
CS 654 Fall 2002

Pipeline Simulator Exercise #2
SimpleScalar Exercise #3

Due Friday, October 4, 2002, 4:30 p.m.

This exercise is meant to extend your how pipelines function from the previous exercise
and to further familiarize you with the SimpleScalar 3.0 toolset. In this phase, you will
add bimodal branch prediction, single-level caches and data forwarding to your pipeline.
Your simulator will appropriately handle branch mispredictions and cache misses. There
are 2 parts: a programming assignment and a few written exercises.

Assumptions

For the purposes of this exercise, we are assuming the following:

• Single level caches

• Instruction cache
• Probed by the fetch unit
• Miss latency: determined by the cache access function

• Data cache
• Probed by the MEM stage if executing a load or store
• Miss latency: determined by the cache access function
• Infinite write buffer, so no stalls necessary for writes to memory

• Bimodal branch predictor
• Branch predictor will be probed on a branch in the decode stage and provide IF

with a PC to fetch
• When the branch reaches the EX, determine whether the prediction was correct, if

it’s incorrect, squash the wrongly fetched instructions, fetch the correct
instructions

• Data forwarding:

• If there is a data hazard, but the result is available in the EX/MEM latch or the
MEM/WB latch, no stalling should occur

• Split-phase register access (writes occur in first half of clock cycle, reads in second

half)

Simulator Skeleton Code

0. Download the code distribution assign3.tar.gz from:

~cs654/fall2001/assign3

1
© 2001,2002 Kevin Skadron

CS 654 Fall 2002

You MUST use the code distributed here as your baseline for starting the assignment.
Please rename the solution file to sim-pipe2.c, so as not to interfere with the
grading of pipeline assignment part 1. (This means you’ll need to edit the Makefile
again).

NOTE: because we’re using bpred and cache modules the matching lines in your
Makefile should look like this:

sim-pipe2$(EEXT): sysprobe$(EEXT) sim-pipe2$(OEXT)
bpred.$(OEXT) cache.$(OEXT) $(OBJS) libexo/libexo.$(LEXT)
 $(CC) -o sim-pipe2$(EEXT) $(CFLAGS) sim-
pipe2.$(OEXT) bpred.$(OEXT) cache.$(OEXT) $(OBJS)
libexo/libexo.$(LEXT) $(MLIBS)

1. Include sim-pipe.h, bpred.h and cache.h to your simulator. This will
give you access to the functions in the branch prediction and cache modules. The
contents of sim-pipe.h are an assortment of stuff needed in order to do branch
prediction and figure out cache miss latency.

2. You’ll have to register options (sim_reg_options) and check them

(sim_check_options). For hints on how to do this, look to sim-bpred.c and sim-
cache.c

3. There will be a question-and-answer session next Friday at 4:30.

Sample Output

 Sample output is can be found in
~cs654/fall2001/assign3/assign3.sample_results.tar.gz

The Programming Assignment

1. Implement data forwarding/bypassing according to the assumptions given above
2. Add instruction cache, data cache, and branch predictor to the pipeline according to

the assumptions given above
3. Your simulator should do the following:

• Detect data and control hazards
• Stall as appropriate, forward data as appropriate
• Detect instruction cache misses and data cache misses and appropriately stall

when a miss occurs for the latency required to get the instruction from memory
• Predict branches in the decode stage. Use the prediction to tell fetch the next PC

to fetch
• Count the number of branches executed
• Calculate the correct prediction rate (number of correct predictions /total number

of branches)

2
© 2001,2002 Kevin Skadron

CS 654 Fall 2002

The Written Assignment

1. Let us consider a single-issue, in-order system like the DLX pipeline in Chapter 3,

except our pipeline only has four stages: IF, ID, EX, and WB. Loads compute their
effective address and access the data cache in the EX stage. Let’s assume that all
operations take 1 cycle to execute, except for loads. Without a cache, loads take 10
cycles (including the cycle spent in EX to compute the effective address). Loads
represent 20% of the dynamic instruction mix.

a.) (5) What is the maximum speedup that we can attain by minimizing the load

latency? Assume that, no matter what improvements are made, a load cannot take
less than 1 cycle to execute (i.e., it completes at the end of the EX stage). Assume
that there is no impact on the clock cycle time.

b.) (10) Suppose that 15% of the dynamic instruction mix consists of arithmetic
operations that directly use the loaded values, and that the compiler can convert
these sequences into arithmetic operations with a memory operand. These
arithmetic-memory operations are able to compute the effective address, access
the data cache, and perform the arithmetic operation in the EX stage. Since 20%
of the instruction mix is loads, this means that we can convert 75% of the loads.
Further suppose that this system now has a cache with a 95% hit rate (i.e., 95% of
loads complete at the end of the EX stage, while 5% still take 10 cycles). The
ratio of hits to misses is the same for arithmetic-memory operations and for
remaining load operations. The hit rate is the same for the base system and for
the new system that uses arithmetic-memory operations. Finally, assume that
arithmetic-memory operations complete at the end of the EX stage.
Unfortunately, accommodating the arithmetic-memory operations increases the
cycle time by 10%.

Is this change worthwhile? Which system is faster and by how much?

2. Consider the following code sequence:
lw R1 0(R2)
add R4 R1 + R3
add R1 R1 + R4

a.) (5) Identify all dependences, using a 5-stage pipeline as described below.

b.) (5) Using a pipeline diagram (format of your choice), show this code sequence

progressing through a five-stage pipeline (IF, ID, EX, MEM, WB) with no
bypassing but with split-phase register access (i.e., a register can be written in the
first half of the cycle, and the result can then be read in the second half of the
cycle). Loads complete at the end of the MEM phase; adds take only one cycle to
complete. Registers are read in the ID stage.

3
© 2001,2002 Kevin Skadron

CS 654 Fall 2002

4
© 2001,2002 Kevin Skadron

Homework Submission

For the programming part:
(NOTE: We will be compiling your simulators and running our test cases on them, so
make sure that your simplesim3.0 directory has group rx permissions set)

In an email to cs654@cs.virginia.edu,include the following information:

1) Group member names and email ids (no email aliases please).
2) README: This should detail how to compile your simulator and the names of files

you have modified and an overview of the design choices that you made and any
assumptions that you made.

3) Pointer to the location of the files you have modified to write your simulator. Ideally
this is something like /home/userid/cs654/assign02

For the written part:

Follow the guidelines for labeling your assignment described in the BOC memo and
submit your homework to the brown folder in the front of Olsson Hall (by the wooden
mailboxes). Please staple your assignment if it is more than one page.

Grading Criteria:

This assignment will be graded on the following criteria:
• README file is included and describes files included and compilation instructions
• Code compiles without error in our distribution of SimpleScalar
• Each pipeline stage correctly models its behavior
• Data and control hazards are correctly identified
• Stalls for the correct number of cycles on data and control hazards
• Functional correctness (your code runs and completes successfully on the tests in

bin.big)
• Simulator runs correctly on our smaller test cases

	Assumptions
	Simulator Skeleton Code
	Sample Output
	The Written Assignment
	Homework Submission
	
	For the written part:

