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MOTIVATION

e Server applications are multithreaded, and
aggregate throughput is more important than
individual thread latency

e No-overhead multithreading prevents
processor stalling due to low ILP or high cache
miss rates

e Explore the CMT design space for equivalent
area configurations
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Even single-threaded ones run many client threads on a common server



CMT DESIGN SPACE
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Threads are statically scheduled to an IDP, supressing the superlinear effect of being able to issue
any thread to any of the IDPs -- LRU policy in the case of SS



CORE AREA MODEL
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e Developed from UltraSPARC processors (130-45 nm)
* Die area fixed at 400 mm?

e 5-6% core area increase per thread
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METHODOLOGY

e RASE (Rapid, Accurate Simulation Environment)

® Built on SImCMT - cycle-based performance
simulator modeling Niagara

e execution-driven and trace-driven simulation
e Faster simulation
e No variability across test sequences

o < 1% difference in IPC

o < 5% difference in miss rates
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2 modes:

1) Execution-driven mode: Simics issues insts and data references, and SimCMT replies with timing
information.

+ Accuracy

- Long simulation time

2) Trace-driven mode: Run SimCMT with an instruction trace

+ Simulations speedup is ~20x
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Figure 2. The steps required for trace generation
and execution or trace driven simulation. (1) Tune
the benchmark for the target hardware, (2) use
execution-driven mode to reach the benchmark
steady state, take a checkpoint, continue execution-
driven simulation and/or generate trace file, (3)
trace-driven simulation using input trace file and
system model, (4) common result analysis
framework, and (5) model modifications.

Source: Davis, J. D., Fu, C., and Laudon, J. 2005. The RASE (Rapid, Accurate Simulation Environment) for chip multiprocessors. SIGARCH Comput. Archit. News 33,4 (Nov.
2005), 14-23. DOI= http://doi.acm.org/10.1145/1105734.1105738
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DESIGN SPACE PARAMETERS

Table 1: CMT design space parameters.

|Feature |Des cription

CPU In-order scalar or superscalar

Issue Width scalar, 2-way and 4-way superscalar
Pipeline Depth 8 stages

Integer Datapath Pipelines

1-4 IDPs or Integer ALUs

L1 D & I Cache

8KB-128KB, 16 (D) & 32 (I) Byte lines

L1 D & I Cache Set Assoc.

Direct-mapped, 2-, 4-, or 8-way

L1 D & I Cache Policies

write through, LRU-based replacement

Clock Frequency 1/3 -1/2 Maximum ITRS clock frequency [23]

Multithreading 1-32 threads/core

L2 Cache IMB - 8MB, 128 Byte lines, banked (8 or 16),
coherent, inclusive, shared, unified, critical
word first, 25 cycle hit time (unloaded)

Main Memory Fully Buffered DIMMs with 4/8/16 dual

channels, 135 cycle latency (unloaded)

e 21 Scalar and Superscalar
CMT core configurations

e Secondary caches of 25%,
40%, 60%, and 75% of
CMT area
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BENCHMARKS

e SPEC JBB -- Java server-side performance

e TPC-C -- online transaction processing; HD, memory,
and network resources are stressed

e TPC-W -- transactional web processing

e XML Test -- multithreaded XML parsing of trees
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SPEC JBB RESULTS
FOR MEDIUM-SCALE CMTS
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Scalar CMT cores outperform Superscalar CMT cores due
to the additional scalar cores that fit the area budget
e “Overthreading” -- max IPC close to absolute peak
Ex. 1p8t, 2plet, 253t
e Insufficient secondary cache degrades performance
Ex. 2ple6t, 3pl2t, 3p24t, 4plet
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underthreading - single thread per pipeline results in no latency tolerance and low processor
utilization

overthreading - too many active threads fully utilize the IDP and perf is insensitive to primary cache
capacity or set associativity

similar results for other benchmarks -- up XML Test, down TPC-W, TPC-C



TPC-C RESULTS FOR
SMALL SCALE 2P4T CMT

e AIPC underperforms
due to the area limit

e (1 =DbestIPC core +
64KB D+I-$

e (2 =mediocre IPC +
32MB D+I1-$

e Too many cores can
degrade overall
performance
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In the CMT design space, this local optimization does not yield high aggregate IPC
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AIPC RESULTS FOR
MEDIUM SCALE CMT
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Table 4: Maximum AIPC for all benchmarks.
Benchmark Core | Small Scale | Medium Scale | Large Scale
Cores, AIPC | Cores, AIPC | Cores, AIPC
SPEC JBB2000 |3pl2t 5,9.6 9,173 15, 30.8
TPC-C 2plét 5,64 7,11.8 12,20.8
TPC-W 2plét 5, 8.3 9,15.2 155520
XML Test 3pl2t 5,11 9,20.1 15,354
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Best results for each core configuration, across all benchmarks.
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MAX AIPC RESULTS FOR
MEDIUM SCALE CMTSs

Table 3: Maximum AIPC for medium-scale CMTs for SPEC JBB, TPC-C, TPC-W, and XML Test.

Core SPEC JBB 2000 TPC-C TPC-W XML Test

Config| L1 L2 Cores AIPC] LI L2 Cores AIPC] LI L2 Cores AIPC] LI L2 Cores AIPC
1p2t [16/32 1512 20 9.8 [16/32 2510 16 5.8 |16/32 1512 20 8.6 |16/32 1512 20 118
Ip4t [1632 1512 17 132 |16/32 25/10 14 82 |16/32 1512 17 10.6 |16/32 1512 17 148
1p8t 1632 25/10 12 11.7 |32/32 1512 14 89 |32/32 1512 14 13.0 |16/32 1512 14 1338
2p2t 16532 1512 16 8.6 |16/32 1512 16 5.1 |1632 1512 16 7.5 |16/32 1512 16 _ 10.5
2p4t [3232 1512 14 12903232 25010 12 7.8 [3232 15012 14 10.6 [16/32 1512 14 152
2p8t 1632 1512 12 165 [3232 2510 9 95 [3232 1512 12 1363232 1512 12 189
2pi6t]32/64 2510 7 133 fearss 2510 7 JEEER o464 1512 o JEEEI32/64 1512 9 16.9
3p3t |3232 1512 13 103 3232 2510 10 59 [3232 1512 13 85 |1632 1512 13 127
3p6t [32/32 1.5/12 11 1443232 2510 9 85 |3232 1512 11 113 |32/32 1512 11 16.5
3p12tf32/64 1512 o [EEEI3264 25010 7 107 |ed/64 1512 9 14.6 |32/64 1.5/12 9
3p24t]32/64 2.5/10 5 13.6 |32/64 25/10 5 109 [32/64 1.5/12 6 14.0 [32/64 15/12 6 15.5
4p8t |3232 15012 9 1493232 2510 7 85 6464 1512 9 1151632 1512 9 166
4plot)32/64 1512 7 168 ]32/64 2510 5 9.8 Jea/64 1512 7 14.4132/64 1512 7 1835
251t [64/64 1.5/12 11 4.4 Je4/64 1512 11 2.8 [64/64 1512 11 3.7 |64/64 1512 11 55
252t [64/64 1.5/12 10 7.0 |64/64 1.5/12 10 4.3 |e4/64 15712 10 5.8 |64/64 151210 8.6
254t [64/64 1.5/12 9 10.5 J64/64 1.5/12 9 6.4 o464 1512 9 8.7 |e4led 1512 9  12.4
258t |64/64 15712 7 121 |64/64 1512 7 8.1 |64l64 1512 7 106 |64/64 1512 7  12.7
4s1t Jo4/64 1512 7 2.9 Jea/64 1512 7 1.9 fea64 1512 7 2.6 |eal64 1512 7 3.7
452t J64/64 1.5/12 6 4.5 Je4/64 1.5/12 6 2.9 fo64/64 1512 6 3.9 o464 1512 6 5.8
454t [64/64 1.5/12 5 6.6 |e64/64 1.5/12 5 4.1 |64/64 1.5/12 5 56 6464 1512 5 7.8
4s8t Je4/64 1.5/12 4 8.5 Je4/64 1512 4 5.5 Jed/e4 1512 4 7.2 Jed/e4 1512 4 9.1

Note: The L1 refers to the primary data/instruction cache size. The L2 cache configuration size (MB)/set associativity (SA) are provided along
with the total number of cores for that CMT configuration.
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CONTRIBUTIONS

e Given equivalent area, scalar CMTs with 4+ threads
outperform nearly all superscalar CMTs

e Fine-grain multithreading is necessary in addition to
multicore for server applications

Exceptions:
e Saturating the pipeline
e Saturating the memory bandwidth

e Best configurations require enough threads and primary
cache to achieve 60-85% utilization of the pipeline
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Too many threads saturates the pipeline — 8 threads per pipeline
Too many threads saturates mem b/w - working set overflows into sec cache



CONTRIBUTIONS (II)

e CMT using lower performance cores yields better

performance

e Cores with smaller primary caches are better

e Larger [-cache than D-cache is always better

e Optimal AIPC requires only 25-40% of the area
devoted to the secondary cache

e 2-way superscalar outperformed 4-way superscalar

cores with the same number of threads
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SCALING CONCERNS

e Memory bandwidth must be sufficient to keep cores

busy

® 4 dual Fully Buffered DIMM sufficient for 130 - 65
nm generations

e 4-channel DDR2 simulations show configurations
with more on-chip cache are better

o 40-60% of the area instead of 25-40%

e Penalty for overthreading was more pronounced
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