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Finally allowing a full evaluation of their new instruc-
tion set, Intel and Hewlett-Packard have released a full
description of IA-64’s application-level architecture and
instruction set. The disclosures address some previous crit-
icisms of the architecture and provide more details con-
cerning how IA-64 processors will execute both x86 and
PA-RISC binaries.

The disclosures show a thoroughly modern instruction
set with a range of multimedia instructions and prefetch
capabilities. Although IA-64 includes many RISC concepts,
the architects added some rather complicated and special-
ized instructions. Concerns remain, however, about code
density and just how much of an advantage these new fea-
tures will provide over a standard RISC architecture.

One criticism had been that the large register file, while
effective for compute-intensive routines, would cause exces-
sive overhead on subroutine calls, due to saving and restor-
ing the contents of the registers. The vendors disclosed that
IA-64 supports register frames that alleviate much of call/
save overhead.

Register Frames Are Dynamically Sized
With IA-64’s 128 integer registers plus predicates, saving and
restoring the entire register file takes more than four times as
long as on a standard RISC processor. To ease this problem,
IA-64 implements register frames, which take advantage of
the large register file to efficiently handle multiple levels of
subroutine calls. Register frames are similar to the fixed-size
register windows in SPARC (see MPR 12/26/90, p. 9), except
that IA-64 allows software to dynamically specify the size of
each frame using the ALLOC instruction.

In the example shown in Figure 1, the top-level routine
has specified a register frame with 19 registers, divided as 12
for local use and 7 for parameter passing (output). In addi-
tion, the routine can use the first 32 registers, which are des-
ignated for global use. When this routine calls a subroutine,
the register frame pointer is advanced by 12 (the number of
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local registers) to create a new register frame. This sub-
routine uses ALLOC to set up 15 locals and 8 outputs. The
first 7 locals overlap the outputs of the previous routine, pro-
viding input parameters to the subroutine. The subroutine
also has access to the 32 global registers.

From the subroutine’s viewpoint, however, the registers
in its frame are numbered from 32 to 54, even though they
occupy physical registers 44 to 66. Thus, the compiler doesn’t
have to know which registers are unused by previous rou-
tines; it simply arranges each routine within its own virtual
register space. This technique simplifies situations in which a
subroutine can be called from various places in a program,
and it can avoid saving and restoring registers, even when a
subroutine is called through a dynamic link.

Register Save Engine Spills and Fills
Even though the IA-64 register file is large, it is finite. The
architecture defines a register save engine (RSE) that auto-
matically spills registers to memory when the register file is
fully allocated, creating the illusion of an infinite register file.
For example, if ALLOC must create a 20-register frame start-
ing at physical register 120, the frame will go to register 127
and then wrap back to register 32. To avoid destroying state,
the contents of registers 32–43 are stored to the memory
stack. The RSE can save and restore registers before they are
needed, minimizing the performance impact. This activity is
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Figure 1 . In this example, a top-level IA-64 routine calls a sub-
routine and allocates a new frame with 23 registers that overlap
the output registers of the original routine. The subroutine uses
virtual registers 32–54, but these are mapped to physical registers
44–66 by the hardware.
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invisible to software, whereas SPARC software must manu-
ally spill and fill registers.

The register frames minimize the number of registers
saved and restored during procedure calls, although IA-64’s
static design will result in more “live” registers than in a tra-
ditional dynamic design. Routines with high computational
requirements can still take advantage of the full register file
by allocating a frame with up to 96 registers (plus globals).
Any routine that desires can also use IA-64’s register rota-
tion (see MPR 3/8/99, p. 16); to simplify the hardware, the
rotating portion of the frame is required to start at GR32
and contain a multiple of eight registers.

With rotation and framing, the translation to physical
register addresses requires adding two 7-bit values—the reg-
ister frame pointer and the rotating register base (RRB)—to
the virtual register number and wrapping around from regis-
ter 127 to 32 if necessary. Although parts of this calculation
can be done ahead of time, an IA-64 processor may require
an extra pipeline stage to access its registers. Compared with
the register renaming found in most modern processors,
however, the IA-64 approach requires much less hardware
and adds less time to the pipeline.

Register Set Provides Massive Resources
Only the integer registers are framed; all other registers must
be saved and restored explicitly by software. This restriction
simplifies the register save engine, which doesn’t need to
keep track of separate regions to save and restore various
register types. Furthermore, the predicate registers can be
saved quickly, as a single memory access saves all 64 of the
1-bit predicates, and the floating-point registers are not used
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by most subroutines. To further reduce save overhead, soft-
ware needs to save FP registers only if the user mask indi-
cates that either the lower or upper half of the FP register file
has been written.

As Figure 2 shows, the floating-point registers are 82 bits
wide. The native FP format is identical to Intel’s 80-bit
extended precision (EP) mode, except that the exponent field
has 17 bits instead of 15. All results are calculated in the native
format and converted to the requested precision. The extra
two exponent bits handle common overflows and underflows
in EP mode, simplifying some scientific algorithms.

Each of the integer registers (except GR0, which is
always zero) has an associated NaT (not a thing) bit to sup-
port speculative loads (see MPR 3/8/99, p. 16). The FP regis-
ters, however, don’t need a NaT bit; instead, they encode NaT
as a special value that is unused by the IEEE-754 standard.

The 64-bit instruction pointer (IP) points to the next
bundle to be executed. The current frame marker (CFM)
holds the register frame pointer and frame size, along with
the RRB values for the integer, FP, and predicate register files.
The usr mask is the application-visible portion of the proces-
sor status register (PSR). It controls the endianness of loads
and stores, enables or disables the performance monitors and
data-alignment checking, and contains the dirty flags for the
upper and lower halves of the FP register file.

Like current Intel products, IA-64 processors will in-
clude a serial number and CPU_ID. This information is spread
across five 64-bit registers, including two to hold a 16-charac-
ter ASCII vendor name (e.g., “Genuine Intel”).

IA-64 also defines a set of 128 special registers, similar
to PA-RISC’s control registers, called the application regis-
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Figure 2. The IA-64 register file consists of 128 integer registers, 128 floating-point registers, and 64 predicate registers, along with an
extensive set of special-purpose registers. Registers in gray are shared between IA-64 and x86 modes; x86 functions are in parentheses.
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ters. Although many are reserved for future definition, sev-
eral have important functions. For example, AR65–66 con-
tain the loop count (LC) and epilogue count (EC) used to
control loops with rotating registers. AR16–19 provide
information for the register save engine, such as the memory
address for spilling registers.

The UNAT register (AR36) temporarily holds 64 NaT
bits so they can be saved and restored using the LD8.FILL and
ST8.SPILL instructions. The floating-point status register
(FPSR) and interval time counter (ITC) are also in the AR
file. The CCV register contains the third source operand for
the CMPXCHG (compare and exchange) instruction. The
eight kernel registers (KR) are user readable but are writable
only by privileged software. They can be used to store infor-
mation such as thread pointers and the CPU number in a
multiprocessor system. Other application registers are
defined by the system-level architecture, which has not yet
been made public.

x86 Compatibility Has Large Overhead
All IA-64 processors allow direct execution of x86 (IA-32)
binaries by placing the processor in x86 mode. The architec-
ture supports the full Pentium III instruction set, including
the streaming SIMD extensions (SSE). It supports all x86
modes—real, protected, and VM86—as well as self-modifying
code, offering full compatibility with existing binaries. Even
privileged modes are supported, allowing an IA-64 processor
to run an x86 operating system, although not with commer-
cially viable performance.

AR24–31 allow IA-64 programs to access x86 special
registers, such as the code segment descriptor (CSD) and
floating-point status register (FSR). Other x86 state is mapped
onto the IA-64 general and FP registers, as shown in Figure 2.
Note that, because the IA-64 FP registers are only 82 bits wide,
the 128-bit XMM registers defined by SSE (see MPR 10/5/98,
p. 1) must be mapped to pairs of IA-64 registers. Because the
integer MMX registers are already mapped onto the FP regis-
ters in x86, both of these register sets are mapped onto the
same IA-64 FP registers.

Mapping the x86 state onto the IA-64 registers allows
simple parameter passing between IA-64 and x86 routines:
data placed in one of the shared registers can be accessed
directly in either mode. This sharing also slightly reduces the
number of registers in an IA-64 processor.

The downside is that switching modes is fairly onerous.
The actual mode switch itself is quite simple, as certain
branch instructions simply change the processor’s mode bit,
although this is likely to force the processor to drain its
pipeline before switching modes. As Figure 3 shows, the new
x86 instruction, JMPE, sets the processor to IA-64 mode,
while the IA-64 BR.IA instruction branches to x86 mode.

The overhead comes in preparing for the transition.
Because of the register overlap, any shared registers with
important data must be explicitly saved to memory before
switching modes. Before calling an x86 routine, IA-64 code
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must properly set up the x86 segment descriptors, PSR, and
EFLAG registers.

Furthermore, the architecture allows the processor to
overwrite all of the nonshared general, FP, and predicate reg-
isters, as well as the ALAT (used for IA-64’s speculative
stores), during x86 execution. With this flexibility, the
processor can use almost any of its resources to emulate the
behavior of x86 instructions. But as a result, switching
modes generally requires the entire IA-64 register set to be
saved or restored.

This mode-switch overhead makes it impossible to mix
x86 and IA-64 code at the subroutine level. Any application,
operating system, library, or driver must be converted to
IA-64 as a complete unit. A native-mode operating system,
however, could support x86 applications, libraries, or dri-
vers. Each OS vendor must determine whether and how it
will support x86 compatibility.

IA-64 Includes MMX and SSE Instructions
The basic IA-64 instruction set bears a strong resemblance to
HP’s PA-RISC. The only hardware support specifically for
PA-RISC, however, is the ADDP instruction, which shifts bits
31:30 to bits 62:61 before summing. This instruction helps in
emulating the PA-RISC segmentation model.

HP is developing a dynamic translator that will convert
PA-RISC binaries to IA-64 on the fly. The translator actually
recompiles the binaries, taking advantage of as many IA-64
features as necessary. This tool is similar to Digital’s FX!32
(see MPR 3/5/96, p. 11) but is simpler; it can deliver 50% of
native-mode performance on many applications. Perfor-
mance will be better for applications that spend more time
in the native-mode operating system and libraries.

The integer instructions cover the basics, as Table 1
shows, along with the unusual shift-and-add instructions
found in PA-RISC (see MPR 4/3/91, p. 13). The ADD and
SUB instructions will optionally offset the result by 1, a fea-
ture useful in implementing multiprecision arithmetic. Most
of the arithmetic instructions can replace one operand with
an immediate value of at least 8 bits. The ADDL instruction
can add a 22-bit immediate value to a register, but the source
register can be only GR0–GR3. For truly long immediates,
the MOVL instruction, which occupies two slots in a bundle,
can load a 64-bit constant.

The compare (CMP) instruction compares two values
and stores the result in a predicate register, along with the
JMPE

BR.IA

Intercepts, exceptions,
software Interrupts

Interruptions

x86 Mode IA-64 ModeRFI

Figure 3. Only a few instructions and events cause an IA-64 pro-
cessor to switch between IA-64 and x86 (IA-32) modes. The pro-
cessor can also be configured to direct interrupts to IA-32 mode,
allowing compatible execution of an unmodified x86 OS.
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A ADD Addition†

A SUB Subtraction†

A ADD ,1 Three-operand (A+B+1)†

A SUB ,1 Three-operand (A–B–1)†

A ADDL Add long (22-bit immed)†

A SHLADD Shift left (1–4) and add
A AND Logical AND†

A OR Logical OR†

A ANDCM Logical AND complement†

A XOR Logical XOR†

A ADDP 32-bit pointer addition†

A SHLADDP Shift left and add pointer
A CMP Compare GR†

A CMP4 Compare GR, low 32 bits†

I TBIT Test GR bit
I TNAT Test GR NaT bit
I SXTn Sign extend [n=1,2,4]
I ZXTn Zero extend [n=1,2,4]
I DEP Deposit†

I DEP.Z Zero and deposit†

I EXTR Extract signed
I EXTR.U Extract unsigned
I SHL Shift left
I SHR Shift right signed
I SHR.U Shift right unsigned
I SHRP Shift right pair
I CZXn Find first zero [n=1,2]
I POPCNT Population count
X MOVL Move 64-bit immediate

Ty
p
e

Name Description Ty
p
e

Name Description Ty
p
e

Name Description

M LDn Load n bytes [n=1,2,4,8]
M LDFn Load FP [n=S,D,E]
M LDF8 Load 64-bit integer to FR
M LDFPn Load FP pair [n=S,D]
M LD.S Speculative load*
M LD.A Advanced load*
M LD.SA Speculative advanced load*
M LD.C Check load*
M LD.ACQ Ordered load
M LD.BIAS Load with intent to store
M LD8.FILL Load GR with NaT bit
M LDF.FILL Load FR with 82 bits
M STn Store n bytes [n=1,2,4,8]
M STFn Store FP [n=S,D,E]
M STF8 Store 64-bit integer from FR
M ST8.SPILL Store GR with NaT bit
M STF.SPILL Store FR with 82 bits
M CMPXCHG Atomic compare exchange
M FETCHADD Atomic fetch and add
M XCHG Exchange memory and GR
M LFETCH Prefetch cache line
M LFETCH.EXCL Prefetch writable cache line

B BR Unconditional branch
B BR.COND Conditional branch
B BR.CALL Conditional procedure call
B BR.RET Conditional procedure return
B BR.IA Branch to IA-32 procedure
B BR.CLOOP Counted loop branch
B BR.CTOP Counted loop back w/RR
B BR.CEXIT Counted loop exit w/RR
B BR.WTOP While loop back w/RR
B BR.WEXIT While loop exit w/RR
V CHK.S Check speculative load
M CHK.A Check advanced load
F FCHKF Check FP flags
V BREAK Break instruction fault

A PADD Parallel modulo addition
A PADD.SSS Parallel add, signed sat.
A PADD.UUU Parallel add, unsigned sat.
A PSUB Parallel modulo subtraction
A PSUB.SSS Parallel sub, signed sat.
A PSUB.UUU Parallel sub, unsigned sat.
A PAVG Parallel arithmetic average
A PAVG.RAZ    w/round away from zero
A PAVGSUB Parallel average of diffs
A PCMP Parallel compare
I PMPY.L Parallel multiply odd items
I PMPY.R Parallel multiply even items
I PMPYSHR Parallel multiply, shift right
I PSAD Parallel sum of absolute diffs
I PMIN Parallel minimum
I PMAX Parallel maximum
I PSHL Parallel shift left
I PSHR Parallel signed shift right
I PSHR.U Parallel unsigned shift right
I PSHLADD Parallel shift left and add
I PSHRADD Parallel shift right and add
I MIX.L Interleave odd elements
I MIX.R Interleave even elements
I MUX Arbitrary copy of elements
I PACK Pack into smaller elements
I UNPACK Expand into larger elements

A MOV Move from GR to GR†

I MOV BR Move between BR and GR†

I MOV PR Move between PR and GR†

V MOV AR Move between AR and GR†

M MOV PSR Move between PSR and GR
M SUM Set user mask†

M RUM Reset user mask†

M MOV PMD Move from PMDR to GR
M MOV CPUID Move from CPUID to GR
I MOV IP Move from IP to GR
B CLRRRB Clear RRB
M GETF.EXP Move FP exponent to GR
M GETF.SIG Move FP significand to GR
M GETF.n Move FP value to GR [n=S,D]
M SETF.EXP Move GR to FP exponent
M SETF.SIG Move GR to FP significand
M SETF.n Move GR value to FP [n=S,D]
M ALLOC Allocate register frame

F FMA FP multiply add
F FMS FP multiply subtract
F FNMA FP negate multiply add
F FRCPA FP reciprocal approx
F FRSQRTA FP square-root approx
F FCMP FP compare
F FMIN FP minimum
F FMAX FP maximum
F FAMIN FP absolute minimum
F FAMAX FP absolute maximum
F FCVT.FX Convert FP to signed int
F FCVT.FXU Convert FP to unsigned int
F FCVT.XF Convert signed int to FP
F FCLASS Test FP class
F FMERGE.S FP merge sign
F FMERGE.NS FP merge negative sign
F FMERGE.SE FP merge sign and exponent
F FAND FP logical AND
F FANDCM FP logical AND complement
F FOR FP logical OR
F FXOR FP logical XOR
F FCLRF Clear FP flags
F FSETC Set FP control bits
F XMA.L Integer multiply add (on FR)
F XMA.H    return high 64 bits
F XMA.HU    return high 64 bits unsign.

F FPMA Parallel FP multiply add
F FPMS Parallel FP multiply sub
F FPNMA Parallel FP negate mul add
F FPRCPA Parallel FP recip approx
F FPRSQRTA Parallel FP sq-root approx
F FPCMP Parallel FP compare
F FPMIN Parallel FP minimum
F FPMAX Parallel FP maximum
F FPAMIN Parallel FP absolute min
F FPAMAX Parallel FP absolute max
F FPCVT.FX Parallel FP to signed int
F FPCVT.FXU Parallel FP to unsigned int
F FPMERGE Parallel FP merge sign
F FMIX FP mix elements
F FSXT FP unpack and sign ext
F FPACK FP pack elements
F FSWAP FP swap elements
F FSWAP.N FP swap and negate
F FSELECT FP select elements

Parallel Integer Arithmetic

Integer Arithmetic Memory Transfer FP Arithmetic

M FLUSHRS Flush register set
M FC Flush cache
M PTC.E Purge TLB entry
M INVALA Invalidate ALAT
M INVALA.E Invalidate ALAT entry
M MF Memory ordering fence
M SRLZ.I Serialize instruction stream
M SRLZ.D Serialize data stream
M SYNC Synchronize I&D caches

Register Transfer

Control Transfer

Parallel FP Arithmetic

System Control/Miscellaneous

Table 1. The IA-64 user-mode instruction set includes a staggering variety of instructions, each of which is assigned to one of the following
categories: A=integer ALU; I=integer non-ALU; M=memory; F=floating point; B=branch; X=extended, V=various. Only major opcodes and
some key variations are shown. *These extensions also apply to LDF and LDFP. †These instructions optionally take an immediate operand.
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negation of the result in another predicate register. It sup-
ports three basic conditions (=, signed <, and unsigned <)
but can generate another seven (≠, signed and unsigned ≤, >,
and ≥) by swapping the operands or the destination registers.
Variations such as CMP.OR and CMP.AND logically combine
the comparison result with the value of the destination pred-
icates, creating compound conditions such as A<B OR A<C.

Bit manipulation is performed by powerful extract and
deposit instructions, also based on PA-RISC. Standard shift
operations are merely special cases of these instructions. The
SHRP instruction extracts a 64-bit value from the middle of
two concatenated register values. The MUX instructions
rearrange 8-bit and 16-bit elements and are similar to HP’s
PERMUTE instruction (see MPR 11/18/96, p. 24).

Parallel arithmetic on 8-, 16-, and 32-bit integers is
handled by a set of instructions nearly identical to Intel’s
MMX instruction set (see MPR 3/5/96, p. 1) in function and
mnemonic. These include instructions such as parallel add
and parallel compare, as well as SSE “new media” instruc-
tions such as parallel average and parallel min/max. Because
the IA-64 integer registers are all 64 bits wide, these instruc-
tions work on the integer registers instead of the special
MMX registers, as in x86. The performance of many multi-
media algorithms will be greatly enhanced by the availability
of 128 registers for parallel operations instead of 8.

Like SSE, IA-64 includes a parallel sum-of-absolute-
differences instruction that accelerates video encoding.
IA-64 also includes population count, which is useful in
cryptographic and other algorithms. The CZX instruction
finds the first zero element in a 64-bit register, which assists
in string manipulation.

Unlike some 64-bit architectures, IA-64 does not in-
clude a 32-bit mode. Compilers can generate 32-bit code by
using 32-bit loads and stores. Most arithmetic instructions
function identically on 32-bit or 64-bit data, and the IA-64
instruction set includes 32-bit versions of instructions that
do not do this. For example, CMP4 is identical in function to
CMP except that it looks only at the low 32 bits of the regis-
ters. We expect many application vendors will choose to
compile in 32-bit mode for compatibility with existing
32-bit programs and data structures.

Floating Point Built Around Fast MAC
IA-64 provides four 13-bit FP status fields, all part of the FP
status register (FSR), which contain the IEEE flags and con-
trol the rounding modes and the default precision. Each FP
instruction specifies one of the four status fields, allowing
four independent streams to proceed in parallel while main-
taining IEEE compatibility. Traditional architectures can
handle only one stream at a time or require complicated
hardware to process multiple FP operations in parallel.

In addition to the standard precisions (single, double,
and extended), IA-64 instructions can take advantage of the
extra exponent bits by setting the WRE bit in the status field.
Most FP instructions can also override the default precision
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by specifying either single or double. All IEEE rounding
modes as well as flush-to-zero are supported.

The floating-point instruction set is built around a
fused multiply-add (MAC) construct. Simple addition and
multiplication are synthesized, using the constants +0.0 and
+1.0 stored in FR0 and FR1, respectively. As is becoming
common, reciprocal and reciprocal square-root approxima-
tions are provided, enabling fast iterative division and
square-root calculations to arbitrary precision levels, using
Newton-Raphson refinement (see MPR 5/11/98, p. 1).

IA-64 supplies no scalar integer multiply instruction.
Instead, integer values can be loaded into the 64-bit signifi-
cand of FP registers (using LDF8); XMA then performs integer
MACs on these values. To avoid moving data between the FP
and integer registers, IA-64 supports some logical operations
on the FP registers. RSA and other encryption algorithms
make heavy use of integer MAC and logical operations. This
method leverages the FP MAC unit, reducing hardware over-
head, but it could reduce performance if data must be trans-
ferred to the integer registers for further processing.

Like SSE, IA-64 includes a full set of parallel operations
that compute two single-precision results at once. Although
SSE may seem superior in its ability to compute four results
at once, the IA-64 compiler can achieve the same result by
grouping two parallel FP instructions for execution in the
same cycle. SSE’s registers are wider, so its eight registers can
hold 32 SP values, but the IA-64 register file can hold 252 SP
values, even with its narrower registers.

Memory Instructions Control Caching
Load and store instructions support only a single addressing
mode (base), with optional postincrement using an immedi-
ate value or, for loads only, a register value. These forms also
provide a prefetch hint to the hardware, which can suggest
that the line pointed to by the postincremented base register
should be fetched. Other hints control whether the loaded
data should be cached and at what cache level (L1, L2, etc.).
Data that is not likely to be reused can bypass the cache hier-
archy entirely, improving the cache hit rate.

One, two, four, or eight bytes can be transferred using
the sz completer (e.g., LD1, LD2, LD4, LD8). Speculation is
supported by LD.S, LD.A, and LD.C. The LDFP instruction
loads two single- or double-precision values into two FP reg-
isters at once, doubling the floating-point bandwidth for
many applications. Efficient execution of this instruction
will require a 128-bit cache bus.

The compare-and-exchange (CMPXCHG) and fetch-
and-add (FETCHADD) instructions perform atomic memory
updates that can be used to implement software semaphores.

The vendors did not disclose IA-64’s virtual address
model. We expect the architecture uses segmented addresses
of at least 96 bits, for compatibility with PA-RISC. The
operation of the ADDP instruction implies that the upper
three bits of an IA-64 address are used to select one of eight
segment registers (called space registers in PA-RISC), which
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are probably located in AR8–15. This method would provide
applications with a linear address space of at least 261 bytes.

Branch Registers Accelerate Control Flow
IA-64 has only a single basic branch instruction (BR), which
can be predicated to create a conditional branch. Branch tar-
gets must be bundle-aligned and can be specified by a 21-bit
displacement (in bundles) from the current instruction
pointer or by a 64-bit branch register. Storing branch ad-
dresses (particularly return links) in a separate register file
allows those registers to be physically located near the branch
unit, reducing the overhead of branch processing.

Several branch hint bits tell the hardware whether to use
static or dynamic prediction, whether to predict taken or not
taken, and whether to deallocate the entry from the branch
target cache (BTC). A prefetch hint suggests whether the pro-
cessor should aggressively prefetch several instruction-cache
lines at the target or only a few. If used properly by the com-
piler, these hints should make the hardware more efficient by
not wasting BTC entries and cache entries.

A subroutine call is coded as BR.CALL, while a return is
simply BR.RET. A call saves the current frame marker (CFM)
in the PFS register and saves the return address in the speci-
fied branch register. A return restores the CFM from PFS and
branches to the address in the specified branch register.

The BR.CLOOP version tests and decrements the loop
counter before branching. BR.CTOP and BR.CEXIT also test
the loop counter but update the rotating register base (RRB)
before branching. (The latter form simply reverses the loop
test.) BR.WTOP and BR.WEXIT update the RRB but test a
predicate instead of a loop counter; these instructions are
ideal for do…while loops.

The vendors did not disclose the method of handling
interrupts. A bit in the PSR selects whether the processor
goes into IA-64 or x86 mode on an interrupt; the latter mode
would be used only to execute an unmodified x86 operating
system. The PSR and IP must be saved, possibly in shadow
registers by the hardware. Free register space can easily be
created by allocating a new register frame. Presumably, the
PSR contains bits to signal the type of interrupt and also to
disable particular interrupt types.

Template Provides Additional Decoding
Each IA-64 instruction is placed in one of six categories, as
Table 1 shows, which are then mapped onto four types of
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generic execution units. I-units handle any integer instruc-
tion, including the extended MOVL instruction. M-units
handle any memory instruction plus integer ALU instruc-
tions (using the memory-address adder). F-units handle FP
instructions, while B-units handle branch instructions,
including the extended multiway branch.

Instructions are combined into 128-bit bundles, each
having three 41-bit instructions plus a 5-bit template. The
instructions are longer than standard RISC (or x86) instruc-
tions, since 7 bits are needed to specify each operand register
plus 6 extra bits to specify a predicate register. The compiler
then groups instructions that have no dependencies; a group
can be as short as a single instruction or can be arbitrarily
long, spanning several bundles.

Although instructions are officially 41 bits long, these
encodings are unique only to a specified function unit; the
same opcodes are interpreted differently by different func-
tion units. Ideally, the instructions would have been 43 bits,
allowing two extra bits to specify the unit, but there aren’t
enough bits in a 128-bit bundle to support three 43-bit
instructions.

Instead, the template field specifies both the mapping of
instructions to execution units as well as any group bound-
aries, or stops, within the bundle. In a maddening bit of
nonorthogonality, only certain combinations of instruction
types and group boundaries can be encoded—24 combina-
tions, to be exact, with 8 more reserved for future use.

For example, the MII template specifies an M-unit
instruction followed by two I-unit instructions and no stops.
The MIB• template specifies M-unit, I-unit, and B-unit
instructions, followed by a stop (•). The MLX template
encodes the MOVL instruction in the last two instruction
slots. Multiway branches are encoded using the MBB and
BBB templates. The full list of templates is MII, MI•I, MLX,
MMI, M•MI, MFI, MMF, MIB, MBB, BBB, MMB, MFB. All
of these forms are also available with a stop at the end.

Because instructions can often be reordered within a
group, this arrangement provides more flexibility than it
might appear to, but there will still be some situations where
the compiler cannot find the right template and must insert
a NOP. The architects say they have carefully selected the
templates to minimize these occurrences. The limitations are
actually an advantage for the hardware, which doesn’t have
to handle all possible instruction combinations.

Code Density Remains a Concern
One area in which IA-64 will not excel is code density. The
average instruction length for IA-64 is nearly 43 bits, versus
32 for a typical RISC and 21–22 for typical x86 code. A few
IA-64 features save instructions, such as predication, which
eliminates some branches, but other features require more
instructions than are used by other architectures.

For example, ALLOC and CHK instructions will be fre-
quently used, but they add instruction overhead compared
with a traditional architecture. The lack of a multiply
F o r  M o r e  I n f o r m a t i o n

The “IA-64 Application Instruction Set Architecture
Guide” is available at www.hp.com/go/ia64 and at
http://developer.intel.com/design/ia64/devinfo.htm.
Additional information on IA-32 compatibility in IA-64 can
also be found at the Intel URL.
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instruction for the integer registers will increase instruction
counts in some applications. The greatest numerical impact
will come from added fix-up code from speculative rou-
tines (see MPR 3/8/99, p. 16), but this fix-up code is rarely
used and will generally do nothing other than take up disk
space.

We expect the savings will roughly balance out the extra
instructions, excluding fix-up code. Given the 2:1 ratio in
average instruction size and other factors, we expect the code
size for IA-64 will be roughly twice as big as an equivalent
x86 binary, again excluding fix-up code. The increase in code
size over a PA-RISC binary will be more modest, perhaps
only 30%.

Comparing code density is always challenging, as it
depends on the application and on the level of compiler
optimization. Even a 2:1 increase is not significant for most
system components, as most large applications involve far
more data than instructions. The biggest impacts are in the
hit rate and bandwidth of the primary instruction cache.
The same size cache will hold half as many IA-64 instruc-
tions as x86 instructions, reducing its hit rate. To compen-
sate, IA-64 processors may have larger instruction caches;
since modern instruction caches are no more than 5–10%
of the total die size, this increase would have only a modest
cost impact.

The bandwidth between the instruction cache and the
second-level (L2) cache must also be increased to compen-
sate for the larger instructions. In a processor with an exter-
nal L2 cache, doubling this bandwidth can be expensive.
Merced and future IA-64 processors, however, will have at
least two levels of cache on the processor, making it simple to
build a high-bandwidth interface to the instruction cache.
The larger binaries will also require more main memory and
more disk space, but most DRAM and disks are consumed
by data, not instructions.

A State-of-the-Art Architecture
Given HP’s and Intel’s desire to develop a new instruction-set
architecture, IA-64 delivers a strong feature set that takes ad-
vantage of the latest advances in instruction-set design.
Among today’s major high-end architectures, IA-64 is unique
in providing a large amount of explicit information from the
compiler to the hardware regarding instruction grouping,
branch prediction, speculative execution, and prefetching.
The larger register set provides more low-latency storage than
competing designs, yet the register framing avoids much of
the overhead of saving and restoring the additional registers,
except on context switches.

IA-64 is a particularly big step forward for Intel, given
its current instruction set. Although the company has man-
aged to deliver competitive integer performance from its x86
processors, this success has come in spite of the foibles of that
instruction set. IA-64 offers a full 64-bit address space and
much better floating-point performance. The new instruc-
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tion set also maintains and extends the advantages of MMX
and SSE for multimedia applications.

No matter how well they perform, RISC architectures
have had limited acceptance because they lack compatibility
with popular software. IA-64 solves this problem by offering
full compatibility with x86’s broad software base. For HP’s
customers, PA-RISC compatibility will also be available
through dynamic binary translation.

In both cases, performance in compatibility mode will
be significantly lower than native performance, although
applications that spend most of their time in operating-
system calls will fare better. Even in compatibility mode, per-
formance will be adequate for many applications.

For IA-64 to succeed, however, there must be a base of
performance-hungry native applications. Intel recently
announced the creation of a $250 million venture-capital
fund to support the development of native IA-64 applica-
tions and middleware. The release of the instruction-set
details should further spur software development. The
broad level of support for IA-64 among system and soft-
ware vendors nearly guarantees its success, as long as Intel
delivers competitive performance.

Compiler Is the Key
The biggest concern about IA-64 performance at this point is
not the instruction set but Intel’s execution on both the
hardware and, just as important, the compiler. Merced, the
first IA-64 processor, is nearing tapeout. Intel still expects the
first Merced systems to ship in mid-2000, although this
schedule seems optimistic. We expect Merced to perform
well, but it may not outperform all of its RISC competitors.
If the compiler, perhaps the most difficult part of the IA-64
effort, is not as good as expected, Merced will fare worse.

The IA-64 compiler must perform many optimizations
that are done in hardware today while juggling several large
register files, template limitations, grouping issues, specula-
tive loads, and explicit prefetching. It must also efficiently
use register frames, although most architects have shunned
register windows because compilers have historically been
unable to use them effectively. All of these capabilities are
possible in theory, but no compiler has ever been shipped
that demonstrates all of them. HP and Intel have spent years
working on their IA-64 compilers; the fruits of their labor
will be seen soon.

If the compiler writers and chip designers do their jobs
well, IA-64 should deliver a performance advantage over
RISC instruction sets. The vendors have no performance
data to offer at this time, but we estimate this advantage to be
modest, perhaps 20–30%, if all other things are equal. RISC
vendors will need excellent implementations to overcome
this advantage. We don’t think IA-64 will be untouchable in
the market, but its performance advantage, if achieved,
would be enough to justify Intel’s decision to develop a new
instruction set.— M
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