
-64 Features
on; Merced Touted for Big Servers
by Linley Gwennap

In a series of talks at the recent Intel Developers Forum,
the company tantalized industry watchers by dribbling out a
few more details about its IA-64 instruction set and its first
implementation, Merced. In a joint presentation by Intel’s
John Crawford and Hewlett-Packard’s Jerry Huck, the two
architects shed additional light on the IA-64 design. They
provided further details on the architecture’s support for
predication and speculation and also described IA-64’s
branch architecture. A newly disclosed feature, rotating
registers, provides an efficient way to unroll loops while
minimizing code expansion.

In other talks, Intel disclosed that Merced and its first
chip set, the 460GX, will support high-availability features
required in large servers. The company asserts that four-
processor Merced servers will deliver more performance on
the TPC-C benchmark than four-way servers using 1-GHz
Alpha 21264 processors or 750-MHz UltraSparc-3 proces-
sors, two key Merced rivals that are expected to ship next
year. But it has yet to disclose any details about clock speed,
bus bandwidth, or other metrics to support this position.

Register Renaming Implemented in Software
One of the key philosophies of IA-64 is the idea of moving
complexity from the hardware to the software. Register re-
naming is one example. Most high-end processors map a
small number (8–32) of logical registers onto a larger set of
physical registers (up to 80 in the case of the 21264). Because
software can access only the logical registers, the hardware
must assign mappings and translate accesses using an associa-
tive lookup table. This complexity increases die size and often
the pipeline depth as well.

IA-64 eliminates this hardware complexity with its
large register file (128 integer, 128 floating-point) that is
directly accessible by software. Specifying the physical regis-
ter names in software works well except in the case of tight

Intel Discloses New IA
Rotating Registers Reduce Code Expansi
© M I C R O D E S I G N R E S O U R C E S M A R C H
loops, a common occurrence. In these short code sequences,
there may not be enough instructions in the loop to cover the
latency of load instructions, resulting in unwanted stalls.

An out-of-order processor reorders instructions to
cover the latency of the loads. The reordering naturally over-
laps instructions from two or more iterations of the loop
until enough instructions are found to overcome the latency
(or the hardware runs out of resources). This overlap will
cause register conflicts, since each loop iteration references
the same registers, but these conflicts are resolved by hard-
ware register renaming.

An IA-64 processor can address the latency problem by
unrolling the loop in software. This common compiler tech-
nique duplicates the loop instructions, often several times, to
generate enough instructions to cover the load latencies.
Each duplicate set of instructions, however, must use a dif-
ferent set of registers to avoid collisions. IA-64 has plenty of
registers available, but all of these duplicate instructions can
create massive code expansion.

Rotating Registers Compact Code
To reduce code expansion, IA-64 uses its rotating registers.
With this technique, the upper three-quarters of each regis-
ter file (integer, FP, and predicates) rotates, leaving the lower
registers for global variables. Accesses to these upper registers
are offset by the value in the corresponding RRB (rotating
register base) register. A special instruction, BR.CTOP, decre-
ments each of the RRBs by one at the end of each loop itera-
tion, allowing the next iteration to use a new set of physical
registers. (With proper spacing, several variables can be
rotated through the register file at once.)

The rotating predicate registers provide a simple way to
handle loop setup (prologue) and termination (epilogue). If
the prologue and epilogue instructions are appropriately
predicated, and the predicate registers rotated, the prologue
instructions are executed only during the initial iteration(s)
of the loop, and the epilogue instructions are executed only
(a) PA-RISC with hardware reordering

; Set up r2=loop count, r10=source addr, r11=destination addr

loop: LDWM r1, (r10) ; Load into r1, inc addr
STWM (r11), r1 ; Store from r1, inc addr
ADDIB,> r2, -1, loop ; Decr loop count and branch

MEMCPY LOOP: for (i=0; i<n; i++) {*b++ = *a++}

(b) IA-64 with rotating registers

; Set up LC=loop count–1, r10=source addr, r11=destination addr
; Clear predicate registers, set p16, set EC=epilogue count

loop: (p16) LD8 r34 = [r10], 8 ; Load into "r34," inc addr
(p17) ST8 [r11] = r35, 8 ; Store from previous "r34," inc addr

BR.CTOP loop ; Decr loop count and branch

Figure 1. In a simple memory-copy loop, a PA-RISC processor with hardware reordering will cover the latency of the first load by launch-
ing subsequent loads, creating multiple versions of “r1” using hardware renaming. Without adding instructions to the loop, an IA-64 proces-
sor will accomplish the same effect by rotating its registers; in this case, “r35” refers to the previous iteration of “r34.”
8 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

2 I N T E L D I S C L O S E S N E W I A - 6 4 F E A T U R E S
during the final iteration(s) of the loop. Some setup is still re-
quired to properly initialize the predicates, but this can be
done well in advance of beginning the loop, removing this
setup from the critical path.

Eschewing an orthogonal register set, HP and Intel
added several special registers to implement this process. The
64-bit LC (loop count) register performs its eponymous
function. The 6-bit EC (epilogue count) register controls the
execution of epilogue instructions. Three RRBs (each 6 or 7
bits) rotate the integer, FP, and predicate registers, as de-
scribed above. The use of special registers allows the BR.CTOP

instruction to specify several operations at once, but in the
common case of nested loops, register rotation can be used
in only one of the loops.

This method of register renaming allows a single copy
of the loop code to be unrolled in hardware rather than soft-
ware, eliminating most of the code expansion, as Figure 1
shows. Rotating the registers adds some complexity (a few
7-bit registers and adders) to the hardware, but it adds far
less than the fully generic renaming hardware in a reordering
CPU. The rotating register concept dates back to Cydrome’s
Cydra-5, one of the original VLIW processors; not coinci-
dentally, its architect, Bob Rau, is now on staff at HP.

By handling epilogue and prologue issues in a simple
fashion, IA-64’s rotating registers are appropriate even for
loops that iterate only a few times. Thus, this technique can
be broadly applied. In current processors, loop unrolling is
rarely used, except in scientific code, where iteration over
long vectors amortizes prologue and epilogue overhead.

Static, Dynamic Prediction Combined
The basic IA-64 branch instruction uses a 21-bit relative off-
set. Branch targets must be the first instruction in a bundle,
allowing branching within ±16M. Aligning the targets sim-
plifies the branch hardware and extends the target range, but
it will cause some code expansion by adding an average of
one NOP instruction per branch target.

Because conditional branches use the predicate field to
specify the condition, they have the same long offset. Indirect
branches (including call/return) use a special set of eight BRs
(branch registers), instead of the integer registers, to hold
target addresses. These special registers are likely to be phys-
ically located near the fetch unit, not the ALUs, and thus they
could obviate the call/return stack used in most high-end
processors to fetch the target of subroutine returns.

The LC register improves branch prediction for loops.
Most branch predictors mispredict the final (fall-through)
iteration of a loop-closing branch, but IA-64 hardware can
easily and accurately predict these branches by looking at the
LC register. BR.CLOOP is a degenerate form of BR.CTOP that
simply decrements LC and loops if LC ≠ 0. Again, this mech-
anism can be used for only one loop at a time, as there is only
one LC register.

IA-64 branches include at least two bits to give the com-
piler more control over branch prediction. Like many RISC
© M I C R O D E S I G N R E S O U R C E S M A R C H
architectures, IA-64 provides a “hint” as to whether a branch is
likely to be taken or not taken. The hardware can use this hint
to initialize the dynamic branch predictor. Some branches,
however, are easily predicted by software, as they nearly always
branch the same way. The second bit indicates that software
prediction should be used; the hardware predictor can ignore
these branches, freeing entries for more difficult branches.
(The hardware may enter static taken branches into its target-
address predictor.) This combination of software and hard-
ware prediction should provide more accuracy than today’s
hardware-only branch predictors.

Like PA-RISC, IA-64 can combine a comparison and a
branch in a single cycle. PA-RISC uses a compact compare-
and-branch instruction. IA-64 instead combines a predicate-
generating CMP instruction and a branch predicated on that
result into a single group for parallel execution.

A branch instruction must be at the end of a parallel-
instruction group. As a special case, two or more branches
can be placed together at the end of a group to form a
multiway branch. All the branches can be processed in a
single cycle (assuming the hardware has enough resources),
as it is a simple matter to check the predicates and deter-
mine which, if any, branch should be taken. This construc-
tion is useful when several short code blocks have been
combined using predication; all the exit cases can be pro-
cessed at once.

Flexible Design Allows Massive Speculation
The recent disclosures indicate that IA-64’s predication and
speculation capabilities are more extensive than previously
indicated (see MPR 10/27/97, p. 1). Speculation is used to
hoist loads above branches, giving the compiler more flexi-
bility to reorganize code. To handle exceptions, each IA-64
register is tagged with an associated NaT (not a thing) bit
that is set when a LD.S (speculative load) encounters an
exception. The actual exception is deferred until a CHK.S

instruction is encountered.
The CHK.S instruction is simply a conditional branch

that tests the NaT bit. If NaT is true, it branches to fixup code
that reexecutes the load and handles the exception. The
IA-64 architects did not take advantage of the target register
(which is undefined when NaT is true) to store the load
address; thus, the fixup code must have access to any registers
needed to recreate the load address.

The NaT mechanism allows instructions that use spec-
ulatively loaded data to be hoisted as well. Any computation
instruction sets the target register’s NaT bit if any source is
NaT. This NaT propagation allows entire routines to be exe-
cuted speculatively, with exceptions later handled by a single
CHK.S. Note that the recovery code must also redo any specu-
lative calculations after reloading the correct data. HP’s Huck
estimates that half of the instructions in a typical program
are likely to execute speculatively.

IA-64 also includes a mechanism for hoisting loads
above stores. In a traditional architecture, the compiler can
8 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

3 I N T E L D I S C L O S E S N E W I A - 6 4 F E A T U R E S
do this only if it can guarantee that the load and store use dif-
ferent physical addresses. With indirect addressing, however,
this pointer disambiguation can be impossible at compile
time. Reordering processors handle this task easily, since
loads and stores are reordered at runtime, after addresses
have been calculated.

To hoist a load above a store, IA-64 uses the LD.A (ad-
vanced load) instruction. In addition to performing a nor-
mal load, this instruction inserts the load address into the
ALAT (advanced load address table). Subsequent store
addresses are associatively checked against the ALAT; if a
match is found, the offending entry is removed. Before using
the data from an LD.A instruction, an LD.C is needed to see if
the entry associated with that target register is still in the
ALAT. If so, the LD.C is a zero-cycle NOP; if not, the LD.C sim-
ply reexecutes the load. A CHK.A instruction allows specula-
tive computation based on the result of an LD.A.

The size of the ALAT is implementation dependent. If
an LD.A bumps a “live” address from the ALAT, the LD.C (or
CHK.A) will reload the data, causing a performance loss but
no error. Similar structures, such as the P6’s MOB (memory
reorder buffer), are found in reordering processors. The
MOB, however, is invisible to software, whereas the ALAT is
directly manipulated by the IA-64 compiler.

Predicates Better Than Traditional CMOV
Predicates can be generated using CMP (compare) or TBIT

(test bit) instructions. Special versions of CMP combine a
comparison with a predicate value to create compound con-
ditions (e.g., A = B or A = C). CMP always generates two
predicates, the requested value and its complement, either of
which can be stored in any predicate register (p0–p63). The
first register, p0, is hardwired “true” and can be used as a tar-
get to discard unwanted predicates.

Many programs are limited by control flow; that is,
they have many conditional branches that are hard to pre-
dict. By combining short routines, the compiler can use
predicates to eliminate branches, avoiding costly mispredic-
tions. Traditional architectures can eliminate branches using
the simpler CMOV (conditional move) instruction, but this
© M I C R O D E S I G N R E S O U R C E S M A R C H
method requires longer code sequences and often results in
lower performance than a fully predicated architecture such
as IA-64.

Merced Targets Big Systems
In other presentations, Intel left no doubt that the primary
target of Merced is high-end commercial servers. The first
IA-64 processor and its associated system-logic chip set, the
460GX, will include a host of features to deliver the perfor-
mance and reliability needed by these expensive systems.

For example, all of the caches and system buses are pro-
tected from data loss using ECC or other techniques. Cor-
rupted data is corrected when possible; if not, it can be
marked as bad and the affected process terminated without
crashing the entire system. For a fully fault-tolerant system,
two Merced CPUs can operate in lockstep and crosscheck
each other. This feature is not likely to see significant use, as
Tandem, the leading vendor of fault-tolerant systems, has
chosen Alpha over Merced for its next-generation boxes.

The 460GX supports ECC on the system bus and in the
main-memory subsystem and can map out failed DRAMs. It
handles up to four Merced processors and can be used as a
building block in larger systems, although several Intel cus-
tomers are developing their own system logic to connect
eight or more Merced processors. The 460GX supports hot
plugging on up to four PCI buses, each at up to 64 bits and
66 MHz for extra bandwidth. The multichip set can also be
used in workstations, as it includes an AGP 4× port.

Sources indicate the 460GX allows at least 16G of
SDRAM interleaved four ways, as Direct RDRAM will not
provide adequate density in 2000. This bandwidth may be
wasted on Merced, however, as Intel says the processor’s sys-
tem bus will carry significantly less than 3.2 Gbytes/s.

As Figure 2 shows, the processor itself is housed in a
module containing the CPU chip and custom cache chips.
Using both sides of the substrate, the module appears to have
room for four SRAMs. Using its 1-Mbyte SRAM, known as
CK1 (see MPR 7/13/98, p. 1), Intel should be able to fit up to
4M of full-speed cache on the Merced module.

The module design is functionally similar to the Xeon
module but mechanically quite different. The module lies
horizontally above the motherboard rather than vertically
and uses two sets of connectors. A pin array carries the bus
signals and provides better electrical performance than the
edge connector in the Slot 2 module; this method should
enable faster bus speeds. Power delivery is handled through
an edge connector (presumably connected to a wire harness)
to efficiently deliver plenty of amps.

The module lid is hollow, forming a heat pipe. This
design spreads the intense heat from the CPU across the
entire lid, reducing heat density. The system maker must
attach a large heat sink to the module to further dissipate the
heat. Intel has not disclosed the power of the processor, but
the package design clearly implies that it will be high; we esti-
mate the Merced module will dissipate more than 70 W.
Figure 2. The Merced CPU is combined with up to 4M of SRAM in
a module that attaches horizontally to the motherboard.

Merced
CPU in
plastic
package

Separate connector
for power delivery

Plastic
substrate

Intel custom
cache SRAM

Pin array for
system-bus signals

Heat pipe lid
8 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

4 I N T E L D I S C L O S E S N E W I A - 6 4 F E A T U R E S
Merced Nearing Tapeout
The Merced design team has made much progress since the
major slip announced last summer (see MPR 6/22/98, p. 1).
The processor is finally nearing tapeout, and the company
expects to receive first silicon around the middle of this year.
The schedule allows about 12 months to bring up and verify
the design before it is ready for system shipments. This
schedule seems somewhat aggressive for a high-end proces-
sor implementing a new instruction set and aimed exclu-
sively at multiprocessor-capable systems; we would not be
surprised if system shipments slip toward late 2000.

Intel has been working hard in an attempt to ensure a
smooth bringup process. Given the focus on multiprocess-
ing, the company is already performing MP verification on a
presilicon RTL model. Seven operating systems—64-bit
Windows NT, SCO UnixWare, Novell Modesto (NetWare),
Compaq Tru64 Unix, Silicon Graphics Irix, Sun Solaris, and
HP-UX—have booted in MP mode using a system simulator
and are expected to be ready for mid-2000 shipments. An
eighth port, Linux, is in progress. Because the system design-
ers were aiming for 1999 shipments, the Merced slip has put
them ahead of the CPU. Some platforms are already being
tested and await only the processor.

Intel has begun working with software vendors to
ensure that key applications will be available when Merced
ships or shortly after. Leading server applications from Ora-
cle, Informix, SAS, Baan, SAP, and others are already on tap.
Technical applications are in the pipe from vendors such as
Cadence, Mentor, Synopsys, Softimage, Avid, and Adobe.
These vendors have already received software development
kits, including the system simulator; several applications are
already running on the simulator.

Given that Merced is likely to be superseded by its
successor fairly quickly, Intel is trying to build a smooth
migration path to McKinley. Although McKinley will use a
much faster system bus than Merced’s, Intel hopes vendors
will be able to reuse much of the system infrastructure. For
example, Intel’s 870 chip set for McKinley will support
legacy memory and I/O from the 460GX. McKinley will also
use no more power or board space than Merced, avoiding
chassis redesign.

IA-64 Performance Debate Unsettled
The new details of IA-64 highlight its philosophy of moving
complexity from the hardware to the compiler. With these
new features, an IA-64 compiler can perform most of the
code motions handled by hardware in a reordering proces-
sor. The compiler can perform these code motions across an
arbitrarily large group of instructions, whereas reordering
hardware is limited to a window of no more than 80 instruc-
tions in today’s implementations. Without predication and
access to large register files, RISC compilers cannot perform
the same optimizations and must rely on the hardware.

Initial criticisms of IA-64 focused on its emphasis
on static instruction scheduling, which ignores dynamic
© M I C R O D E S I G N R E S O U R C E S M A R C H
information available to the hardware at runtime. Some of
the newly disclosed features address these issues and show
how IA-64 combines static and dynamic scheduling. The
ALAT, for example, allows loads to pass stores in a manner
impossible in a purely static machine. IA-64’s branch predic-
tion is another example of a combination of static and dy-
namic methods.

The tradeoff is that dynamic features add hardware
complexity. Initially, it appeared that an IA-64 design might
be more compact than an out-of-order processor by elimi-
nating the instruction-reordering and register-renaming
logic. IA-64 processors, however, still require features such as
dynamic branch prediction, rotating registers, and the ALAT,
which consume die area. Although these particular features
may be smaller than their RISC counterparts, when com-
bined with other IA-64 features such as predication and the
large register files, they are likely to limit any die-size advan-
tage IA-64 might have over RISC.

Code size remains a concern. The rotating registers
avoid the massive code bloat of loop unrolling, but specula-
tion is another issue. Every speculative instruction must be
duplicated in a fixup routine, although these infrequently
executed routines aren’t likely to do much, other than take
up disk space. More critical are the aligned branch targets
and the 41-bit instructions themselves, which are 33% larger
than RISC instructions. An increase in code size reduces the
effectiveness of the instruction cache and requires more
bandwidth from the system bus and from main memory.

The large register file improves performance by re-
ducing data-cache accesses, but it creates a problem on con-
text switches. Saving state requires storing 128 integer regis-
ters (64 bits each), 128 FP registers (at least 80 bits each),
63 predicate bits, 256 NaT bits, 8 branch registers, 3 RRBs,
the LC, EC, and Intel knows what else.

The upside of all these features is real, but it remains to
be quantified. We expect the net performance advantage of
IA-64 over RISC will be around 20–30%, significant but not
impossible for competitors to overcome. If Intel delivers
strong implementations, they should match or exceed the
performance of the fastest competitive chips.

Merced may not be the best implementation of IA-64,
but it should be very competitive, enough to establish the
architecture in high-end servers and some workstations. The
design is progressing well, and we expect first systems to
appear in 2H00. Support from both system and software
vendors is strong and unwavering. As we have seen with x86,
this support, more than any technical merits or demerits,
determines the fate of a new microprocessor.— M
F o r M o r e I n f o r m a t i o n

For more information on IA-64, visit Intel’s Web site at
http://developer.intel.com/design/processor/future/ia64.htm.
8 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

http://developer.intel.com/design/processor/future/ia64.htm

	Intel Discloses New IA-64 Features
	Register Renaming Implemented in Software
	Figure 1. In a simple memory-copy loop, a PA-RISC...
	Rotating Registers Compact Code
	Static, Dynamic Prediction Combined
	Flexible Design Allows Massive Speculation
	Figure 2. The Merced CPU is combined with up to 4M...
	Predicates Better Than Traditional CMOV
	Merced Targets Big Systems
	IA-64 Performance Debate Unsettled

	For More I n f o rmation

