

Intel Atom Processor

Michelle McDaniel and Jonathan Dorn

Introduction

Completely new microarchitecture with very little in common with other Intel PC processors

Designed with 3 primary goals:

- Dramatically reduce power consumption
- Sufficient performance for a full internet experience
- Full x86 compatibility

http://www.slashgear.com/microsoft-pushing-for-16-core-atom-cpus-28129072/

Markets

- Low-cost subnotebook computers (netbooks)
- Low-cost desktop PCs (nettops)
- Mobile internet devices (MIDs)
 - Handheld computers with wireless internet connectivity but without conventional keyboards

Silverthorne (2008, MID market)

Feature	Intel Atom Z500	Intel Atom Z510	Intel Atom Z530	Intel Atom Z540	Pentium M ULV 733J
Core freq	800MHz	1.1GHz	1.60GHz	1.8GHz	1.1GHz
FSB Freq	400MHz	400MHz	533MHz	533MHz	400MT/s
Hyper- threads	2	2	2	2	1
TDP	650mW	2.0W	2.0W	2.4W	5W
Avg Power	160mW	220mW	220mW	220mW	
Voltage	0.80V-1.1V	0.75V-1.1V	0.75V-1.1V	0.75V-1.1V	0.81-0.96V
Die Size	26mm ²	26mm ²	26mm ²	26mm ²	87mm ²
Instructions	32bit	32bit	32bit	32bit	32bit

Adapted from: T.R. Halfhill, "Intel's Tiny Atom," *Microprocessor Report*, 7 April 2008.

Memory Hierarchy

L1 Cache:

- 36K Instruction cache; only 32K available for use
- 24K Data cache
- Instruction and data cache have only 1 read port and 1 write port each

512K L2 Cache

http://www.anandtech.com/show/2493/13

Low Power Philosophy

- Target: 90% lower power than 90nm Pentium M (Dothan)
- Discard previous x86 microarchitectures
 - Too heavyweight; too power-hungry
 - Start with simple design and add capabilities
- Additional features must provide 1% performance for 1% power
 - Reject anything requiring 2-3% power increase for 1% performance gain

Atom Design Decisions Discarding Previous Microarchitectures

- No out-of-order processing
 - Too much logic to shuffle instructions
 - Not enough benefit for the power required
- No aggressive speculation
- No x86 instruction transformation (micro-ops)
 - Almost: the most complicated instructions are still split into multiple instructions, executed in parallel

Atom Design Decisions Low-Power Performance

45nm technology

- In-order, dual-issue 16-stage instruction pipeline with a second integer pipe
- Two instruction decoders
 - Finding variable-length instruction boundaries takes up to 3 cycles.
 - Instruction cache marks ends of instructions.
 - Hits in the I-cache can skip these extra cycles.

Atom Design Decisions Hyper-Threading

- 2-way SMT
- Boosts performance by 36-47%
- Increases power consumption by 17-19%
 - Hyper-threading requires more logic and an extra register file, resulting in more power consumption
- Increases die area by 8%
- Major bang for the power and area cost

Atom Design Decisions Programmable features

- Number of outstanding I/O requests buffered on the FSB
- Parts of the L2 cache can be shut down
- Set-associativity programmable, from 2 to 8 ways
- Enhanced Speed-Step technology

Atom Design Decisions Power States

- Multiple x86 power states
- From full power (C0) to deep-sleep (C6)
- C6 uses 1.6% of TDP
 - When entering C6 mode
 - Processor saves all state information, stops the clocks and shuts down FSB, goes to sleep
 - Coming Back
 - Restart clocks, restore state information, reprime pipeline
 - Atom gradually refills caches on demand to conserve power
 - Can switch from C6 to C0 in less than 100 microseconds

Atom Design Decisions Dark Silicon?

Modular microarchitecture

- Can disable 64-bit x86 extensions, virtualization extensions, Hyper-threading
- Can offer chips with either CMOS transceiver logic or Advanced Gunning Transceiver Logic; both are built into the chip

Notable Features

Feature	Intel Atom Z560	Intel Atom N270	Intel Atom N475	Intel Atom D525	Intel Core i7-610E
Core freq	2.13GHz	1.6GHz	1.83GHz	1.8GHz	2.53GHz
FSB Freq	533MHz	533MHz	DMI	533MHz	DMI
Cores	1	1	1	2	2
Hyper- threads	2	2	2	2 per core	2 per core
TDP	2.5W	2.5W	6.5W	13W	35W
Voltage	0.75V-1.1V	0.9V-1.16V	0.8V-1.18V	0.8V-1.18V	0.775–1.4 V
Die Size	26mm ²	26mm ²	66mm ²	87mm ²	81 mm ²
Instructions.	com/products/proc	essor/achitspecif	ication 64 hit	64bit	64bit

Outstanding Questions

- How much MID market penetration does the Atom have?
- All of the netbooks being shipped with the Atom ship with 32-bit operating systems (as far as we have been able to determine), so why is the Atom 64-bit compatible?
- Since the Atom's intended workload is internetbased, are 64-bit capabilities necessary?

Further Reading

- T. R. Halfhill, "Intel's Tiny Atom," *Microprocessor Report*, 7 April 2008.
- B. Beavers, "The Story Behind the Intel Atom Processor Success," IEEE Design & Test of Computers, March-April 2009.

Questions?