
CS 654 Fall 2003

SimpleScalar Familiarization Exercise
CS 654 Exercise #1

Due Wednesday, Sept. 3, 9:30am

This exercise is chiefly meant to help you install and familiarize yourself with the
SimpleScalar 3.0b Toolset. Three short written exercises related to Chapter 1 are
also included. All these are meant to be quick and easy, but this doesn’t mean you
should leave them to the last minute!

Part I: Installing SimpleScalar 3.0b

0. Please use one of the Sun interactive machines: cobra, mamba, adder.

1. Copy /af6/skadron/SimpleScalar/simplesim-3_0b_tar.gz to your home

directory

2. Unzip simplesim-3_0b_tar.gz with the gunzip utility:

gunzip simplesim-3_0b_tar.gz

3. Create your own SimpleScalar directory by executing the following command:
tar xvf simplesim-3_0b_tar

 This will create a directory named simplesim-3.0 wherever you execute the command.

4. Follow the directions for installation in the README file. The following are some additional

changes to the README that will make the installation smoother.
a) Using the editor of your choice, edit the Makefile.

Uncomment line 156 of the makefile. The line reads:
 #MLIBS = `./sysprobe -libs` -lm -lsocket -lnsl

To uncomment it, simply remove the # symbol.

b) Replace the line which reads:

OFLAGS = -O0 -g –Wall

with the following lines:

ifdef DEBUG
OPT= -O0 -g
else
OPT= -O3 -finline-functions -funroll-loops
endif
OFLAGS = $(OPT) -g -Wall

OFLAGS is the variable in the makefile which specifies the level of optimization used
by gcc. The original line which you replaced always sets OFLAGS to
–O0 –g –Wall, which is useful for debugging. The change you just made will

1

© 2001,2002 Kevin Skadron

CS 654 Fall 2003

allow you to later specify whether or not you want optimizations turned on.
I.e., if debugging is to be turned on :

make DEBUG=1 <simulator name>

 If no debugging information is needed, then the following is used:

make <simulator name>

c) In addition, comment out the line which reads:
 FFLAGS=-DDEBUG

by adding # in front of the line. It should now read:
 #FFLAGS=-DDEBUG

d) For the purposes of this exercise we will be using SimpleScalar’s PISA instruction set

architecture.
In step b) do:
make config-pisa

e) Edit syscall.c. Using the editor of your choice, uncomment line 133 in

syscall.c. The line reads:
/* #include <sys/file.h> */

Remove the comment characters /* and */. This file needs to be included in order
to get the simulators to compile.

f) make DEBUG=1

This builds all the simulators in the SimpleScalar Toolset with debug information turned
on.

5. Test the simulator installation. make sim-tests

As the README file says, this will take some time. If the installation has been done
correctly, the output will show no differences.

Part II: Using a SimpleScalar simulator

1. Simulators in SimpleScalar are named with “sim” as a prefix. If you peruse your simplesim-

3.0 directory, you will see there are several simulators packaged with SimpleScalar including
sim-safe, sim-fast, sim-eio, sim-outorder to name a few. This exercise will use the simplest
simulator, sim-safe.

2. From your simplesim3.0 directory execute sim-safe with no command-line arguments.

Information about the usage, description of the simulator and default values for the
command-line options will print to the screen. The name of the option and the type of values
it takes appears as the first item on each line. The next items on the line are the option’s
default values, and then a description of the option. Take note of the following options:

2

© 2001,2002 Kevin Skadron

CS 654 Fall 2003

Option Name Arg Type Default Value Description
-redir:sim <string> <null> redirect simulator

output to file
-redir:prog <string> <null> redirect simulated

program output to
file

-nice <int> 0 simulator
scheduling
priority

-max:inst <uint> 0 maximum number of
inst's to execute

3. Make a results directory in your simplesim3.0 directory:

mkdir results

4. Run sim-safe with commandline arguments for redirecting simulator output and program
output set to be written into the results directory. In this case, the benchmark we will be
using is a test program called test-math. It is located in simplesim-
3.0/tests/bin.big. The commandline is as follows:

sim-safe –redir:sim results/sim1.out –redir:prog results/prog1.out
tests/bin.big/test-math

5. Change directories to the results directory and examine sim.out and prog.out. In sim.out, in
the first part of the file you should see the same information as when you ran sim-safe
without any arguments. The lower half of the file contains various statistics that sim-safe
collects. In particular, note sim_num_insn (total number of instructions executed) and
sim_num_refs (number of loads and stores). It should read as follows:

sim_num_insn 216084 # total number of instructions executed
sim_num_refs 56936 # total number of loads and stores executed

6. Rerun sim-safe on test-math, but this time, also set the –max:inst option to 50000

instructions. Redirect simulator output to results/sim2.out and program output to
results/prog2.out. When you examine sim2.out, you should see the following:

sim_num_insn 50000 # total number of instructions executed
sim_num_refs 15626 # total number of loads and stores executed

7. Place copies of sim1.out and sim2.out in your submission directory.

Part III: Writing your own program to run through a SimpleScalar simulator

1. Write a c program that prints “Hello World!” For the purposes of this exercise, it is assumed

that the file is called hello.c.

2. Use SimpleScalar’s version of gcc to compile this program for the PISA instruction set. A

copy of this version of gcc, called ssbig-na-sstrix-gcc is located at:
/af6/skadron/SimpleScalar/sun/bin

3

© 2001,2002 Kevin Skadron

CS 654 Fall 2003

4

© 2001,2002 Kevin Skadron

To compile your program to be run with sim-safe:
/af6/skadron/SimpleScalar/sun/bin/ssbig-na-sstrix-gcc –o hello
hello.c

3. Now you have a compiled version of your hello world program which sim-safe can simulate.

4. Run sim-safe on hello, redirecting simulator output to results/hello.sim.out and program

output to results/hello.prog.out:

sim-safe –redir:sim results/hello.sim.out –redir:prog
results/hello.prog.out hello

5. Examine hello.sim.out and hello.prog.out. Place a copy of hello.c and
hello.sim.out to submit.

Part IV: Submitting your work

Make a directory called cs654/ in your home directory, and within cs654/, make a subdirectory
called assign1/. Make sure that you have copies of sim1.out, sim2.out, hello.c, and hello.sim.out
in the assign1 directory, and send e-mail to cs654@cs. Please be sure to follow the homework
assignment submission guidelines in the Beginning of Course Memo.

Part V: Written Exercises

These should be submitted in hardcopy form as per the instructions in the Beginning of Course
Memo.

1. A particular computer has a clock rate of 100 MHz. After measuring the execution of a pro-

gram, it is observed that the program executes 1.2 billion instructions in 30 seconds. What is
the average cycles per instruction (CPI) for this machine and this program?

2. Hennessy & Patterson #1.3

3. Hennessy & Patterson #1.7

	Part I: Installing SimpleScalar 3.0b
	Part II: Using a SimpleScalar simulator
	Option Name
	Arg Type
	Default Value
	Description

