

The ARM11 Architecture

Ian Davey

Payton Oliveri

Spring 2009

CS433

Why ARM Matters

 Over 90% of the embedded market is based on
the ARM architecture

 ARM Ltd. makes over $100 million USD
annually in royalties and licensing fees for this
technology

 Over two billion units are shipped each year
 We will focus primarily on the ARM1176JZF-S,

which is used in a number of smartphones as
well as the iPod Touch

General Overview

 ARM stands for Advanced RISC Machine
 The ARM11 is based on the ARMv6 instruction

set architecture
 Bi-endian – can operate in either little-endian or

big-endian format
 Most devices today use little-endian

 Actually uses two instruction sets – the 32-bit
ARM and the 16-bit Thumb

ARM and Thumb

 Since many embedded devices have small
amounts of memory, a smaller, 16-bit
instruction set can be used

 This 16-bit 'Thumb” instruction set makes use
of implied operands and reduced functionality
to reduce code size

 Thumb instructions are decoded into ARM
instructions on the fly at execution time, though
consuming one additional cycle

 CPU is either in ”ARM state” or ”Thumb state”

Registers – 32-bit ARM mode

 16 general-purpose registers R0-R15
 R13 is the stack pointer and is often called SP
 R14 holds return addresses and is often called LR

(for link register)
 R15 is the program counter and is often called PC
 PC is always word-aligned

 17 general-purpose ”mode-specific” registers
(used for exception handling, etc.)

 7 status registers, one for each operating mode

Registers – 16-bit Thumb mode

 7 sets of 11 registers each
 8 general-purpose registers R0-R7
 Stack pointer, link register, and program counter

 Each set is for a different operating mode
 More on operating modes later

Status Register Specifics

 Bits 0 through 4 determine the processor
operating mode

 Bit 5 indicates whether the processor is in ARM
or Thumb state

 Bits 6 and 7 disable interrupts
 Bits 28 through 31 are ALU condition code flags

 N for negative ALU result
 Z for zero ALU result
 C for overflow after shift operation
 V for overflow after signed arithmetic operation

Operating Modes

 As mentioned before, each mode has its own
mode-specific registers, including a status
register

 The 8 modes of operation consist of 7
”priviledged modes” - which are used to handle
exceptions and ease normal resource
restrictions – and 1 ”user mode” which is used
during normal operation and has all restrictions
in place

Operating Modes

1. User – normal operation

2. Fast interrupt – handling of ”fast” interrupts

3. Interrupt – handling of all other interrupts

4. Supervisor – operating system protected mode

5. Abort – abortion of memory access

6. System – operating system privileged mode

7. Undefined – invalid instruction in stream

8. Secure monitor – on-chip security features

ARM Instruction Set Architecture

 Each instruction is 32 bits long
 Highest four bits determine condition (indicated

in status register) under which the instruction is
executed
 Can discard instruction immediately after decode
 Only two pipeline stages are wasted (as seen next)
 Fewer branch instructions needed, smaller code

 Other fields contain operands, offset constants,
and various 1-bit flags

The Pipeline

 8 stages in normal pipeline

1. Fe1 – Address is sent and instruction received

2. Fe2 – Much of the branch prediction goes here

3. De – Decode instruction

4. Iss – Read registers and issue instruction

5. Sh – Perform shift operations

6. ALU – Perform integer operations

7. Sat – Saturate results

8. WB – Write back data to registers

The Shift Pipeline Stage

 There are no explicit shift instructions
 Each arithmetic instruction has a field to specify

amount to shift one operand
 ARM microarchitecture contains a barrel shifter

that can perform shifts and rotates on operands
 This is why the status register has separate

flags of shift and arithmetic overflow

Alternate Pipeline Paths

 Sh, ALU, and Sat can be replaced with three
MAC stages, which perform multiplication
operations

 These three stages can also be replaced with
different stages for memory operations:

1. ADD – calculate address

2. DC1 and DC2 – Access data cache

Parallelism within Instructions

 Some instructions, such as those which access
memory and increment a register at the same
time (useful for array operations), will use both
the memory access pathway and the arithmetic
pathway simultaneously

 If the data cache misses and there is a stall in
the memory access pathway, the arithmetic
pathway will continue execution anyway

 This frees up the ALU and saturation stage for
use with other instructions

Branches

 Branch instruction contains condition field, link
flag, and 24-bit offset field

 Target must be word-aligned, so offset is
effectively 26 bits

 Target address calculated by sign-extending
PC-8+offset (subtract 8 for pipeline)

 Program can branch to addresses up to 32
megabytes away from PC

 If the link flag is set, store old PC in LR

Branch Prediction

 While the condition attached to every
instruction helps reduce costly explicit
branches, it does not eliminate them entirely

 Naive approach in ARM9 is to always predict
that the branch will not be taken
 This risks losing 3+ cycles if wrong!
 This was more acceptable for the ARM9, which has

a shorter pipeline

 Therefore, ARM11 implements more
aggressive techniques

Branch Target Address Cache

 Direct-mapped, 128-entry cache which keeps
track of previous branch instructions (indexed
by address) and their results

 Stores 2-bit prediction history, which it uses to
make next prediction

 Lines only evicted from cache in the event of a
conflict with another branch address

 Very effective for loops, where branches have
the same result many times in a row

Static Branch Prediction

 Used when BTAC entry not available
 Configured in hardware to take branches with

negative offsets, and not take branches with
positive offsets

 Once again this would help loop performance,
since jumps backwards tend to follow the body
of a loop

 The forward-not-taken choice accommodates
the way compilers handle conditionals

Branch Folding

 Removes predicted branch instructions from
the instruction stream

 Branches with ”side effects” are not subject to
this optimization, since those effects (such as
links into new procedures) must be carried out

 Branches to branches cannot be folded, for
reasons that will become clear shortly

What happens on misprediction?

 Pipeline is flushed and correct instructions are
fetched

 Instructions following folded branches fail
 Whenever there is a chance a folded branch

has been mispredicted, address of the
alternative choice must be remembered

 These alternatives are retrieved if it turns out
the branch was indeed mispredicted

 This is why branches to branches cannot be
folded – would need to store multiple
alternatives

Memory Access

 Data must be moved to registers before it can
be manipulated

 A memory word can be indexed by a register
plus or minus a 12-bit offset constant

 A halfword or byte can be indexed the same
way, except the offset can only be 8 bits

 Support for block-data transfer – can transfer
up to 16 registers to and from memory in a
single instruction

Memory Hierarchy

 L1 cache involves separate instruction and data
caches and a write buffer
 Each cache is 4-way set-associative, ranging from

4KB to 64KB in size, with 8-word cache lines
 Cache is virtually indexed, virtually tagged
 Data cache misses are non-blocking
 Upon eviction, if data needs to be written back to

memory, the line is added to the write buffer
 Write buffer handles all RAW hazards that may

occur when holding needed data

Memory Hierarchy

 L2 cache is off-chip
 Instruction controller, data controller, and DMA

hardware on-chip each has its own 64-bit wide port,
allowing for simultaneous accesses to the cache

 An additional 32-bit peripheral interface connects to
processor peripherals such as coprocessors

Translation Lookaside Buffer

 Actually has two levels
 First level is known as Micro-TLB

 2 10-entry, fully associative TLBs, one for I-cache,
one for D-cache

 Performs translation in parallel

 Second level is called the Main TLB
 Next level up when Micro-TLB misses
 64-entry, 2-way set associative buffer
 Also has 8-entry, fully associative section, used

mainly in Secure Monitor mode

Hardware Stack

 ARM also supports a hardware stack
 Both upward and downward-growing stacks are

supported
 Which direction to grow is specified by the flags in

the push and pop instructions

 Stack is used to store activation records

ARM Calling Conventions

 R0 through R3 hold the first four arguments
 Additional arguments are passed in reverse order

on the stack
 Values larger than 32 bits are passed as multiple

32-bit values
 Floating-point values are passed in registers on the

floating-point coprocessor

 R4 through R10 hold local variables
 R11 serves as the frame pointer

ARM Calling Conventions

 R0 through R3 hold return values
 Once again, data types larger than 32 bits are

treated as multiple 32-bit values

 R12 holds intra-procedural intermediate values
as well as serves as a scratchpad register
between calls

Exception Handling

 Uses vectored exception handling
 Has a separate set of mode-specific registers

for each exception mode
 Special instructions exist for storing and

reloading processor state to and from mode-
specific registers

When an Exception Occurs

 Status register is copied into the mode-specific
counterpart

 If processor is in Thumb state, change to ARM
 Store return address in mode-specific LR
 Store appropriate handler address in PC

Returning from Exceptions

 Copy mode-specific status register back into
user status register

 Copy return address from mode-specific LR
back into PC

System Control Coprocessor

 A set of 32 readable and writeable registers
 Which registers can be written depends on

whether the processor is in the Secure Monitor
operating mode

 Used in configuring various operations ranging
from DMA to cache control to performance
measurement

SIMD Capabilities

 Vector Floating-Point coprocessor performs
operations on 8 single-precision or 4 double-
precision values simultaneously, in parallel with
CPU

 Otherwise costly arithmetic operations such as
square root are built into hardware

 Dedicated interface to main processor
 Results of compare instructions are stored in

CPU status register
 Could make interface bandwidth and latency a

bottleneck

VFP Pipelines

 Each pipeline shares decode and issue stages,
but otherwise works independently and in
parallel

 Multiply and ACcumulate (FMAC) pipeline has
7 execution stages

 Divide and Square root (DS) pipeline has 4
execution stages

 Load/Store (LS) pipeline has 1 execution and 2
memory access stages, and is responsible for
communicating with the main processor

VFP Registers and Data Formats

 Four banks of 8 32-bit registers
 Each instruction operates on a bank of registers
 Consecutive pairs of registers can store double-

precision floating-point data
 Floating-point data format follows the IEEE

standard

