
Maximizing CMP Throughput
with Mediocre Cores

J. D. Davis et al., Stanford University

Marisabel Guevara
January 25, 2010

1Thursday, January 28, 2010

Motivation

• Server applications are multithreaded, and
aggregate throughput is more important than
individual thread latency

• No-overhead multithreading prevents
processor stalling due to low ILP or high cache
miss rates

• Explore the CMT design space for equivalent
area configurations

2Thursday, January 28, 2010

Even single-threaded ones run many client threads on a common server

CMT Design Space

• Vary the number of IDPs
and number of threads
for each core

• Within each core
configuration, vary cache
size and organization

• Simulated a perfect
secondary cache that
provided insight into L1
cache utilization, to then
guide the second
simulation phase

superscalar processors employing fine-grain
multithreading. We use a variety of industry guidelines
to reduce the number of simulations in the design space.
Even with these guidelines, approximately 13,000
configurations exist for in-order scalar CMTs for each
benchmark and process technology. Results from a
perfect L2 cache simulator configuration enabled
further pruning of the scalar CMT design space.
Superscalar processor configurations were explored to
enable comparisons to previous studies that investigate
CMPs [5][9]. Unlike these previous studies, our
superscalar processors include multithreading, which
we show is crucial to achieve high throughput.

The design trade-offs and complexity for CMTs
composed of a large number of simple processors are
very different from that of a CMP consisting of a small
number of superscalar processor cores. In this paper,
we use SPEC JBB [30], TPC-C, TPC-W [31] and XML
Test [32], a Java middleware, OLTP, transactional web,
and XML parsing web benchmarks, respectively. For
these applications, total throughput, rather than single-
thread performance, is the main metric of interest. We
measure total throughput using aggregate instructions
per cycle (AIPC), which we find to be directly related
to transactions per second for our highly tuned versions
of the benchmarks. For all benchmarks, AIPC is
maximized for a range of scalar CMT configurations
employing small primary caches with roughly 25-40%
of the CMT area devoted to shared secondary cache
area. We observed consistent trends across
technologies that enable us to extrapolate our results
from small-scale and medium-scale CMTs to large-
scale CMTs.

We discuss the CMT design space and describe our
area model based on various processor core components
and cache designs used to determine the allowable
CMT configurations in Section 2. Section 3 elaborates
on our high performance multi-configuration simulation
environment. Section 4 presents the detailed results of
our simulations. Section 5 discusses related work and
we conclude in Section 6.

2. The CMT design space

We evaluated CMTs built from processor cores
implementing the SPARC ISA. By exploring several of
Sun Microsystem’s UltraSPARC chip design databases,
we determined the area impact of the architectural
components that are modified to enable fine-grain
multithreading. From this, we derived a thread-scalable
fine-grained multithreaded processor core area model,
which correlates well with actual and projected
UltraSPARC processor areas from 130 nm to 45 nm
silicon process generations. We present simulated

results for small-scale, medium-scale, and (limited)
large-scale CMTs, where small, medium, large classify
CMT configurations that correspond to reticle-limited
dies (400 mm2) for 130 nm, 90 nm, and 65 nm silicon
process technologies, respectively

Figure 1: A high-level functional diagram of the
CMT design space. The gray components are
varied and described in Table 1.

Table 1: CMT design space parameters.
Feature Description

CPU In-order scalar or superscalar

Issue Width scalar, 2-way and 4-way superscalar

Pipeline Depth 8 stages

Integer Datapath Pipelines 1-4 IDPs or Integer ALUs

L1 D & I Cache 8KB-128KB, 16 (D) & 32 (I) Byte lines

L1 D & I Cache Set Assoc. Direct-mapped, 2-, 4-, or 8-way

L1 D & I Cache Policies write through, LRU-based replacement

Clock Frequency 1/3 -1/2 Maximum ITRS clock frequency [23]

Multithreading 1-32 threads/core

L2 Cache 1MB - 8MB, 128 Byte lines, banked (8 or 16),

coherent, inclusive, shared, unified, critical

word first, 25 cycle hit time (unloaded)

Main Memory Fully Buffered DIMMs with 4/8/16 dual

channels, 135 cycle latency (unloaded)

Figure 1 illustrates and Table 1 describes the variety
of high-level CMT configurations; all the gray
components are varied in this study. The processor
cores can utilize either in-order scalar or superscalar
integer datapaths (IDPs). We vary the number of IDPs
within each core and the number of threads per IDP. In
our scalar processor design, threads are statically
assigned to an IDP, as this avoids the superlinear area
impact of being able to issue instructions from any of
the threads on a core to any of the IDPs. All cache
sizes and set associativities (SA) can vary. Instruction

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 24, 2010 at 22:01 from IEEE Xplore. Restrictions apply.

3Thursday, January 28, 2010

Threads are statically scheduled to an IDP, supressing the superlinear effect of being able to issue
any thread to any of the IDPs -- LRU policy in the case of SS

Core Area Model

• Developed from UltraSPARC processors (130-45 nm)

• Die area fixed at 400 mm2

• 5-6% core area increase per thread

caches and data caches are always identical in size or
differ by a factor of 2X, but no more. The primary
caches range from 8 KB to 128 KB with SA ranging
from direct mapped to 8-way. Small instruction buffers
for each thread decouple the front-end of each IDP
from the shared primary instruction cache. The
memory and cache subsystems are fully modeled with
queuing delaying and occupancy. The actual RAS/CAS
cycles for the DRAM accesses are modeled along with
all the various buffers and queues. The number of
processor cores and sizes of the caches are determined
by the area model for a given silicon process
technology, keeping die size constant across all possible
configurations.

2.1. The CMT area model

Historically, server microprocessors have pushed the
manufacturing envelope close to the reticle limit,
around 400 mm2. Hence, we fixed the die size to be
400 mm2 across the technology generations and allocate
75% of the total die area to the CMT area, processor
cores and secondary cache, with the remaining 25%
devoted to the other system-on-a-chip (SOC)
components: memory controllers, I/O, clocking, etc.
We devote 15% of the CMT area to the processor core
interconnect and related components and the remaining
85% of the CMT area (60% of the total area) is devoted
to the processor cores and secondary cache. The
number of processor cores and the size of the secondary
cache are determined by allocating between 25% to
75% to one and the remainder of the area to the other to
cover a broad range of CMT configurations, from
processor intensive to on-chip memory intensive
designs. We also account for spacing and routing
between the (sub)components; an additional 10-20%,
depending on the component, of die area is allocated for
this purpose at various levels of the area model. Thus,
our area model produces realistic CMT configurations
that have been validated against Sun Microsystem’s
processor designs.

2.2. Processor core & cache area

From our estimates, fine-grain multithreading
directly impacts the area of processor core components
in a linear manner for a small number of threads, but the
degree to which these components are affected varies
greatly. We estimate a 5-6% area increase when
integrating two active threads into a simple, in-order
scalar or superscalar processor. This area increase is
similar to the area increase due to simultaneous
multithreading reported by Intel and IBM [19][6].
Figure 2 illustrates the linear increase in processor core

area predicted by our model, for a maximum of 16
hardware threads per processor core. The number of
threads per core is shown on the x-axis and the y-axis
quantifies the relative area increase of the core
configuration when adding multithreading and
additional IDPs. The increased complexity and
resulting non-linear area increase for large number of
threads per IDP is not modeled. This non-linearity is
realized much sooner with superscalar cores, preventing
our area model from accurately predicting superscalar
cores with more than 8 threads.

1.0

2.0

3.0

4.0

5.0

1 3 5 7 9 11 13 15 17

Threads per Core

R
e
la

ti
v
e
 C

o
re

 A
re

a 1 IDP

2 IDP

3 IDP

4 IDP

2-SS

4-SS

Figure 2: Core area model relative to a scalar
single-thread single IDP core for scalar (X IDP)
and superscalar (Y SS), where X is the number
of IDP sharing private primary caches and Y is
the instruction issue width.

We initially used CACTI 3.2 [25] to estimate cache
area and power, but found some inaccuracies and
limitations for the sub-micron silicon process
generations that we were interested in modeling [33].
We use conservative area estimates based on Sun
Microsystem’s designs for cache memory cells with an
area efficiency of 50% for all processor configurations.
Based on access time limitations, we constrained the
primary cache size with respect to the other processor
components to be no more than 50% of the total
processor core area. This constraint favors larger cores,
as our simulations do not assume multiple-cycle access
for the larger primary caches, and so are optimistic in
their performance benefits. While this might seem to
give an advantage to large thread or large IDP
configurations, we show in Section 4.3, all but two of
the best performing configurations use small primary
caches that were available to all possible thread/IDP
combinations, with the two outliers using caches
available to all combinations except the lower-thread
count, single IDP configurations.

3. Simulation environment

While our simulation study encounters the standard
problems of simulating nonexistent systems and of
simulating realistically configured large-scale

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 24, 2010 at 22:01 from IEEE Xplore. Restrictions apply.

Secondary
Cache

+
Cores

memory
controller,

I/O,
clocking, etc.

C
or

e
In

te
rc

on
ne

ct

4Thursday, January 28, 2010

Methodology

• RASE (Rapid, Accurate Simulation Environment)

• Built on SimCMT - cycle-based performance
simulator modeling Niagara

• execution-driven and trace-driven simulation

• Faster simulation

• No variability across test sequences

• < 1% difference in IPC

• < 5% difference in miss rates

5Thursday, January 28, 2010

2 modes:
1) Execution-driven mode: Simics issues insts and data references, and SimCMT replies with timing
information.
+ Accuracy
- Long simulation time
2) Trace-driven mode: Run SimCMT with an instruction trace
+ Simulations speedup is ~20x

RASE
extremely long simulation time. Another mode is to run
with an instruction trace that is collected offline from a
system simulator. The traces include complete system
activities ranging from instruction traces (including data
accesses), traps, TLB records, processor state changes,
Direct Memory Accesses (DMAs), and register values.
One advantage of the trace-driven mode is that the trace
needs to be collected only once and can be reused. We
simulate the full processor pipeline and memory system
with the instruction traces. The speed-up of trace-
driven simulation compared to execution-driven
simulation is about 20X. Another advantage is that the
same trace provides a constant input to the simulator
when several architectures are being simulated and
evaluated. This reduces the variability in the
comparisons and the analysis can be more isolated and
focused on the architecture differences.

SimCMT has been extensively used throughout the
duration of the design and implementation phase of
Niagara. A wide range of (micro-)architecture
variables such as number of cores, number of pipelines
per core, number of threads per pipeline, cache sizes,
line sizes, associativity, replacement strategies, and
various buffer/queue sizes have been evaluated and
finalized through extensive simulations. SimCMT’s
combination of the highly detailed simulation
infrastructure and the highly detailed raw statistics
provide the performance evaluation platform for quick
and accurate architecture evaluation and understanding.

2.3. Instruction Stream Generation

Figure 2 illustrates the instruction stream generation

and simulation flow. We start by setting up these
workloads on a system simulator, such as Simics [19],
with a configuration that has the proper resource
requirements based on the targeted performance
including the following resources: the number of CPUs,
the number of hard drives, RAM, and selection of
operating system and third-party applications. (1)
Simics, running in fast mode, is used to execute the
benchmark until it reaches steady state, where a
checkpoint is taken (2). After the checkpoint, we can
plug in Niagara specific models for an execution-driven
simulation or generate a trace that can be later used for
trace-driven simulation. Given a valid trace file, a
standalone SimCMT can be used in trace-driven mode
(3) to evaluate the system performance. Regardless of
the simulation mode, a common raw output can be
analyzed (4) and the results can be used to modify the
system model and repeat the simulation methodology
(5), either execution or trace driven.

Steps 1 and 2 generate instruction streams that are
representative of the original workload across various
hardware configurations, making them suitable for a
variety of targeted architectures. We created a Simics
module to generate trace files by writing every PC and
corresponding instruction to a file for each processor or
thread. Branch prediction, physical address to virtual
address mappings, kernel vs. user code and other
related information about thread state is written to this
file and compressed to save disk space. We also use
pmap to get address space information about the
processes. This defines the shared and

B e n c h m a r k

Tr
ac

e

S
to

ra
ge

R e s u l t s

C P UR A M

D IS K s A
P

P
s

O S

C h e c k p o i n t

G e n e r a t e
T r a c e

S y s t e m
M o d e l

M o d i f y
M o d e l

E x e c u t i o n -
D r iv e n T r a c e - D r iv e n

1

2
34

5

S y s t e m
M o d e l

Figure 2. The steps required for trace generation
and execution or trace driven simulation. (1) Tune
the benchmark for the target hardware, (2) use
execution-driven mode to reach the benchmark
steady state, take a checkpoint, continue execution-
driven simulation and/or generate trace file, (3)
trace-driven simulation using input trace file and
system model, (4) common result analysis
framework, and (5) model modifications.

non-shared memory regions to be used for thread
replication for larger subsequent simulations. These
trace files therefore capture the memory access
behavior and the instruction mix of the commercial
server benchmarks used for the architecture studies.

2.4. Scaling Large Simulations

Niagara has 32 threads, which exceeds the number
of threads in our instruction stream file, because the
largest applications we decided to simulate in a
reasonable amount of wall clock time contained only 16
threads. Generating larger trace files would be
prohibitive due to time to set up, reach the benchmark’s
steady state operating region, and collect the trace. In
order to replicate threads to enable scaling the industry-
grade benchmark to simulate high aggregate thread
configurations, we use the address mapping of the
processes. We assume text is shared, as well as the
kernel data structures. The application address space is
divided into shared and non-shared region based on the
pmap info and some application specific information,
i.e., the system global area (SGA) for Oracle or the
JVM heap for SPEC JBB2000. We use this benchmark
specific information to “remap” old threads to new
threads with the same benchmark behavior at different
points in the processor trace file. The long trace files
enable non-overlapping instruction execution of the
original threads and replicated threads, as shown in
Figure 3. These steady-state benchmarks [5][22] do the
same classes of transactions repetitively and the
replicated threads capture that same general benchmark
behavior.

Source: Davis, J. D., Fu, C., and Laudon, J. 2005. The RASE (Rapid, Accurate Simulation Environment) for chip multiprocessors. SIGARCH Comput. Archit. News 33, 4 (Nov.
2005), 14-23. DOI= http://doi.acm.org/10.1145/1105734.1105738

In general, an X-way trace file can be expanded to
simulate Y threads, when Y>X, by replicating and
shifting the address space of the trace threads. The
addresses of the non-shared address space, like the
stack, were simply shifted to remove replication-
induced artificial sharing, while the shared regions, e.g.,
text and shared global memory, were not shifted. We
shift the upper address bits by Xoring them with the
replication id and maintaining the correct physical to
virtual address mappings. The replication id ranges
from 0 to the ceiling of Y/X. The cpu or thread ids are
distinguished by the offset pointers into the original
instruction stream file. We insure non-overlapping
execution of the replicated threads by selecting an
appropriate offset.

X Original Threads

0 to X-1 Threads

X to 2X-1 Threads
Y Threads

Figure 3. Thread replication from a trace with X
threads for non-overlapping trace-driven execution
of Y threads.

Thread replication has the potential to lead to

benchmark behavior that is not characteristic of the
benchmark. This could be a result of benchmark
variability, lock contention, or other software and
benchmark setup problems. However, we did not
observe time variability, as described in [3], as these
benchmarks exhibit a steady behavior during their large
measurement window [5][22]. Furthermore, space
variability exists between runs on the same systems, but
we are able to reproduce benchmark performance
within a few percent of the average for multiple runs of
these highly tuned benchmarks. As our data
demonstrates, CMT performance on the real
applications can be better characterized by our RASE
methodology combined with detailed
hardware/software correlation and long traces than by
an alternative methodology of application scaling and
multiple short execution-driven runs [2][3].

When using thread replication to simulate larger
systems, we are trying to balance constructive and
destructive interference in the simulation, in this case
cause by false sharing and increased conflict misses.
These effects should be present in these types of
simulations, but we want to mitigate the artificial
exaggeration of these effects caused by thread
replication. We preserve shared address spaces to
remove any false conflict misses. However, conflict
misses are introduced by shifting the non-shared
memory region while still preserving all the low order
bits. This causes more conflict misses and in some
cases, the simple replication mechanism increases
conflict misses in the L2 cache resulting from the lower
order bits of the replicated threads mapping to the same
set index. A simple index hashing scheme is used that
hashes the replication id with the set index to reduce the
conflict miss rate, thereby balancing the performance
degradation introduced by the increased conflict misses

due to address shifting. This basically replicates the
page coloring that the operating system would normally
do.

3. Benchmark Details

To estimate real application performance, we have
selected SPEC JBB2000, TPC-C, and XML Test server
benchmarks to assess the CMT’s performance. SPEC
JBB2000 emulates a 3-tier system emphasizing the Java
server-side performance. This benchmark focuses on
middleware business logic [24]. TPC-C is an online
transaction processing benchmark based on an order-
entry system [26]. We concentrate on the server
component of TPC-C for this study. This complicated
benchmark can have extreme resource requirements
[16][14][4][1][23]. XML Test is a multithreaded XML
processing benchmark developed at Sun Microsystems
[25]. XML Test performs both streaming and tree
building parsing, which replicate application servers
that provide web services and simultaneously process
XML documents. Unlike SPEC JBB2000, XML Test is
a single tier system benchmark; the test driver is part of
the worker thread.

All of these benchmarks lack multiple phase
execution, thus recording the contiguous instruction
streams on a per thread basis captures the complete
system performance and the overall benchmark
characteristics. In contrast, benchmarks like SPEC
CPU2000 require sampling techniques to capture the
various phases of execution [21]. SPEC JBB2000 uses
the J2SE 1.5 JVM with a 3.5 GB heap running on
Solaris 9 with 2 to 16 warehouses to collect a 2 to 16-
processor instruction trace file, respectively. Likewise,
XML Test uses the J2SE 1.5 JVM, but with a smaller
2.5 GB heap. For TPC-C, we use 3,000 warehouses
with a 28 GB SGA and 176 9 GB disks coupled with
commercial database management and volume manager
software running on Solaris 9. Both clients and servers
are simulated, but only the server instruction traces are
used in this study.

Each trace contains several billion instructions per
process thread, or over 30 billion instructions in
aggregate in steady state. All traces are collected
during the valid measurement time after the benchmarks
have ramped up and completed the benchmark specified
warm-up cycle, on real hardware. This is 2 minutes of
wall clock time for SPEC JBB2000, several million
transactions for TPC-C, and 10 minutes for XML Test.
We have observed significant variation in benchmark
performance during the ramp-up period, but little
variation once in steady state as mentioned in [3]. All
benchmarks are highly tuned with less than 1% system
idle time, and show negligible variability during the
measurement period with respect to performance and
instruction mix as described in Section 4.1.

4. RASE Validation

RASE validation can be broken up into three parts,

the instruction stream files, thread replication, and the
simulator, SimCMT. First, we validate the trace files
by comparing steady-state execution of the full-sized

6Thursday, January 28, 2010

Design Space Parameters

• 21 Scalar and Superscalar
CMT core configurations

• Secondary caches of 25%,
40%, 60%, and 75% of
CMT area

superscalar processors employing fine-grain
multithreading. We use a variety of industry guidelines
to reduce the number of simulations in the design space.
Even with these guidelines, approximately 13,000
configurations exist for in-order scalar CMTs for each
benchmark and process technology. Results from a
perfect L2 cache simulator configuration enabled
further pruning of the scalar CMT design space.
Superscalar processor configurations were explored to
enable comparisons to previous studies that investigate
CMPs [5][9]. Unlike these previous studies, our
superscalar processors include multithreading, which
we show is crucial to achieve high throughput.

The design trade-offs and complexity for CMTs
composed of a large number of simple processors are
very different from that of a CMP consisting of a small
number of superscalar processor cores. In this paper,
we use SPEC JBB [30], TPC-C, TPC-W [31] and XML
Test [32], a Java middleware, OLTP, transactional web,
and XML parsing web benchmarks, respectively. For
these applications, total throughput, rather than single-
thread performance, is the main metric of interest. We
measure total throughput using aggregate instructions
per cycle (AIPC), which we find to be directly related
to transactions per second for our highly tuned versions
of the benchmarks. For all benchmarks, AIPC is
maximized for a range of scalar CMT configurations
employing small primary caches with roughly 25-40%
of the CMT area devoted to shared secondary cache
area. We observed consistent trends across
technologies that enable us to extrapolate our results
from small-scale and medium-scale CMTs to large-
scale CMTs.

We discuss the CMT design space and describe our
area model based on various processor core components
and cache designs used to determine the allowable
CMT configurations in Section 2. Section 3 elaborates
on our high performance multi-configuration simulation
environment. Section 4 presents the detailed results of
our simulations. Section 5 discusses related work and
we conclude in Section 6.

2. The CMT design space

We evaluated CMTs built from processor cores
implementing the SPARC ISA. By exploring several of
Sun Microsystem’s UltraSPARC chip design databases,
we determined the area impact of the architectural
components that are modified to enable fine-grain
multithreading. From this, we derived a thread-scalable
fine-grained multithreaded processor core area model,
which correlates well with actual and projected
UltraSPARC processor areas from 130 nm to 45 nm
silicon process generations. We present simulated

results for small-scale, medium-scale, and (limited)
large-scale CMTs, where small, medium, large classify
CMT configurations that correspond to reticle-limited
dies (400 mm2) for 130 nm, 90 nm, and 65 nm silicon
process technologies, respectively

Figure 1: A high-level functional diagram of the
CMT design space. The gray components are
varied and described in Table 1.

Table 1: CMT design space parameters.
Feature Description

CPU In-order scalar or superscalar

Issue Width scalar, 2-way and 4-way superscalar

Pipeline Depth 8 stages

Integer Datapath Pipelines 1-4 IDPs or Integer ALUs

L1 D & I Cache 8KB-128KB, 16 (D) & 32 (I) Byte lines

L1 D & I Cache Set Assoc. Direct-mapped, 2-, 4-, or 8-way

L1 D & I Cache Policies write through, LRU-based replacement

Clock Frequency 1/3 -1/2 Maximum ITRS clock frequency [23]

Multithreading 1-32 threads/core

L2 Cache 1MB - 8MB, 128 Byte lines, banked (8 or 16),

coherent, inclusive, shared, unified, critical

word first, 25 cycle hit time (unloaded)

Main Memory Fully Buffered DIMMs with 4/8/16 dual

channels, 135 cycle latency (unloaded)

Figure 1 illustrates and Table 1 describes the variety
of high-level CMT configurations; all the gray
components are varied in this study. The processor
cores can utilize either in-order scalar or superscalar
integer datapaths (IDPs). We vary the number of IDPs
within each core and the number of threads per IDP. In
our scalar processor design, threads are statically
assigned to an IDP, as this avoids the superlinear area
impact of being able to issue instructions from any of
the threads on a core to any of the IDPs. All cache
sizes and set associativities (SA) can vary. Instruction

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 24, 2010 at 22:01 from IEEE Xplore. Restrictions apply.

7Thursday, January 28, 2010

Benchmarks

• SPEC JBB -- Java server-side performance

• TPC-C -- online transaction processing; HD, memory,
and network resources are stressed

• TPC-W -- transactional web processing

• XML Test -- multithreaded XML parsing of trees

8Thursday, January 28, 2010

SPEC JBB Results
for medium-scale CMTs

 Scalar CMT cores outperform Superscalar CMT cores due
to the additional scalar cores that fit the area budget
• “Overthreading” -- max IPC close to absolute peak

Ex. 1p8t, 2p16t, 2s8t
• Insufficient secondary cache degrades performance

Ex. 2p16t, 3p12t, 3p24t, 4p16t

secondary cache defined in Table 2. This same core
configuration coupled with the smallest secondary
cache results in 15% performance degradation in core
IPC. Note that the 1p8t configurations with the larger
secondary cache configurations in Figure 4 are
examples of “overthreading with a pipeline utilization
over 94% and a very small average core IPC range.
This configuration exhibits similar performance
behavior for all the benchmarks; it is insensitive to
primary cache size and set associativity as a result of
“overthreading”.

1.5 2.0
2.5 3.51.5

1.0
4.5
2.5

4.53.0 6.0 8.0Large
Medium
Small

CMT Scale L2 Sizes (MB)

Max

Min

Core IPC

NpMt
Figure 3: Average core IPC range for the NpMt
configuration for 4 different L2 cache sizes.
Each black bar shows the IPC range when L1
cache sizes are varied for each L2 cache size.

This pipeline saturation or “overthreading” can
easily be observed in the 1p8t, 2p16t, and 2s8t core
configurations, where the maximum IPC is very close
to the absolute peak. Figure 4 also illustrates the
performance degradation as a result of insufficient
secondary cache capacity. This is most noticeable in
the large IPC degradation or step down for the 2p16t,
3p12t, 3p24t, or 4p16t configuration when moving right
to left from a 2.5 MB L2 to a 1.5MB L2, where the
small primary cache configurations magnify the effects
of insufficient secondary cache capacity. This problem
is exacerbated in the medium-scale CMTs due to the

increased number of aggregate threads for core-
intensive designs, but is also present in the small-scale
CMT configurations with large numbers of IDPs and
threads. Given the memory subsystem scaling, we have
observed that the (limited) large-scale CMT results
exhibit performance characteristics similar to the small-
scale and medium-scale CMT results. In addition to
insufficient secondary cache capacity, SPEC JBB can
suffer from insufficient secondary cache associativity as
well. In Figure 4, insufficient secondary cache
associativity degrades the performance of both large
and small cores for the core-intensive configurations
with 8 or more threads per core. In these cases, conflict
misses in the secondary cache cause serial thread
execution by forcing threads to wait on main memory
accesses. This can be further aggravated if the same
secondary cache bank and/or DRAM bank become
memory hot spots [26].

One of the benefits of multithreading is its ability to
tolerate latency, but there are conditions caused by
thread interference that saturate the memory bandwidth,
negating this ability to hide latency and causing the
performance of the processor core to drop dramatically.
This is best illustrated by the large CMT configurations
(3p13t, 2p16t, 3p24t, and 4p16t) with small L2 and
large average IPC ranges. The medium-scale CMT
results in Figure 4 are similar for small-scale and large-
scale CMTs on all the benchmarks. In general, the
reader can scale the average IPC in Figure 4 up or down
depending on the benchmark, up for XML Test and
down for TPC-W and TPC-C. The “overthreaded”
configurations saturate the pipelines for the same CMT
configurations across all the benchmarks. TPC-C’s
performance is more sensitive to secondary cache size
and results in a more pronounced performance “step”
traversing the increasing secondary cache sizes. TPC-

0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

4 .0

C
o

re
 I
P

C

S c a la r C M T s S u p e rs c a la r C M T s

1
p

2
t

1
p

4
t

1
p

8
t

2
p

2
t

2
p

4
t

2
p

8
t

2
p

1
6

t

3
p

3
t

3
p

6
t

3
p

1
2

t

3
p

2
4

t

4
p

8
t

4
p

1
6

t

2
s
1

t

2
s
2

t

2
s
4

t

2
s
8

t

4
s
1

t

4
s
2

t

4
s
4

t

4
s
8

t

M a x im u m C o re
U t i l iz a t io n

Figure 4: SPEC JBB average core IPC range (maximum to minimum) for medium-scale CMTs. The
secondary cache size range is 1.5MB, 2.5MB, 3.5MB, and 4.5MB from left to right for each core.

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 24, 2010 at 22:01 from IEEE Xplore. Restrictions apply.

9Thursday, January 28, 2010

underthreading - single thread per pipeline results in no latency tolerance and low processor
utilization
overthreading - too many active threads fully utilize the IDP and perf is insensitive to primary cache
capacity or set associativity
similar results for other benchmarks -- up XML Test, down TPC-W, TPC-C

TPC-C results for
small scale 2p4t CMT

• AIPC underperforms
due to the area limit

• C1 = best IPC core +
64KB D+I-$

• C2 = mediocre IPC +
32MB D+I-$

• Too many cores can
degrade overall
performance

W has slightly higher average core IPC and exhibits
similar performance to TPC-C. XML Test has the
highest average core IPC.

4.2. CMT performance

Historically, the goal of optimizing the processor
core was to squeeze out every last percent of
performance that can be achieved with reasonable
area costs. However, in the CMT design space, this is
a local optimization that does not yield high aggregate
performance. This is exemplified by the aggregate
IPC results for the 2p4t core configuration shown in
Figure 5. The top two lines are the aggregate IPC’s
(AIPCs) for a particular cache configuration and the
bottom two lines are the corresponding average core
IPC’s. C1 represents the 2p4t configuration with the
best core IPC, 64KB data and instruction cache, but
its corresponding AIPC underperforms due to the
small number of cores that can be fit on the die. On
the other hand, C2 is a “mediocre” 2p4t configuration
with only a 32 KB data and instruction cache, but it
has the best AIPC by maximizing the number of cores
for a given secondary cache size, as indicated in
Figure 5. C2 also illustrates that too many cores on
the chip can degrade overall performance. As both
the total number of cores that can be fit on the chip
and the performance of each of those cores are
strongly dependent on the amount of on-chip
secondary cache, it is important to balance processing
and cache needs. We present the best results for each
core configuration and all of the benchmarks used in
this study in Figure 6 for the medium-scale CMTs.
This figure provides the maximum AIPC (y-axis)
across all cache configurations for all pipeline/thread
configurations (x-axis). The number of cores and

cache configurations that yield the AIPC in Figure 6 is
provided in Table 3 for each pipeline/thread
configuration. The CMTs are clustered by pipeline and
pipeline architecture, scalar vs. superscalar.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1.0MB 1.5MB 2.0MB 2.5MB

Secondary Cache Size

IP
C

C1 IPC

C1 AIPC

C2 IPC

C2 AIPC

6 5

3

8

5

3

2

4

Core IPC

AIPC

C2
C1

C2

C1

Figure 5: Small-scale CMT TPC-C core and
aggregate IPC for the 2p4t CMT configuration.
C1 has the best average core IPC. C2 has the
best aggregate IPC by using more cores on the
die. The number of cores for each CMT is
labeled next the upper pair of lines.

Table 3 shows the maximum AIPC for SPEC JBB,
TPC-C, TPC-W, and XML Test for medium-scale
CMTs. This table lists the best configuration for each
core configuration and highlights the overall best CMT
configuration in black boxes. The AIPC scales
proportionally with the number of cores. Thus, the
reader can derive the omitted (due to space constraints)
small-scale and large-scale CMT results from the
medium-scale results in Table 3.

Scalar CMTs Superscalar CMTs

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

1
p

2
t

1
p

4
t

1
p

8
t

2
p

2
t

2
p

4
t

2
p

8
t

2
p

1
6

t

3
p

3
t

3
p

6
t

3
p

1
2

t

3
p

2
4

t

4
p

8
t

4
p

1
6

t

2
s

1
t

2
s

2
t

2
s

4
t

2
s

8
t

4
s

1
t

4
s

2
t

4
s

4
t

4
s

8
t

M
a

x
im

u
m

 A
g

g
re

g
a

te
 I

P
C

JBB

TPCC

TPCW

XML

Figure 6: Medium-scale CMT aggregate IPC for each CMT configuration and all benchmarks.

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 24, 2010 at 22:01 from IEEE Xplore. Restrictions apply.

10Thursday, January 28, 2010

In the CMT design space, this local optimization does not yield high aggregate IPC

AIPC Results for
medium scale CMT

W has slightly higher average core IPC and exhibits
similar performance to TPC-C. XML Test has the
highest average core IPC.

4.2. CMT performance

Historically, the goal of optimizing the processor
core was to squeeze out every last percent of
performance that can be achieved with reasonable
area costs. However, in the CMT design space, this is
a local optimization that does not yield high aggregate
performance. This is exemplified by the aggregate
IPC results for the 2p4t core configuration shown in
Figure 5. The top two lines are the aggregate IPC’s
(AIPCs) for a particular cache configuration and the
bottom two lines are the corresponding average core
IPC’s. C1 represents the 2p4t configuration with the
best core IPC, 64KB data and instruction cache, but
its corresponding AIPC underperforms due to the
small number of cores that can be fit on the die. On
the other hand, C2 is a “mediocre” 2p4t configuration
with only a 32 KB data and instruction cache, but it
has the best AIPC by maximizing the number of cores
for a given secondary cache size, as indicated in
Figure 5. C2 also illustrates that too many cores on
the chip can degrade overall performance. As both
the total number of cores that can be fit on the chip
and the performance of each of those cores are
strongly dependent on the amount of on-chip
secondary cache, it is important to balance processing
and cache needs. We present the best results for each
core configuration and all of the benchmarks used in
this study in Figure 6 for the medium-scale CMTs.
This figure provides the maximum AIPC (y-axis)
across all cache configurations for all pipeline/thread
configurations (x-axis). The number of cores and

cache configurations that yield the AIPC in Figure 6 is
provided in Table 3 for each pipeline/thread
configuration. The CMTs are clustered by pipeline and
pipeline architecture, scalar vs. superscalar.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1.0MB 1.5MB 2.0MB 2.5MB

Secondary Cache Size

IP
C

C1 IPC

C1 AIPC

C2 IPC

C2 AIPC

6 5

3

8

5

3

2

4

Core IPC

AIPC

C2
C1

C2

C1

Figure 5: Small-scale CMT TPC-C core and
aggregate IPC for the 2p4t CMT configuration.
C1 has the best average core IPC. C2 has the
best aggregate IPC by using more cores on the
die. The number of cores for each CMT is
labeled next the upper pair of lines.

Table 3 shows the maximum AIPC for SPEC JBB,
TPC-C, TPC-W, and XML Test for medium-scale
CMTs. This table lists the best configuration for each
core configuration and highlights the overall best CMT
configuration in black boxes. The AIPC scales
proportionally with the number of cores. Thus, the
reader can derive the omitted (due to space constraints)
small-scale and large-scale CMT results from the
medium-scale results in Table 3.

Scalar CMTs Superscalar CMTs

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0
1

p
2

t

1
p

4
t

1
p

8
t

2
p

2
t

2
p

4
t

2
p

8
t

2
p

1
6

t

3
p

3
t

3
p

6
t

3
p

1
2

t

3
p

2
4

t

4
p

8
t

4
p

1
6

t

2
s

1
t

2
s

2
t

2
s

4
t

2
s

8
t

4
s

1
t

4
s

2
t

4
s

4
t

4
s

8
t

M
a

x
im

u
m

 A
g

g
re

g
a

te
 I

P
C

JBB

TPCC

TPCW

XML

Figure 6: Medium-scale CMT aggregate IPC for each CMT configuration and all benchmarks.

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 24, 2010 at 22:01 from IEEE Xplore. Restrictions apply.

monolithic superscalar processors. The Piranha
processors outperformed the monolithic cores, but
lacked the key feature of fine-grained multithreading to
mask memory latency inside the processor core, which
this study has demonstrated to be critical to achieve
high aggregate CMT performance. Piranha was also a
research prototype targeting the 180 nm generation, and
as such selected a particular CMT design point (eight
1p1t 64 KB instruction and data caches with a 1MB
secondary cache) [5] to compare against a monolithic
superscalar processor of similar die size. Our study
greatly expands on the Piranha work by not only
exploring the addition of fine-grain multithreading to
simple cores and comparing scalar and superscalar
CMTs, but also by exploring multiple technology
generations, cache configurations, and a significant
portion of this CMT design space, all while running
large scale full system simulations of SPEC JBB, TPC-
C, TPC-W and XML Test.

[9] presents an exploration of CMPs built from
either in-order or out-of-order superscalar processors,
but differs form our work in many ways. [9] uses a
different class of benchmarks (SPEC CPU2000), uses
partial CMP simulation to extrapolate CMP
performance, does not examine either multithreaded or
scalar cores, and provides a private L2 cache per core,
which greatly increases data sharing overhead. They
also use performance-scaling techniques that overlook
the memory saturation issues that we encountered. This
is even more relevant because their area model predicts
higher core counts for CMPs in the same process
generation, which greatly increases memory bandwidth
requirements. Furthermore, there is no mention of
memory coherence, which is required for this
application domain. In contrast to [9], we use large
scale applications from the target domain, perform full
system simulations of all CMT configurations, both
scalar and superscalar, examine a CMT architecture
with a large shared secondary cache to exploit data
sharing, and maintain full memory coherence. Our
study points toward CMTs built from small scalar cores
as performing best for commercial workloads, while
their study pointed towards CMPs built from large out-
of-order superscalar cores as performing best, unless
the application was bandwidth bound.

6. Conclusions

In this paper, we explored the performance of
multithreaded scalar and superscalar core CMTs on
commercial workloads for small, medium and (to a
limited extent) large-scale systems. When comparing
area-equivalent scalar and superscalar CMT
configurations, we found that scalar CMTs with small

primary caches significantly outperform their
superscalar counterparts by 37-46%. Even though the
superscalar processors achieve a higher core IPC than
the scalar processors, the increased number of small
scalar cores that can be fit on a die more than makes up
for this difference. This ability of “mediocre” cores to
provide the best aggregate performance on commercial
workloads is a key contribution of this throughput
study. Our study showed multithreading was also
crucial to achieve good application performance;
however, too many threads led to execution pipeline
saturation or, in the extreme case, to memory bandwidth
saturation. This is counter to the multithreading
efficiency limits of 2 threads stated by [10] and [19].
However, our design is targeting a CMT with a high-
bandwidth memory subsytem, which is crucial to being
able to keep the large number of threads fed.

We also found that the best performing
configuration was highly dependent on a step function
of the number of cores that could be squeezed on the
die. As a result, processor cores with smaller primary
caches were favored, even without penalizing the larger
caches with additional latency, as the smaller-cache
cores maximized the number of on-chip cores. Table 4
shows the optimal small, medium, and large-scale CMT
configurations. While one single configuration did not
perform optimally for all of the benchmarks, our results
show a range, usually using 4-8 threads per pipeline, of
high performing CMT configurations.

Table 4: Maximum AIPC for all benchmarks.
Benchmark Core Small Scale Medium Scale Large Scale

Cores, AIPC Cores, AIPC Cores, AIPC

SPEC JBB2000 3p12t 5, 9.6 9, 17.3 15, 30.8

TPC-C 2p16t 5, 6.4 7, 11.8 12, 20.8

TPC-W 2p16t 5, 8.3 9, 15.2 15, 27.7

XML Test 3p12t 5, 11 9, 20.1 15, 35.4

Our results show that it is necessary to perform full
system simulation to achieve accurate performance
estimates. Basing performance predictions on scaled or
partial systems simulations would not have revealed the
dramatic performance drop-off for “overthreaded’
configurations, which saturate the memory subsystem.
We purposely assumed each CMT had an aggressive
memory subsystem, but this interface still became
saturated for large numbers of threads and/or cores. We
were surprised that multiple scalar pipelines sharing a
single instruction and single data cache port was not a
source of significant performance degradation, even
with instruction buffers for each thread. Likewise, both
the primary and secondary caches were relatively
insensitive to variations in set associativity, regardless
of capacity or the number of supported threads. In this
study, we have temporarily circumvented the memory
wall by reducing processor frequency for CMT

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 24, 2010 at 22:01 from IEEE Xplore. Restrictions apply.

11Thursday, January 28, 2010

Best results for each core configuration, across all benchmarks.

Max AIPC Results for
medium scale CMTs

Table 3: Maximum AIPC for medium-scale CMTs for SPEC JBB, TPC-C, TPC-W, and XML Test.
Core

Config L1 L2 Cores AIPC L1 L2 Cores AIPC L1 L2 Cores AIPC L1 L2 Cores AIPC

1p2t 16/32 1.5/12 20 9.8 16/32 2.5/10 16 5.8 16/32 1.5/12 20 8.6 16/32 1.5/12 20 11.8

1p4t 16/32 1.5/12 17 13.2 16/32 2.5/10 14 8.2 16/32 1.5/12 17 10.6 16/32 1.5/12 17 14.8

1p8t 16/32 2.5/10 12 11.7 32/32 1.5/12 14 8.9 32/32 1.5/12 14 13.0 16/32 1.5/12 14 13.8

2p2t 16/32 1.5/12 16 8.6 16/32 1.5/12 16 5.1 16/32 1.5/12 16 7.5 16/32 1.5/12 16 10.5

2p4t 32/32 1.5/12 14 12.9 32/32 2.5/10 12 7.8 32/32 1.5/12 14 10.6 16/32 1.5/12 14 15.2

2p8t 16/32 1.5/12 12 16.5 32/32 2.5/10 9 9.5 32/32 1.5/12 12 13.6 32/32 1.5/12 12 18.9

2p16t 32/64 2.5/10 7 13.3 64/64 2.5/10 7 11.8 64/64 1.5/12 9 15.2 32/64 1.5/12 9 16.9

3p3t 32/32 1.5/12 13 10.3 32/32 2.5/10 10 5.9 32/32 1.5/12 13 8.5 16/32 1.5/12 13 12.7

3p6t 32/32 1.5/12 11 14.4 32/32 2.5/10 9 8.5 32/32 1.5/12 11 11.3 32/32 1.5/12 11 16.5

3p12t 32/64 1.5/12 9 17.3 32/64 2.5/10 7 10.7 64/64 1.5/12 9 14.6 32/64 1.5/12 9 20.1

3p24t 32/64 2.5/10 5 13.6 32/64 2.5/10 5 10.9 32/64 1.5/12 6 14.0 32/64 1.5/12 6 15.5

4p8t 32/32 1.5/12 9 14.9 32/32 2.5/10 7 8.5 64/64 1.5/12 9 11.5 16/32 1.5/12 9 16.6
4p16t 32/64 1.5/12 7 16.8 32/64 2.5/10 5 9.8 64/64 1.5/12 7 14.4 32/64 1.5/12 7 18.5

2s1t 64/64 1.5/12 11 4.4 64/64 1.5/12 11 2.8 64/64 1.5/12 11 3.7 64/64 1.5/12 11 5.5

2s2t 64/64 1.5/12 10 7.0 64/64 1.5/12 10 4.3 64/64 1.5/12 10 5.8 64/64 1.5/12 10 8.6

2s4t 64/64 1.5/12 9 10.5 64/64 1.5/12 9 6.4 64/64 1.5/12 9 8.7 64/64 1.5/12 9 12.4

2s8t 64/64 1.5/12 7 12.1 64/64 1.5/12 7 8.1 64/64 1.5/12 7 10.6 64/64 1.5/12 7 12.7

4s1t 64/64 1.5/12 7 2.9 64/64 1.5/12 7 1.9 64/64 1.5/12 7 2.6 64/64 1.5/12 7 3.7

4s2t 64/64 1.5/12 6 4.5 64/64 1.5/12 6 2.9 64/64 1.5/12 6 3.9 64/64 1.5/12 6 5.8

4s4t 64/64 1.5/12 5 6.6 64/64 1.5/12 5 4.1 64/64 1.5/12 5 5.6 64/64 1.5/12 5 7.8
4s8t 64/64 1.5/12 4 8.5 64/64 1.5/12 4 5.5 64/64 1.5/12 4 7.2 64/64 1.5/12 4 9.1

SPEC JBB 2000 TPC-C TPC-W XML Test

Note: The L1 refers to the primary data/instruction cache size. The L2 cache configuration size (MB)/set associativity (SA) are provided along
with the total number of cores for that CMT configuration.

4.3. Discussion

We have shown that augmenting CMPs with fine-grain
multithreading, creating CMTs, is crucial to increasing
the performance of commercial server applications.
Furthermore, scalar CMT variants with 4 or more
threads outperformed nearly all of the superscalar CMT
configurations given the constant die size constraint.
While multiple processor cores can exploit TLP, fine-
grain multithreading is also necessary to alleviate the
otherwise poor core utilization for these applications.
However, we found that fine-grain multithreading runs
into two limits. First, the addition of too many threads
results in a saturated integer pipeline that was
insensitive to L1 cache parameters. In our studies, we
found that this saturation occurred with about 8 threads
per integer pipeline for scalar cores. Second, a CMT
built with too many total threads for the secondary
cache size can end up saturating the memory bandwidth
with secondary cache misses, as the aggregate working
set overflows the secondary cache. We encountered
memory saturation primarily for the configurations that
had the smallest secondary cache size (occupying 24-
28% of the CMT area) and 8 or more threads per core.
We found aggregate IPC to be optimized by a processor
centric design, requiring only 25-40% of the area
devoted to the shared secondary cache. When focusing

on the processor core itself, a larger primary instruction
cache than the primary data cache is always the best
policy. Surprisingly, high primary cache set
associativity was not required for these applications,
even with more threads than set associative ways.

For a given primary data and instruction cache
configuration, the performance difference based on set
associativity varied less than 3% for the best aggregate
IPC configurations, as long as the caches were at least
two-way set associative. We also found that the best
performing configurations required enough threads and
primary cache to bring the pipeline utilization up to the
60-85% range, as the area costs for adding additional
pipelines and threads per pipeline is much smaller than
adding an additional core. For small, medium, and
large-scale CMTs, the best configuration was with 3
pipelines and 12 threads per core for Spec JBB amd
XML Test, while 2 pipelines and 16 threads per core
performed best for TPC-C and TPC-W. We also found
that the best performing CMT configuration was highly
dependent on a step function of the number of cores
that can be squeezed on the die, allowing a CMT
composed of slightly lower performance cores to yield
superior aggregate performance by employing more of
those cores. As a corollary to this step function
regarding core size, processor cores with smaller
primary caches were favored, even without penalizing

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on January 24, 2010 at 22:01 from IEEE Xplore. Restrictions apply.

12Thursday, January 28, 2010

Contributions

• Given equivalent area, scalar CMTs with 4+ threads
outperform nearly all superscalar CMTs

• Fine-grain multithreading is necessary in addition to
multicore for server applications

Exceptions:

• Saturating the pipeline

• Saturating the memory bandwidth

• Best configurations require enough threads and primary
cache to achieve 60-85% utilization of the pipeline

13Thursday, January 28, 2010

Too many threads saturates the pipeline - 8 threads per pipeline
Too many threads saturates mem b/w - working set overflows into sec cache

Contributions (II)

• CMT using lower performance cores yields better
performance

• Cores with smaller primary caches are better

• Larger I-cache than D-cache is always better

• Optimal AIPC requires only 25-40% of the area
devoted to the secondary cache

• 2-way superscalar outperformed 4-way superscalar
cores with the same number of threads

14Thursday, January 28, 2010

Scaling Concerns

• Memory bandwidth must be sufficient to keep cores
busy

• 4 dual Fully Buffered DIMM sufficient for 130 - 65
nm generations

• 4-channel DDR2 simulations show configurations
with more on-chip cache are better

• 40-60% of the area instead of 25-40%

• Penalty for overthreading was more pronounced

15Thursday, January 28, 2010

