
nd IA-64
aking It Easy to Retrofit Onto RISC
by Peter Song

Using a next-generation architecture technology that
Intel and Hewlett-Packard call EPIC (explicitly parallel
instruction computing), Merced and future EPIC processors
threaten the performance lead held today by RISC proces-
sors. EPIC is not entirely new, borrowing many of its ideas
from previous RISC and VLIW designs as well as from recent
academic research. EPIC has an inherent performance
advantage over existing architectures, however, because it is a
synergistic assembly of the latest innovations into one
architecture. To compete with EPIC processors from Intel,
existing RISC architectures are likely to adopt a similar com-
bination of EPIC features in their future versions.

During last year’s Microprocessor Forum, Intel and HP
gave a high-level, incomplete description of IA-64, for which
the companies coined the generic name EPIC (see MPR
10/27/97, p. 1). Nevertheless, we know that EPIC provides a
large number of addressable registers, eliminating the need
for register renaming and reducing cache accesses. It also
provides instruction dependency hints, simplifying instruc-
tion issue logic. EPIC uses predicated execution to eliminate
some branches, thereby increasing scheduling freedom for
the compiler, allowing parallel execution of both paths of
branches, and reducing opportunities for misprediction.
EPIC uses speculative loads to enable well-behaved accesses
to memory as soon as the address can be computed, hiding
memory latency.

Intel and HP have revealed only a few details of EPIC
and IA-64, but we can project more details than publicly
disclosed by considering how these EPIC features can be
applied to solve today’s performance bottlenecks. IA-64
may impose programming restrictions to accommodate
clustering of execution units and registers, greatly simplify-
ing hardware without unduly degrading the processor’s
throughput. It may also use delayed branches to specify
branch target addresses as early as possible, reducing re-
liance on accurate branch prediction. IA-64 may use load/
store instructions that also return the effective address as a
result, reducing the overhead of hoisting speculative loads
above earlier stores.

At first glance, retrofitting these EPIC features onto an
existing instruction set seems to require adding more bits,
breaking binary compatibility with existing software. While a
few new instructions can be added easily to an instruction set
using unused opcodes, adding general-purpose registers and
predicated execution seems more difficult, or even impossi-
ble, without breaking binary compatibility. For many RISC
architectures, however, most—if not all—of the known EPIC

Demystifying EPIC a
EPIC Is a Natural Evolution of RISC, M
© M I C R O D E S I G N R E S O U R C E S J A N U A R Y
features can be added without breaking compatibility. EPIC is
a natural evolution of RISC: its fixed-length instruction for-
mats and load/store instructions enable the EPIC features to
be added easily.

IA-64 Likely to Embrace Clustered Designs
IA-64 has 128 integer and 128 floating-point registers, four
times as many registers as a typical RISC architecture, allow-
ing the compiler to expose and express an increased amount
of ILP (instruction-level parallelism). Merced and future
IA-64 processors are expected to have more execution units
than today’s high-performance processors, taking advantage
of the heightened ILP to deliver better performance.

While additional registers and execution units can
improve a processor’s throughput, they generally degrade
the processor’s cycle time, since a crossbar is needed between
the registers and the execution units in most general-purpose
processors. The crossbar enables the execution units to
access any register without interfering with each other and is
built into the register file. High-performance designs gener-
ally use another crossbar for forwarding results from one
execution unit to all units that may need the results, saving
one or more cycles required for writing the results to the reg-
ister file and then reading them.

Adding registers or execution units increases the num-
ber of switches and wires in the crossbars, as well as the wire
lengths and the capacitive loading, resulting in longer
delays through the crossbars. Extra metal layers do not
reduce a crossbar’s size or its propagation delays, since the
switches are built using transistors. Because wire delays take
Data
Access
Unit

cluster 0

GRs
(0–31)

IUs
(address)

cluster 1

GRs
(32-63)

IUs
(+ // &)

cluster 2

GRs
(64-95)

IUs
(x ÷ MMX)

cluster 3

GRs
(96-127)

IUs
(MMX)

cluster 4

FUs
(MAD)

FRs
(0-31)

cluster 5

FUs
(MAD)

FRs
(32-63)

cluster 6

FUs
(MAD)

FRs
(64-95)

cluster 7

FUs
(÷ sqrt)

FRs
(96-127)

Data

Inst
Fetch
Unit

Figure 1. IA-64 processors may group registers and function units
into execution clusters, allowing implementations to use smaller
crossbars and fewer global wires.
 2 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

2 D E M Y S T I F Y I N G E P I C A N D I A - 6 4
an increasingly large fraction of cycle times as process
geometries shrink—a trend that is unlikely to reverse in the
foreseeable future—we expect new architectures, including
IA-64, to adopt features that require smaller crossbars and
fewer global wires.

IA-64 is likely to embrace partitioning the processor
core—registers and execution units—into clusters at the
architectural level, reducing the burden of connecting the
plethora of registers and execution units. For example, it
could partition the 128 registers into four 32-register banks
and restrict most instructions to accessing registers from
only one bank.

Such a restriction would allow the processor core to be
built in clusters, as Figure 1 shows, each consisting of a bank
of registers and a set of function units. Since the crossbars in
each cluster connect fewer registers and function units—
resulting in fewer register-file ports and result-forwarding
paths—they are smaller and have shorter propagation delays
than a crossbar connecting all registers and all function
units. Using smaller crossbars, the processor core can operate
at a higher clock speed without taking an extra cycle for the
function units to forward their results to each other. There
may be paths between the clusters for copying registers from
one bank to another, using explicit move instructions. Each
path would add a write port to each register and possibly a
result-forwarding path to each execution unit.

Digital’s 21264 (see MPR 10/28/96, p. 11) uses a clus-
tered design in which each pair of integer and address-gener-
ation units has its own copy of the integer registers, reducing
the number of read ports from eight to four. Each cluster must
maintain a coherent copy of the entire register file, since the
Alpha architecture does not restrict register usage for the
instructions. Therefore, the results generated in one cluster
are sent transparently to the other cluster, resulting the same
number of write ports and result-forwarding paths as in a
nonclustered design. Since forwarding results to the other
cluster incurs an extra cycle, dependent instructions are gen-
erally issued to same cluster.
© M I C R O D E S I G N R E S O U R C E S J A N U A R Y
Clusters Expose Parallelism, Avoid VLIW Flaw
Clearly, the programming model for a clustered design using
multiple register banks is not as general or uniform as a non-
clustered design. It would be overly restrictive if each bank
were to have only a few registers—eight for example—
requiring extra instructions to save and restore the registers.
Using 32 registers in a bank, however, the programming
model could remain general and uniform for most applica-
tions. In fact, multiple clusters would present a parallel exe-
cution model, since each cluster is free to execute most
instructions in parallel—and even out of order—with
respect to instructions in the other clusters. Only instruc-
tions that transfer registers between the clusters would need
to be executed in program order.

Figure 2 shows a flow graph of a hypothetical group of
instructions mapped onto two clusters. The instructions
mapped to different clusters have no dependency between
them and are free to execute in parallel. Many instructions
within a cluster also do not have dependency between them
and can also be executed in parallel. The two chains of
dependent instructions mapped to two clusters may start
from or end at the same instruction, as indicated by the dot-
ted lines. In general, mapping chains of dependent instruc-
tions onto different clusters would depend on several factors,
including the length of the dependency chains.

Execution clusters can be—and should be—defined to
be independent of implementation. The multiple-bank
partition discussed previously assigns each instruction to a
cluster, requiring the instruction to execute in the assigned
cluster. It does not map each instruction to an execution
unit, however, avoiding the VLIW flaw that breaks binary
compatibility between different implementations. It allows
different designs to have different combinations of execution
units in each cluster. It does not prevent an implementation
from merging multiple clusters into one and executing the
register-move instructions as NOPs.

Dynamic frequency of instructions also provides a
basis for partitioning. For example, divide instructions may
be architecturally restricted to only one cluster, due to their
infrequent use in most applications. A low-cost design could
provide a simple divider in the designated cluster, saving
hardware. A design whose target applications make heavy
use of divide, however, could provide several fast divide units
in the cluster, delivering the necessary divide performance.
Multimedia instructions (i.e., MMX)also typically require
some special hardware. For simplicity, these could be re-
stricted to one or two clusters.

IA-64 may designate one bank of integer registers as
address registers, intended for instruction and data address
computations. Load/store instructions could use only the
address registers for address operands but any addressable
register for the data operand. A bank of address registers
allows a single cluster to process all memory accesses more
efficiently than a group of integer clusters does, as in the
21264 design.
cluster a cluster b

dependent instructions parallel instructions

Figure 2. A clustered-execution model would map dependent
instructions to the same cluster and allow instructions in different
clusters, as well as within in each cluster, to execute in parallel.
2 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

3 D E M Y S T I F Y I N G E P I C A N D I A - 6 4
Checking address dependency and enforcing a desired
memory-access order is simpler when all addresses are com-
puted and translated in one place. IA-64 may provide multi-
ple memory-access models, as do the later RISC architec-
tures. In a simple design, the data addresses can be computed
and translated in program order, simplifying exception and
address-dependency checks. In a weakly-ordered memory
model, the accesses that do not have an exception or depen-
dency with earlier accesses could then be allowed to reference
memory out of order. Since most exceptions related to
load/store instructions are detected by the time the addresses
are translated, allowing out-of-order memory access would
not unduly complicate the precise-exception mechanism but
would improve performance compared with enforcing in-
order memory access.

Template Provides Inter-Instruction Information
According to Intel and HP, the IA-64 instruction format will
convey dependency hints using a “template,” which will
somehow identify instructions that have no dependencies
among them and therefore can execute in parallel. The tem-
plate is expected to specify inter-instruction information,
which is readily available in the compiler but is difficult to
reconstruct at run time.

The template could use one bit per instruction to indicate
if the instruction is the last in a group of instructions that can
execute in parallel. It may also specify cluster assignments for
the instructions, identifying chains of dependent instructions
that should be executed in the same cluster. In this way, it would
simplify instruction-issue logic without binding each instruc-
tion to a specific execution unit. Each group may have any
number of instructions assigned to any number of clusters.

Assuming IA-64 uses eight clusters—four floating-point
and four integer, with some clusters providing multimedia
and address-computation functions—the template could use
three bits per instruction for cluster assignment. It could also
use only two bits, since the opcode indicates a floating-point
or an integer instruction, but that would also require decod-
ing the opcode. The cluster-assignment information allows
most instructions to use 5-bit register numbers, not 7-bit,
since it identifies one of the eight register banks. A few excep-
tions may be the load/store (only for the data operand) and
move instructions, which must specify any register. Five-bit
register numbers also make four-operand instructions, such
as multiply-add, easier to specify.

Predication Reduces Branches, Misprediction
Predicated execution—also known as conditional or guarded
execution—separates execution of an instruction from the
decision to commit the result to architectural registers. The
prototypical example of predicated execution is the condi-
tional branch, which computes the branch-target address
but updates the program counter only if the condition is
true. Another example recently added to most architectures
is conditional move, which copies the contents of one regis-
© M I C R O D E S I G N R E S O U R C E S J A N U A R Y
ter to another only if the condition is true. Similarly, any
instruction can be made to use predication.

Predicated execution allows if-conversion—an algo-
rithm that converts control dependencies to data dependen-
cies—to eliminate branches. The algorithm replaces a branch
instruction—and the instructions that are dependent on it—
with a sequence of instructions predicated with the branch
condition. Fork-and-merge control structures, such as an
IF-THEN-ELSE having few instructions in each of the clauses,
are used frequently in typical programs and are generally
amenable to if-conversion. If-conversion cannot remove all
conditional branches, however, because it cannot be applied
to divergent control structures or across function calls.

Eliminating the branches at the fork and merge points
creates larger basic blocks, providing the compiler with more
instructions from which to extract ILP and produce better
scheduling. Eliminating branches—even those that are
unconditional or would be predicted correctly—can also
eliminate pipeline bubbles, which may otherwise be inserted
when fetching the branch target instructions. Branches gen-
erally increase cache and TLB miss rates. Since many of the
conditional branches are removed, if-conversion also reduces
the total number of mispredicted branches, trimming overall
execution time.

Using if-conversion does not guarantee a performance
gain, however, since some of the predicated instructions later
become NOPs. In fact, since these annulled instructions
compete with instructions doing useful work, they could
actually increase the overall execution time if not enough
resources are provided to handle these extra instructions.
The performance gain diminishes as the number of instruc-
tions being predicated increases, limiting the benefit of
if-conversion to branches with a few control-dependent
instructions.

Processors can be designed to reduce the hindrance,
however, allowing compilers to use if-conversion more
freely. In today’s high-end processors, the annulled instruc-
tions would often use otherwise idle resources. These bur-
densome instructions can also be canceled—as early as in the
decode stage—once the predicate condition is known. Such
an optimization would require increasing the number of
instructions that are fetched and decoded in a cycle but may
not require a comparable increase in the execution stages,
which generally have significantly more transistors than the
fetch and decode stages. The extra decoders need to decipher
only the predicate field, not the entire instruction, making
early cancellation inexpensive to implement.

Predication Can Fill Multiple Branch Delay Slots
Predication also remedies the fundamental flaw of delayed
branches in superpipelined superscalar designs—finding
useful instructions to fill more than a dozen branch delay
slots. It enables more of the delay slots to be filled, making
the combination of delayed branches and predication an
effective and inexpensive way to eliminate pipeline bubbles
 2 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

© M I C R O D E S I G N R E S O U R C E S J A N U A R Y

4 D E M Y S T I F Y I N G E P I C A N D I A - 6 4
caused by taken branches (see sidebar). Intel and HP have
not revealed the IA-64 branch model, but we expect to see
delayed branches in IA-64, as in Philips’s TriMedia architec-
ture (see MPR 12/5/94, p. 12).

Predication complements delayed branches by enabling
the delay slots to be filled with predicated instructions. As
usual, the delay slots are filled first with prior instructions—
the instructions that would otherwise appear before the
branch instruction. Remaining slots can be filled with instruc-
tions from either branch path, since the instructions can be
predicated with either the taken or not-taken condition.

In architectures that allow multiple predicates to co-
exist, such as IA-64 or Trimedia, instructions from multiple
basic blocks can be used in branch delay slots, increasing the
chances of filling more delay slots. Figure 3 shows a hypo-
thetical example using five basic blocks, A–E. Using if-con-
version, the branch in block C is eliminated, and the instruc-
tions in blocks B–D are predicated using the appropriate
branch condition. Using a delayed-branch instruction in
block A, the delay slots can be filled with instructions from
blocks B–E, assuming the branch in block A is likely to be
taken. Because the first instruction in block E is executed in a
delay slot, the target of the delayed branch is changed to the
second instruction in block E.

Some instructions in the delay slots must be predicated
using multiple branch conditions. For instance, since the
instruction in block D is executed only when the branch in
block A is taken and the branch in block C is not taken,
it must be predicated with the AND of these two branch
conditions. Architectures that keep all predicate bits in a few
predicate registers typically provide instructions for generat-
ing compound predicates. IA-64 is likely to have predicate-
logical instructions, which perform bit-wide Boolean opera-
tions on the predicate bits, enabling compound predicates to
be generated using a single instruction.

Instructions from the paths predicted to execute less
frequently can be moved to delay slots, as Figure 3 also
shows, reducing the penalty when the branches are mispre-
dicted. To reduce the penalty further, these instructions can
be scheduled ahead of those from the predicted paths or even
ahead of the prior instructions. If they could be scheduled to
use otherwise idle resources, such scheduling may not neces-
sarily delay the overall execution of the prior instructions or
those from the predicted paths—when the branches are pre-
dicted correctly.

In IA-64, the number of delay slots could be specified in
bundles of instructions (i.e., up to the end of the next n bun-
dles), reducing the number of bits to specify delay slots while
simplifying the instruction-fetch mechanism. Instruction-
and data-prefetch instructions can also be used in the delay
slots, reducing memory-access latency for later instructions.

Speculative Load Goes Beyond Predication
IA-64 uses speculative, or nonfaulting, loads to hide memory
latency. Instead of causing a trap, a speculative load saves
D e l a y e d B r a n c h e s To R e s u r r e c t

Introduced in early RISC processors, delayed branches
eliminate pipeline bubbles caused by executing taken-
branch instructions. The bubbles exist because the fetch
stage has the next sequential instructions—not the
branch target instructions—when the branch instruction
is processed in the decode stage. In a scalar processor
with a modest pipeline, a single delay slot can eliminate
the taken branch penalty.

Most of the later RISC architectures do not use de-
layed branches, however, because superscalar super-
pipelined designs add many more delay slots than can be
filled. Many of today’s high-performance processors
would need more than a dozen delay slots to completely
eliminate the bubbles. In addition, delayed branches com-
plicate the instruction-fetch design—especially in archi-
tectures that allow branch instructions in the delay slots—
making them undesirable in high-performance designs.

Instead, the newer architectures and processors rely
mostly on instruction prefetching and branch prediction to
reduce the pipeline bubbles caused by taken branches.
Today’s high-performance processors use large instruc-
tion-fetch buffers, enabling branch instructions to be iden-
tified in advance, and branch prediction tables, enabling
branch-target instructions to be prefetched. Although pre-
diction accuracy can be high—as much as 95% on SPEC95
benchmarks—even a small percentage of mispredicted
branches can significantly degrade performance, as a mis-
prediction typically incurs 3–7 cycles of penalty.

As the name implies, delayed branches are generally
viewed as delaying the branching action. They are better
viewed as specifying the branch-target addresses earlier
in the program than do normal branches, allowing more
time to fetch the branch-target instructions. While the
delay-slot instructions are being fetched and executed,
the extra time enables the branch-target address to be
computed, eliminating the need to predict the target
address. It also allows access to a large multicycle instruc-
tion cache without incurring a branch penalty.

Each delayed-branch instruction can specify the num-
ber of delay slots, as in Mitsubishi’s D30V (see MPR
12/9/96, p. 1), eliminating the need to use NOPs. More
significantly, such an instruction allows the compiler to
schedule as many delay-slot instructions as it can, since
more delay slots give the processor more time to prefetch
the branch target instructions. It also allows an imple-
mentation-independent scheduling.

Predication enables more of the delay slots to be
filled, making it architecturally synergistic with delayed
branches. As architects look for ways to reduce the
branch penalty and instruction-fetch latency, we expect
to see delayed branches regain popularity.
2 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

5 D E M Y S T I F Y I N G E P I C A N D I A - 6 4
exception information when it encounters an exception con-
dition and behaves like a normal load otherwise. Software is
required to check for the saved exception condition before
using the load result.

SPARC V9 has a nonfaulting load similar to IA-64’s
speculative load; the nonfaulting load returns a zero value
when an exception is encountered and behaves like a normal
load otherwise. Using a compare instruction, the load result is
first checked and is used if not zero. Otherwise, the memory
address is read again using a normal load instruction to
differentiate between zero-value data and an exception con-
dition, which would then cause an exception.

Many processors implement a data-prefetch instruc-
tion, which copies a block of data from memory to cache and
becomes a NOP when it encounters an exception condition.
It can hide the cache-miss latency but not the load-use
penalty, since a load instruction is needed to move the data
to a register. An out-of-order design can hide a few load-use
penalty cycles, but a wide-issue in-order design such as
Merced would require many nondependent instructions
between a load and its use to hide even one cycle of load-use
penalty.

A speculative load instruction, in contrast, can hide
multicycle load-use penalties and some amount of the
cache-miss latency without requiring an out-of-order
design. It can also prefetch from noncachable locations,
while a data-prefetch instruction cannot. Because specula-
tive load instructions are scheduled earlier in the program,
however, they cause registers to be unavailable for a longer
period, requiring additional registers to avoid register spills
and fills. IA-64 may not provide a separate data-prefetch
instruction, since a speculative load instruction can be used
as a data-prefetch instruction.

Compared with a predicated load instruction, such as
those in the ARM instruction set, a speculative load instruc-
tion can hide more of the memory-latency cycles. A predicated
load instruction cannot be scheduled earlier in the program
than the instruction generating the predicate. A speculative
load instruction, in contrast, has no such restriction and can be
scheduled as early as its address can be computed, allowing the
compiler greater scheduling freedom. It requires software to
check for an exception, however, adding execution overhead
compared with using predicated load instructions.

IA-64 may use both speculative and predicated forms of
load instructions, however, providing the compiler an option
to use fewer instructions. The compare instructions, which
generate the predicates for the predicated loads, could be
hoisted above earlier branch instructions. Ideally, they should
be scheduled immediately after their operands are available,
since generating predicates as early as possible reduces
pipeline stalls and promotes early cancellation. As the com-
pare instructions are hoisted earlier in the code, the predi-
cated load instructions can also be scheduled earlier, allowing
more of the memory-latency cycles to be hidden. Since pred-
ication and speculative loads are already supported in IA-64,
© M I C R O D E S I G N R E S O U R C E S J A N U A R Y
adding predicated load instructions is unlikely to add any sig-
nificant complexity.

Guessing IA-64’s Speculative Load Definition
Intel and HP have not disclosed technical details of IA-64’s
speculative load, but we can make educated guesses as to
how it may be defined in IA-64 and implemented in Merced.
As demonstrated by SPARC V9, speculative load is easy to
retrofit onto an existing architecture, requiring few new
instructions and registers.

In IA-64, a speculative load instruction returns the data
if there is no exception and—we expect—clears an invalid bit
associated with each of the registers. If an exception occurs,
the speculative load would set the invalid bit and return an
undefined result, simplifying implementation. Compared
with SPARC V9’s nonfaulting load, having the invalid bit
eliminates a compare instruction, reducing overhead.

IA-64 provides the CHK.S instruction, a branch instruc-
tion that would use one of the invalid bits as the branch con-
dition. Since IA-64 has 128 integer and 128 floating-point
registers, it would need four 64-bit registers to hold the
invalid bits. These registers must be architecturally visible so
they can be saved and restored during a context switch. The
CHK.S instruction presumably branches to an exception-
checking routine, saving the return address in a link register.

In the exception-checking code, a second attempt is
made to read from the same address, using a normal load
instruction. To facilitate this second attempt, the registers
used by the speculative load instruction must be preserved,
or the computed address can be saved in one register. For
some exception conditions, such as parity error or page fault,
the exception may no longer exist for the second access,
returning the load result. Otherwise, the persistent error
condition would cause an exception. After returning from
the exception-handler routine, or when the exception condi-
tion no longer exists, an unconditional branch to the address
in the link register returns the program to the instruction
following the CHK.S instruction.

The overhead of using a speculative load is greater than
just the CHK.S instruction. For a speculative load instruction
to be hoisted above an earlier store, the compiler must ensure
that the two instructions do not access the same memory
inst A
branch_true p1, C
inst B
. . .

a) original code b) delayed branch

A:

B:

C:

D:
E:

inst C
branch_true p2, E1
inst D
inst E1
inst E2

inst A
delayed_branch_true p1 E2
inst C (if p1)
inst D (if p1 & not p2)
inst E1
inst B (if not p1)
. . .

A:

E: inst E2

Figure 3. Predication allows more branch delay slots to be filled
with useful instructions. Example shows four branch delay slots.
 2 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

6 D E M Y S T I F Y I N G E P I C A N D I A - 6 4
location, a very difficult task. A workaround is to hoist the
load before the store and add “fixup” code, which copies the
store data to the load instruction’s result register if the two
have the same address. The overhead of this fixup code can
be significant, as Figure 4 shows, requiring up to four instruc-
tions for each store. As provided in the PowerPC architec-
ture, IA-64 may provide an address-update option for load
and store instructions, returning the computed address in a
source-operand register. This would eliminate the two ADD

instructions but requires a LOAD-WITH-UPDATE instruction
to return two results.

Conditional Move Is Inadequate
RISC vendors argue that they have already added some of
the “EPIC” features to their own architectures. For example,
conditional-move instructions allow if-conversion in limited
cases. A RISC processor can unconditionally execute the
instructions in both paths of a branch, storing their results in
disjoint sets of registers. Using what would be the branch
condition, the correct set of results is conditionally moved to
the set of registers expected by subsequent instructions.

But conditional-move instructions alone are inade-
quate to take full advantage of if-conversion or predication.
First, because software expects instructions in only one of the
two branch paths to execute, the instructions in the other
path should not generate an exception. This forces the com-
piler to use only instructions that can never generate an
exception, limiting the cases in which if-conversion can be
applied. Second, the conditional-move instructions add over-
head that is not needed if predicated instructions are used.
These extra instructions increase the conversion overhead,
© M I C R O D E S I G N R E S O U R C E S J A N U A R Y
reducing the benefits of if-conversion. Third, since both sets
of results are stored in addressable registers, more registers
are needed for if-conversion using conditional-move instruc-
tions. Last, instructions generating results that will be dis-
carded cannot be identified without predication and there-
fore cannot be canceled early.

Retrofitting Predication Using GUARD Instruction
Except for the ARM architecture (see MPR 12/18/91, p. 11),
which supports predication in all instructions, most existing
architectures support predication in only a few instructions,
generally limited to the branch and move instructions. In
almost all cases, existing instruction sets do not have spare
bits to add features, such as predication, to all instructions in
the set. Most instruction sets, however, don’t use all of the
opcodes, allowing some new instructions to be added. Fortu-
nately, predication can be added to existing instruction sets
using a few instructions.

At the 1994 International Symposium on Computer
Architecture, Pnevmatikatos and Sohi described a way to
retrofit predication onto an existing architecture by adding
the GUARD instruction and a set of predicate registers.
A GUARD instruction specifies a 1-bit predicate register and
a mask that identifies the instructions to be predicated.
Assuming the GUARD opcode and the predicate register can
be specified in 12–14 bits, the mask would have enough bits
to identify 18–20 of the next instructions to be predicated on
the register. By using additional GUARD instructions specify-
ing the same predicate register, any number of predicated
instructions can be specified.

Figure 5 shows an example of the GUARD instruction. The
instructions in blocks A and D are to execute unconditionally,
those in block B are guarded by the condition X, and those in
block C are guarded by the condition X&Y. Using if-conversion,
the branch instructions in blocks A and B are replaced with
GUARD instructions. The first GUARD instruction specifies that
the next instruction is guarded by the predicate p1 being true
and others are not guarded by p1. Instruction 2 is therefore exe-
cuted only if p1 is true, and the others are executed uncondi-
tionally, unless they are guarded by other predicates. To cor-
rectly execute the instructions in block C, the predicate p2 is
generated using the condition X&Y.

To implement the GUARD instruction, the processor
maintains a mask of instructions to be nullified. The mask is
simply a shift register, initialized to all zeros so no instruction
is to be nullified. When a GUARD instruction specifies a pred-
icate register and a list of predicated instructions, the bits
corresponding to the identified instructions are set—to be
nullified—if the predicate is false. Otherwise the bits in the
mask are not altered. In each cycle, the mask is shifted by the
number of instructions retired, with zeroes filling in.

Other than requiring an extra instruction, using the
GUARD instruction to specify predication has advantages
compared with using a predicate field in each instruction. The
GUARD instruction can specify an arbitrary sequence of
load R1, R2, R3 ; R1 ← MEM[R2 + R3]
add R4, R2, R3 ; R4 ← R2 + R3
. . .
store R5, R6, R7 ; MEM[R6 + R7] ← R5
add R8, R6, R7 ; R8 ← R6 + R7
cmp.eq p1, R4, R8 ; p1 ← (R4 eq R8)
cmov p1, R1, R5 ; R1 ← (if p1) R5

Figure 4. If a speculative load is hoisted above an earlier store, the
store address must be checked against the load address. If they are
the same, the store data must be copied to the load data register.
inst 1
GUARD p1, '10000...'

inst 3

inst 2
branch_false p2, D

inst 3

inst 1
branch_false p1, D

inst 2
GUARD p2, '10000...'

a) original code b) transformed code

p1←X
p2←Y

p1←X
p2←X&Y

A:

B:

C:

D:

false

false

true

true

inst 4 inst 4

Figure 5. GUARD instruction can specify predication for instruc-
tions that follow it.
2 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

7 D E M Y S T I F Y I N G E P I C A N D I A - 6 4
predicated instructions, offering the same degree of flexibility
a predicate field provides. In addition, it makes early cancela-
tion easier to implement, since the processor knows which
instructions to nullify before it fetches the instructions. Best of
all, it allows predication to be retrofitted without overhauling
existing instruction sets.

32-Bit Modifiers Can Extend RISC ISA
IA-64 introduces a new concept in instruction-set design; it
encodes an instruction using two disjoint groups of bits—
the instruction field and template—in a bundle. VLIW
instruction formats use a similar bundle to encode multiple
operations, but the encodings are not of the same length, and
therefore each encoding occupies a fixed position within the
bundle. The template allows three equal-length instructions
to fit in a 128-bit bundle, avoiding VLIW’s fixed-position
format that requires NOPs.

This same concept can be used to extend RISC instruc-
tion sets, allowing almost any new feature to be added. We
can define a 32-bit instruction modifier, which must be the
first word in every quadword, as Figure 6 shows. The modi-
fier provides up to 10 additional instruction bits for each of
the next three instructions in the quadword.

The modifier can be used to add predication to the
entire instruction set. It can also extend register-number
width for most instructions, allowing additional registers to
be added. It can specify cluster assignments and the grouping
hints that IA-64’s template is likely to provide. Adding these
types of functions is likely to cause minor changes to existing
decode logic. As in IA-64, when the program branches to one
of the three instructions, the modifier instruction must also
be fetched and decoded, but this requires only that the instruc-
tion-fetch mechanism uses quadword-aligned addresses.

Switching between the normal mode and the extended
mode—which recognizes the modifier—can be done by
setting or clearing a mode bit. To enter the extended mode,
the instruction that alters the mode bit must be the last
instruction in a quadword. In comparison, IA-64 is expected
to use special branch instructions to switch between x86 and
IA-64 modes (see MPR 3/31/97, p. 16).

Another way to add the modifier is to use an unused
opcode. The new opcode indicates the remaining bits in the
instruction provide additional encoding for the next instruc-
tions. Unlike in the previous approach, the modifier is not
required in every quadword, reducing code-size expansion.
For example, the modifier can specify predication for some
number of instructions that follow it. If the modifier is
absent, the same instructions would execute unconditionally.

This second approach restricts the kind of changes that
can be made to an existing instruction set, since the modifier
provides fewer bits and can only specify optional features. It
allows both backward and forward binary compatibility,
however. Existing binaries will execute without a change on a
processor that implements the extended instruction set. The
modifiers in new binaries would cause traps, and therefore
© M I C R O D E S I G N R E S O U R C E S J A N U A R Y
can be emulated, on a processor that does not implement the
newer instruction set. In contrast, IA-64 binaries could not
be emulated—except entirely in software at an unacceptable
performance level—on an x86 processor.

EPIC Is a Natural Evolution of RISC
EPIC has an inherent advantage over most existing RISC
architectures, allowing simpler implementations to achieve a
higher clock speed and deliver better performance. The large
number of registers allows partitioning the execution core
into clusters without burdening the programming model.
Execution clusters can be defined to be independent of imple-
mentations, providing binary compatibility while enabling
different designs for different price/performance targets.

Predication reduces the number of branches, enabling
the compiler to create bigger basic blocks to extract paral-
lelism. It also complements delayed branches, which specify
branch target addresses earlier in the program than do nor-
mal branches. Using predicated instructions to fill multiple
delay slots, delayed branches can hide many of the pipeline
bubbles caused by taken branches. Delayed branches that
specify the number of delay slots eliminate the need to use
NOPs and enable implementation-independent scheduling.

All of the features that are currently known to be in
EPIC can be retrofitted onto most existing RISC architec-
tures, given available opcodes. For adding predication as well
as additional registers, unused opcodes can be defined as
instruction modifiers, altering the semantics of instructions
that follow them. This approach may not support all of the
EPIC features together, but it provides better binary compat-
ibility than does Merced’s dual-instruction-set approach.

Using Merced’s approach, all of the EPIC features can
be added to any processor. Retrofitting the EPIC features
onto RISC should incur much less overhead than on x86,
since EPIC is a natural evolution of RISC. The RISC archi-
tectures’ fixed-length instruction format and decoupled
memory and register operations allow most of the EPIC fea-
tures to be added easily. In many cases, the RISC-to-EPIC
translator could be a simple extension to the decoders.

The transition to IA-64 gives the few remaining RISC
vendors an opportunity to deliver EPIC processors that out-
perform those from Intel. An IA-64 processor could deliver
better performance than most RISC processors, but Merced
is more than just an IA-64 processor. It must deliver reason-
able x86 performance as well, and therein lies a fetter that
could slow Merced’s IA-64 performance. Its x86 hardware
can only be a burden on cycle time, die size, and design time.
Merced is expected in systems in 1999, however, putting
Intel ahead of most RISC vendors in the race to ship an
EPIC processor. M
inst 1 inst 2 inst 3modifier
32

128

Figure 6. A 32-bit modifier can encode additional instruction bits
for the next three instructions in every quadword.
 2 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

	Demystifying EPIC and IA-64
	IA-64 Likely to Embrace Clustered Designs
	Figure 1. IA-64 processors may group registers and...
	Figure 2. A clustered-execution model would map...
	Clusters Expose Parallelism, Avoid VLIW Flaw
	Template Provides Inter-Instruction Information
	Predication Reduces Branches, Misprediction
	Predication Can Fill Multiple Branch Delay Slots
	Speculative Load Goes Beyond Predication
	Guessing IA-64’s Speculative Load Definition
	Figure 3. Predication allows more branch delay slots...
	Figure 4. If a speculative load is hoisted above...
	Conditional Move Is Inadequate
	Figure 5. GUARD instruction can specify predication...
	Retrofitting Predication Using GUARD Instruction
	32-Bit Modifiers Can Extend RISC ISA
	Figure 6. A 32-bit modifier can encode additional...
	EPIC Is a Natural Evolution of RISC

	D e l a y e d B r a n c h e s To R e s u rre c t

