines only evicted from cache in the event of a 
conflict with another branch address

 Very effective for loops, where branches have 
the same result many times in a row



  

Static Branch Prediction

 Used when BTAC entry not available
 Configured in hardware to take branches with 

negative offsets, and not take branches with 
positive offsets

 Once again this would help loop performance, 
since jumps backwards tend to follow the body 
of a loop

 The forward-not-taken choice accommodates 
the way compilers handle conditionals



  

Branch Folding

 Removes predicted branch instructions from 
the instruction stream

 Branches with ”side effects” are not subject to 
this optimization, since those effects (such as 
links into new procedures) must be carried out

 Branches to branches cannot be folded, for 
reasons that will become clear shortly



  

What happens on misprediction?

 Pipeline is flushed and correct instructions are 
fetched

 Instructions following folded branches fail
 Whenever there is a chance a folded branch 

has been mispredicted, address of the 
alternative choice must be remembered

 These alternatives are retrieved if it turns out 
the branch was indeed mispredicted

 This is why branches to branches cannot be 
folded – would need to store multiple 
alternatives



  

Memory Access

 Data must be moved to registers before it can 
be manipulated

 A memory word can be indexed by a register 
plus or minus a 12-bit offset constant

 A halfword or byte can be indexed the same 
way, except the offset can only be 8 bits

 Support for block-data transfer – can transfer 
up to 16 registers to and from memory in a 
single instruction



  

Memory Hierarchy

 L1 cache involves separate instruction and data 
caches and a write buffer
 Each cache is 4-way set-associative, ranging from 

4KB to 64KB in size, with 8-word cache lines
 Cache is virtually indexed, virtually tagged
 Data cache misses are non-blocking
 Upon eviction, if data needs to be written back to 

memory, the line is added to the write buffer
 Write buffer handles all RAW hazards that may 

occur when holding needed data



  

Memory Hierarchy

 L2 cache is off-chip
 Instruction controller, data controller, and DMA 

hardware on-chip each has its own 64-bit wide port, 
allowing for simultaneous accesses to the cache

 An additional 32-bit peripheral interface connects to 
processor peripherals such as coprocessors



  

Translation Lookaside Buffer

 Actually has two levels
 First level is known as Micro-TLB

 2 10-entry, fully associative TLBs, one for I-cache, 
one for D-cache

 Performs translation in parallel

 Second level is called the Main TLB
 Next level up when Micro-TLB misses
 64-entry, 2-way set associative buffer
 Also has 8-entry, fully associative section, used 

mainly in Secure Monitor mode



  

Hardware Stack

 ARM also supports a hardware stack
 Both upward and downward-growing stacks are 

supported
 Which direction to grow is specified by the flags in 

the push and pop instructions

 Stack is used to store activation records



  

ARM Calling Conventions

 R0 through R3 hold the first four arguments
 Additional arguments are passed in reverse order 

on the stack
 Values larger than 32 bits are passed as multiple 

32-bit values
 Floating-point values are passed in registers on the 

floating-point coprocessor

 R4 through R10 hold local variables
 R11 serves as the frame pointer



  

ARM Calling Conventions

 R0 through R3 hold return values
 Once again, data types larger than 32 bits are 

treated as multiple 32-bit values

 R12 holds intra-procedural intermediate values 
as well as serves as a scratchpad register 
between calls



  

Exception Handling

 Uses vectored exception handling
 Has a separate set of mode-specific registers 

for each exception mode
 Special instructions exist for storing and 

reloading processor state to and from mode-
specific registers



  

When an Exception Occurs

 Status register is copied into the mode-specific 
counterpart

 If processor is in Thumb state, change to ARM
 Store return address in mode-specific LR
 Store appropriate handler address in PC



  

Returning from Exceptions

 Copy mode-specific status register back into 
user status register

 Copy return address from mode-specific LR 
back into PC



  

System Control Coprocessor

 A set of 32 readable and writeable registers
 Which registers can be written depends on 

whether the processor is in the Secure Monitor 
operating mode

 Used in configuring various operations ranging 
from DMA to cache control to performance 
measurement



  

SIMD Capabilities

 Vector Floating-Point coprocessor performs 
operations on 8 single-precision or 4 double-
precision values simultaneously, in parallel with 
CPU

 Otherwise costly arithmetic operations such as 
square root are built into hardware

 Dedicated interface to main processor
 Results of compare instructions are stored in 

CPU status register
 Could make interface bandwidth and latency a 

bottleneck



  

VFP Pipelines

 Each pipeline shares decode and issue stages, 
but otherwise works independently and in 
parallel

 Multiply and ACcumulate (FMAC) pipeline has 
7 execution stages

 Divide and Square root (DS) pipeline has 4 
execution stages

 Load/Store (LS) pipeline has 1 execution and 2 
memory access stages, and is responsible for 
communicating with the main processor



  

VFP Registers and Data Formats

 Four banks of 8 32-bit registers
 Each instruction operates on a bank of registers
 Consecutive pairs of registers can store double-

precision floating-point data
 Floating-point data format follows the IEEE 

standard


