
SPECIAL ISSUE COVERING THE 1999 MICROPRO CESSOR FORUM

T H E I N S I D E R S ’ G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

MICROPROCESSOR
VOLUME 13, NUMBER 13

OCTOBER 6, 1999

REPORT
ative Design
rgy With Compiler
By Linley Gwennap

At this week’s Microprocessor Forum,
Intel unwrapped the Merced microarchi-
tecture, showing how IA-64’s EPIC de-

sign results in hardware that is both simpler and more pow-
erful than traditional RISC or CISC processors. Gone are the
complex instruction reorder buffers and register alias tables
found in modern superscalar processors. In their place are
more registers, more function units, and more branch pre-
dictors. These trade-offs eliminate unneeded complexity
while leaving some dynamic structures in the hardware to
handle events the compiler can’t easily predict.

Merced microarchitecture manager Harsh Sharangpani
described Merced as a six-wide machine, fetching and execut-
ing two bundles, or six instructions, per cycle at its peak rate.
The processor uses a 10-stage pipeline to achieve high clock
speeds, although Sharangpani declined to specify the target
clock speed. IA-64 features such as predication, speculation,
and register rotation are implemented with simple hardware
structures. Dynamic structures, such as a decoupled fetch
unit, nonblocking caches, and register scoreboarding, avoid
pipeline stalls due to level-one (L1) cache misses.

The tighter coupling between the compiler and the
processor improves hardware efficiency compared with tra-
ditional RISC or x86 designs. For example, the compiler has
more control over branch prediction, allowing the processor
to focus only on those branches that require dynamic pre-
diction. Since all modern compilers perform instruction
scheduling, allowing the compiler to communicate that
information directly to the processor eliminates redundant
scheduling circuitry. Ultimately, IA-64 gives the compiler
more flexibility in scheduling instructions, increasing poten-
tial performance as well as the compiler’s complexity.

Merced is no longer just a paper design. Intel and its
system partners are currently validating first silicon, which
has booted four operating systems and several key applica-
tions. The company says the processor is on track for mid-
2000 production, with systems appearing in 2H00.

Merced Shows Innov
Static, Dynamic Elements Work in Syne
Six-Issue EPIC Processor
As Figure 1 shows, Merced can fetch and issue six instruc-
tions per cycle to a pool of function units that includes four
integer units, two FPUs, and three branch units. Two of the
integer units can also handle load/store instructions. Addi-
tional operations can be achieved using the SIMD integer
and FP capabilities, the pointer post-increment feature of
the load and store instructions, and the loop-counter update
in special branch instructions (see MPR 5/31/99, p. 1).

The ability to handle up to three branches per cycle is
unique among announced server processors; in fact, most
can handle only one. In IA-64, branch-prediction instruc-
tions consume some of the branch slots, but there should be
more than enough slots remaining to efficiently process
branch-rich commercial server code.

The processor really shines on floating-point code, as
each load/store unit can start a pair of double-precision
(DP) loads per cycle using the LDFPD instruction, and each
B B B F F

System Bus

L3 Cache

Instr
Queue

(8 bundles)

2 bundles

Instruction Cache
and ITLB

Branch
Unit (3)

Dual-Ported Data Cache
and DTLB

128 bits

2 × 128 bits

ALAT

Branch
Predictors

On-Chip
Dual-
Ported

L2
Cache

128 Int
Registers

Pred &
Br Regs

Fetch
Engine

PC

M M I I
9 issue ports

Integer
ALU (4)

2 FP
Units

addr

128 FP
Registers

L3
Cache
and

System
Bus

Control

Register Remap / Stack Engine

addr 64

64 82

6 instr

IA-32
Engine

Figure 1. Merced can fetch and issue up to six instructions per
cycle on nine issue ports: B = branch, M = memory, I = integer,
F = floating point.

2 M E R C E D S H O W S I N N O V A T I V E D E S I G N
FPU can launch two DP operations using the FMA instruc-
tion. Thus, Merced can fetch four DP operands and execute
four DP operations per cycle and still have two instruction
slots left over to handle integer arithmetic or branches.

Most integer instructions execute in a single cycle. The
dual FPUs are fully pipelined for all operations, but execu-
tion takes multiple cycles. Intel did not disclose the latency of
Merced’s FPU, but presumably it is no worse than that of
Pentium III, which requires three cycles for an add or a mul-
tiply. As previously disclosed (see MPR 10/26/98, p. 16), each
of Merced’s FPUs can execute one DP MAC or two SP MACs.

The chip includes small L1 instruction and data caches
backed by a larger on-chip L2 cache. Intel did not disclose
details of the memory subsystem, such as the size and orga-
nization of these caches or the TLBs. We expect the L1 caches
to be about 16K, allowing them to maintain an access time of
about 1.5 cycles at a high clock speed. The L2 cache is proba-
bly about 256K and can supply 256 bits per cycle to the L1
caches. Both the data cache and the L2 cache can service two
loads per cycle. FP loads and stores bypass the data cache and
go directly to the L2 cache, as Figure 1 shows. Merced con-
nects to an external L3 cache through a 128-bit bus operating
at the full CPU speed and delivering at least 10 GBytes/s.

In addition to the backside L3 cache bus, Merced in-
cludes a frontside bus that connects to memory, I/O, and
other processors, a design similar to that used by Pentium III
today. Although Intel did not disclose the width or speed of
this bus, we expect it to provide 2–3 GBytes/s of sustainable
bandwidth, more than twice that of the current 100-MHz
Xeon bus. This bus will support up to four Merced proces-
sors, using Intel’s forthcoming 460GX chip set (see MPR
9/13/99, p. 4) as well as chip sets being developed by Intel
partners.

Ten-Stage In-Order Pipeline
Figure 2 shows the Merced pipeline. At 10 stages, it is two to
three stages shorter than Pentium III’s pipeline (see MPR
2/16/95, p. 9); much of this advantage, however, is due to the
complexities of the x86 architecture. Merced’s pipeline is ac-
tually two to three stages longer than that of the Alpha 21264
(see MPR 10/28/96, p. 11), a high-speed RISC processor.
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
Like many modern processors, Merced uses an instruc-
tion queue to decouple the instruction-fetch pipeline from
the execution pipeline. This decoupling allows the front end
to continue fetching instructions, even when the execution
engine stalls; conversely, execution can continue using
queued instructions if a branch causes a pipeline bubble,
which Intel calls a resteer. The queue holds eight bundles, or
24 instructions, enough to cover resteers but not enough for
a full branch misprediction.

The front end of the pipeline consists of three stages.
After calculating the fetch address in the first stage, the pro-
cessor accesses the instruction cache in the FET stage, and
instructions flow into the queue in the third stage. After
spending zero or more cycles in the queue, instructions are
issued in the fourth stage. Register remapping occurs in the
next stage, and accessing the large (128-entry) register files
requires the two stages that follow. Finally, instructions exe-
cute in the EXE stage, with DET available to access the data
cache or to complete branches.

Merced does not reorder instructions as out-of-order
RISC or CISC processors do. But due to the different laten-
cies of integer math, loads, FP math, and cache misses, in-
structions can finish executing out of order. The processor
employs a register scoreboard to determine if a target register
has been updated. As long as no instruction requires the
result of a multicycle operation, the pipeline continues flow-
ing normally. It stalls only if an instruction attempts to access
a register that the scoreboard indicates is unavailable.

CPU, Compiler Both Predict Branches
With a branch misprediction penalty of nine cycles, Merced,
like most modern processors, must avoid mispredicted
branches at all costs. One of the strengths of IA-64 is that it
can eliminate many branches using predication, completely
avoiding the possibility of a misprediction. But Intel didn’t
ignore the branches that aren’t eliminated; to accurately pre-
dict these branches, Merced employs a variety of hardware
and software techniques that go well beyond the methods
implemented in current processors.

First, Merced implements a branch predict instruc-
tion, BRP, that the compiler can use to help the processor
more accurately predict branches and prefetch target
instructions. The BRP instruction provides the address of an
upcoming branch instruction, its predicted target address,
and the “importance” of the branch, as well as other predic-
tion aids.

The implementation of BRP varies from processor to
processor. Merced implements four target address registers
(TARs) that hold the targets of the most recent BRP instruc-
tions of high importance. Each TAR also holds the address of
the branch instruction. When the program counter matches
one of these branch addresses, the corresponding target
address is fed to the instruction cache on the next cycle.
Thus, up to four individual branches can achieve zero-cycle
execution using this mechanism.
IPG

FET

ROT

EXP

REN

WLD

REG

EXE

DET

WRB

Generate PC

Access instruction cache

Insert into instruction queue

Issue to function units

Remap registers

Begin register-file access

Access register file

Execute instructions

Access data cache, ALAT; finish branch

Writeback

Resteer
0–3 cycles

Mispredict
9 cycles

Figure 2. Merced’s 10-stage pipeline features an independent
three-stage front end and a straightforward execution engine.
6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

3 M E R C E D S H O W S I N N O V A T I V E D E S I G N
The second opportunity to redirect, or resteer, the fetch
stream occurs in the FET stage, as Figure 3 shows. Here,
Merced employs three more conventional prediction mecha-
nisms—an 8-entry return stack buffer (RSB) to predict sub-
routine returns, a 512-entry branch history table (BHT), and
a 64-entry branch target address cache (BTAC)—but uses
them in a unique fashion.

Unlike standard RISC and CISC architectures, IA-64
can provide a static-prediction “hint” to indicate that easy-
to-predict branches should not be placed in the BHT. Thus,
although the Merced BHT is much smaller than the ones in
the 21264, AMD’s Athlon (see MPR 8/23/99, p. 1), and other
leading microprocessors, it may achieve similar effectiveness
by focusing only on those branches that require dynamic
prediction.

The four-way set-associative BHT uses a two-level PAs
algorithm (see MPR 3/27/95, p. 17). Each entry, selected
using the branch address, tracks the four most recent occur-
rences of that branch. This 4-bit value then indexes one of
128 pattern tables (one per set). The 16 entries in each pat-
tern table use the standard 2-bit saturating up/down counter
to predict the branch direction. The total storage required
for this BHT is about 20 Kbits.

A second smaller BHT handles multiway branches.
This 64-entry structure uses the same two-level algorithm
but keeps three history registers per bundle entry. It does a
find-first-taken selection to provide the first predicted taken
address or indicate that none is predicted taken.

The compiler can place addresses directly in the BTAC
using BRP instructions. A branch that hits in the BTAC or in
the RSB immediately routes its target address back to the
front of the pipeline, creating a single-cycle bubble in the
fetch stream. As long as the fetch stream is ahead of the exe-
cution engine, this bubble will not stall the processor. If the
BHT predicts the branch to be taken but the smaller BTAC
does not contain the target address, it must be computed
later by one of two branch address calculators (BAC).

A third resteer occurs in two situations. BAC1 can com-
pute the target address of a branch in the third slot of either
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
bundle. Most templates place a branch in the third slot, so
BAC1 will handle most branches. If the branch direction was
not predicted by the BHT, the BAC will use the static predic-
tion encoded in the branch instruction. BAC1 also contains
logic that tracks the loop count (LC) register and overrides
the TAR resteer when LC indicates a loop exit. Either of these
cases causes a two-cycle bubble. Finally, BAC2 can calculate
the target address of a branch in any slot; if this unit is used,
it causes a three-cycle bubble.

In most cases, these bubbles will not stall the execution
pipeline, although the instruction buffer must be nearly full
to cover the rare three-cycle bubble. Other than the effect of
these bubbles, branches will stall the execution pipeline only
if mispredicted; that is, if the final result of all resteers is
found to be incorrect once the branch condition is finally
evaluated in the DET stage.

Simple Instruction Issue
Because it does no reordering, Merced can assign instruc-
tions to function units as soon as they exit the queue, in the
EXP stage. The queue emits two bundles (six instructions) at
once. The template fields in these bundles indicate the type
of each instruction (integer, memory, FP, etc.). A standard
instruction set would require a full crossbar to issue any six
arbitrary instructions to a set of function units, consuming
die area and potentially extending the cycle time. IA-64, in
contrast, allows a limited number of templates (see MPR
5/31/99, p. 1); for example, memory instructions are never in
the third slot, whereas FP instructions are never in the first
slot. As Figure 4 shows, each function unit must choose
among no more than three instructions, simplifying the
muxes and instruction routing.

The templates also indicate the end of each instruction
group, marked by a “stop.” The compiler specifies these
groups such that they contain no data dependencies. If the
template contains a stop, the processor simply holds sub-
Slot 0

Slot 1

Slot 2

Slot 5

Slot 3

Slot 4

Mem 0

Mem 1

Int 0

Int 1

FPU 0

FPU 1

Br 0

Br 1

Br 2

Bundle 1

Bundle 2

Slot 0, 1, 3

Slot 1, 3, 4

Slot 1, 2, 4

Slot 2, 4, 5

Slot 1, 2

Slot 4

Slot 0, 2, 3

Slot 1, 4

Slot 2, 5

Figure 4. Merced dispatches up to six instructions per cycle from
two bundles with three slots each. Because certain instruction types
are required to be in certain slots, the dispatch task is simplified.
4-entry
TAR

I-Cache and
I-TLB

8-bundle
instr queue

IPG FET ROT EXP

BAC1512-entry
BHT

8-entry
RSB

64-entry
BTAC

index

+4

PC to
dispatch

BAC2

3rd instr all instrs

64-entry
MBHT

Figure 3. The front end of the pipeline contains several mecha-
nisms that predict branches and redirect the fetch stream with
minimal delays.
 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

4 M E R C E D S H O W S I N N O V A T I V E D E S I G N

rs
d
e
sequent instructions until the next cycle. Thus, the hardware
does not check for dependencies during the issue process.
Traditional superscalar processors have extensive logic to
check for such dependencies, and this logic grows exponen-
tially worse as the issue width increases.

All instructions from both templates can be issued, as
long as there is no stop (except at the end of the second bun-
dle) and no resource is oversubscribed. The latter occurs if
there are more than two memory instructions, for example.
Any instructions not issued on the first cycle will be issued in
a subsequent cycle; although this situation does not stall the
execution pipeline, it permits the instruction buffer to fill.

After the processor issues instructions, it must fetch
their operands. To support IA-64’s register frames and regis-
ter rotation (see MPR 3/8/99, p. 16), Merced remaps the reg-
ister addresses using small 7-bit adders in the REN stage. In
WLD, the remapped addresses flow to the register file, which
is accessed in REG. Despite the simpler
register-renaming hardware, this process
takes three cycles in Merced but only two
cycles in the 21264 or even Pentium III.
Some of this increase is due to the longer
access time of the large multiported regis-
ter file, but the nearly empty WLD stage
looks suspiciously like a late addition to the
pipeline, needed to meet the clock-speed
target.

Merced includes a register stack en-
gine (RSE) to automatically handle any
spills and fills required when register
frames exceed the size of the physical regis-
ter file. In these situations, the RSE stalls
the machine to issue the necessary save or
restore requests using the two memory
ports. In future IA-64 designs, the RSE
could take advantage of unused memory slots, issuing loads
or stores before the registers are needed, but the Merced team
opted for a simpler design.

Predication and Speculation
All IA-64 instructions are executed conditionally, based on
the contents of one of 64 1-bit predicate registers (see MPR
10/27/97, p. 1). Because of its large supply of function units,
Merced simply executes all instructions through EXE, can-
celing their results in DET if the predicate turns out to be
false. Canceling instructions earlier would eliminate some
resource conflicts but would require an early access to the
predicate registers that could wreak havoc with the pipe-
line. Instead, Merced reads the predicate value along with
the other operands and passes it along to the retirement
logic.

The designers did make an effort to avoid stalling the
pipeline for an instruction that will later be canceled. The
pipeline will normally stall if an instruction requires data
that is not yet available, but if that instruction is predicated

Intel architect Ha
described Merce
architecture at th
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
with a false value, the stall is completely avoided as long as
the predicate is precomputed in the register file. If the predi-
cate must be bypassed from the previous EXE stage, the stall
will be only one cycle, or two cycles if the predicate comes
from a floating-point compare (FCMP).

IA-64 forms conditional branches by predicating the
basic branch instruction. The architecture allows the com-
piler to group a branch with an instruction that generates its
predicate—one of the few data dependencies permitted
within an instruction group. To handle this case, Merced
does not determine the final direction of the branch until the
DET stage, one cycle after the compare instruction executes
in EXE. In the DET stage, the processor analyzes up to three
branch conditions and chooses the correct target address. In
the rare case that this address does not match the address
predicted by the fetch unit, a misprediction occurs.

Speculative loads (LD.S) are easily implemented in
hardware; exceptions set the NaT bit (see
MPR 3/8/99, p. 16) and are propagated
through subsequent calculations. In these
calculations, the processor treats the NaT bit
much like a 65th data bit. The check (CHK.S)
instruction is simply a conditional branch
based on the NaT value.

An advanced load (LD.A) inserts its
address into the ALAT (advanced load ad-
dress table). The DET stage checks sub-
sequent store addresses against the ALAT
and removes the entry if it finds a match. A
later LD.C or CHK.A instruction checks the
ALAT; if the entry is not found, the proces-
sor takes a microtrap and reexecutes the
load, causing a several-cycle delay as the
pipeline is flushed.

But in most cases, the check instruc-
tion will succeed without delay. To avoid overhead, Merced
can execute check instructions in the same cycle as an in-
struction using the data; if the check fails, the “use” instruc-
tion is canceled.

Merced’s ALAT has 32 entries and is indexed by the
7-bit register ID. It stores only a subset of the physical
address tag, which reduces storage requirements but causes
some false matches. The odds of a false match are low, and
the penalty is simply reexecuting the load.

RISC and x86 designs can reorder loads and stores
dynamically and check for conflicts, performing the equiva-
lent of an advanced load. The ALAT provides a simpler hard-
ware mechanism to handle this case. Some PowerPC and
SPARC processors use hardware- or software-controlled
prefetching instead of speculative loads to help cover load
latency. IA-64’s speculative loads have the advantage of
bringing data all the way into the register file, avoiding load-
use interlocks, and should better avoid prefetching of un-
needed data. Merced implements these features with a mini-
mal amount of complexity.

h Sharangpani
’s EPIC micro-
Forum.
 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

5 M E R C E D S H O W S I N N O V A T I V E D E S I G N
Designed for High Reliability
Because Merced is designed for use in highly reliable servers,
it has several features to improve reliability, availability, and
serviceability (RAS). Many processors offer parity protection
for on-chip memory structures, but Merced goes one step
further with full ECC on the on-chip L2 cache data, allowing
the chip to correct single-bit errors and detect multiple-bit
errors. Parity is sufficient for small structures, such as the
TLBs and the instruction cache, that never contain modified
data and can simply be reloaded if necessary.

The external L3 cache is also ECC-protected, including
the tags. To reduce overhead, the state bits are not fully pro-
tected except for the M (modified) state, which ensures mod-
ified data will not be lost. Both the backside L3 bus and the
frontside memory bus are covered by ECC.

Intel designed the frontside ECC algorithm to detect
errors in four consecutive bits, which would be caused if a
single ×4 DRAM chip fails. Instead of taking a fault on a
frontside ECC error, the “poisoned” data is held in the pro-
cessor until it is used. This helps identify the affected process,
and in some cases, the data may never be needed.

Using these mechanisms, a Merced system can tolerate
many hardware errors. Errors corrected by ECC cause only a
few cycles of delay and are transparent to software (although
the processor optionally generates a low-priority interrupt
for logging purposes). In many cases, a parity error can be
corrected by a firmware routine that flushes and reloads the
affected entry. If the failure has caused data loss, the proces-
sor notifies the operating system, which can terminate the
affected process and restart it from a previous checkpoint.
Only if the OS itself is affected will the entire system, or a sin-
gle node in a large system, go offline.

Some Details Not Yet Disclosed
Sharangpani’s presentation shed little new light on Merced’s
IA-32 portion. As disclosed earlier, IA-32 code and data share
the same caches and execute in the same function units.
When in IA-32 mode, the processor fetches x86 instructions
into a separate decoding and scheduling unit that reorders
the instructions and executes them using the native execu-
tion core. We expect the IA-32 decoding and scheduling unit
to be similar to Pentium III’s front end.

Intel has already fabricated Merced in its 0.18-micron
P858 process. Considering the six-wide native CPU core, the
complex IA-32 front end, and the on-chip L2 cache, we
expect the die size to be large, around 300 mm2 or so. Merced
will use a thermally enhanced plastic package similar to Pen-
tium III’s 528-pin LGA. We expect it to require about 700
contacts, allowing for the wider (128-bit) backside cache bus
and extra pins for power and ground to handle the high
power dissipation, which we expect to exceed 60 W, includ-
ing L3 cache. Intel will ship the CPU with up to 4M of L3
cache in a module (see MPR 3/8/99, p. 16).

The company remains mum on any numerical descrip-
tion of Merced’s performance, or even its clock speed.
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
Sources indicate the chip is designed to achieve speeds of
around 800 MHz, impressive by today’s standards but likely
to fall behind the speed of the 0.18-micron 21264 and even
the 0.18-micron Pentium III in 2H00. Thus, to outperform
these and other competing processors, Merced must execute
more instructions per cycle. Its EPIC architecture should
help in this regard, but it may not be enough.

Head to Head With 21264
The 21264 will be Merced’s toughest competition on the per-
formance front. Compaq expects that chip to exceed 1 GHz
by mid-2000, giving it as much as a 25% frequency advan-
tage over Merced. Except for its single branch unit, the Alpha
chip has a comparable set of function units. The 21264 is
limited to four instructions per cycle, but Merced’s two extra
two issue slots will probably provide little advantage on most
applications. It remains to be seen how the 21264’s aggressive
hardware reordering matches up against the compiler-driven
scheduling of Merced. We expect a close race on single-
thread workstation benchmarks such as SPEC95.

Merced could have more of an advantage on large
server applications. On these applications, the 21264 is ham-
pered by its modest 128K of on-chip cache and a maximum
of 4.0 GBytes/s of backside cache bandwidth. Although those
numbers were impressive when the 21264 was announced
three years ago, Merced will have more on-chip cache and as
much as three times the backside-cache bandwidth. The
21264 tries to make up for this with 2.7 GBytes/s of frontside
bandwidth, but Merced should come close to this number as
well. Intel claims a four-processor Merced system will out-
perform a four-way server with 1.1-GHz 21264 processors
on transaction-processing benchmarks.

Other competing processors are likely to fall well be-
hind Merced’s performance. Before Merced ships, Sun
should be shipping UltraSparc-3 systems at 600 MHz or so,
but even that new processor is a simple in-order RISC chip
that won’t match Merced’s workstation benchmarks. Sun
currently holds a system-level performance advantage with
its 64-way SPARC servers, but SGI, IBM, and others expect to
take advantage of Merced’s improved scalability and ship
systems as large or larger.

At clock speeds of 550 MHz or below, HP’s PA-8600,
the MIPS R14000, and IBM’s Power3 are simply too slow to
challenge Merced’s performance on most applications. Both
AMD’s Athlon and Intel’s own Foster may approach
Merced’s scores in small commercial servers, but they lack
P r i c e & Av a i l a b i l i t y

Intel has not disclosed pricing for Merced; the company
expects to begin production shipments in mid-2000. For
more information on Merced and IA-64, access the Web at
http://developer.intel.com/design/ia64/devinfo.htm.
 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

http://developer.intel.com/design/ia64/devinfo.htm

6 M E R C E D S H O W S I N N O V A T I V E D E S I G N
the 64-bit addressing, RAS features, and scalability of the
IA-64 chip.

Merced provides another key advantage over its RISC
competitors: x86 compatibility. Current Xeon users can
gradually move their applications to IA-64 and take advan-
tage of its performance rather than making a hard switch to
a new instruction set. Merced is the first processor to com-
bine leading-edge native performance with hardware x86
compatibility, an impressive engineering achievement that
no company is better suited to deliver than Intel.

Merced Shows EPIC Advantages
These disclosures show for the first time how IA-64 funda-
mentally alters the balance between the processor and the
compiler. Trapped within architectural walls built more than
a decade ago, other vendors must cram more and more com-
plexity into their processors to increase performance. Most
of this complexity is not for calculating results, but rather to
analyze instruction flows and to perform the bookkeeping
required to translate from the original instruction order to a
new order and back again.

As the Merced design shows, IA-64 results in simpler
hardware for issuing instructions and renaming registers,
despite the wide issue width of the machine. But the IA-64
chip also includes dynamic hardware where necessary: for
example, for branch prediction and for avoiding load stalls.

In theory, IA-64 designs should deliver better perfor-
mance with a smaller die size than competing RISC and
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
CISC parts. The inclusion of IA-32 compatibility, however,
may nullify much of the potential die-size advantage, at least
in the first few IA-64 chips. Evaluation of any cost and per-
formance claims awaits more information from Intel, but we
expect the Merced design to provide a per-clock performance
advantage over both Pentium III and the 21264. If Merced
falls short, it is likely to be in the area of clock speed.

Clock speed should not be a problem for McKinley, the
Merced follow-on that Intel says will achieve speeds in excess
of 1 GHz in the same 0.18-micron process as Merced.
McKinley, due in late 2001, is likely to give Intel a sizable per-
formance lead on most CPU benchmarks, while Merced
looks like it will merely match the performance of the indus-
try leaders.

Even matching the leaders, however, will be a big step
forward for Intel in the workstation and server markets. The
combination of strong native performance and full x86 com-
patibility has won the backing of virtually every significant
workstation and server vendor except Sun. We expect these
vendors to roll out a variety of Merced systems, starting in
2H00.

Processor vendors such as Compaq and IBM (see MPR
10/6/99, p. 11) still have a few tricks up their sleeves, and they
aren’t giving up in the performance race. To slow the IA-64
juggernaut, these vendors can’t just be as good as Intel—they
have to be better. That could be tough. Merced looks to be a
solid starting point for IA-64, and Intel will keep raising the
bar from there.—M
 6 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

	Merced Shows Innovative Design
	Six-Issue EPIC Processor
	Figure 1. Merced can fetch and issue up to...
	Ten-Stage In-Order Pipeline
	Figure 2. Merced’s 10-stage pipeline features...
	CPU, Compiler Both Predict Branches
	Figure 3. The front end of the pipeline contains...
	Simple Instruction Issue
	Figure 4. Merced dispatches up to six instructions...
	Predication and Speculation
	Designed for High Reliability
	Some Details Not Yet Disclosed
	Head to Head With 21264
	Merced Shows EPIC Advantages

	Price & Availability

