
GUEST VIEWPOINT:
A CRITICAL LOOK AT IA-64
Massive Resources, Massive ILP, But Can It Deliver?

By Mar t in Hopkins , IBM Research {2/7/00-03}

Intel and HP have now released enough information for a preliminary evaluation of

whether IA-64 is really the fundamental breakthrough in computer architecture that

has been professed. In this author’s opinion, it is not. This critique focuses on integer

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com
performance. Many important issues, such as floating point,
system instructions, multimedia, and x86-compatibility
mode are not covered, nor is this an evaluation of Itanium
(Merced), McKinley, or any particular implementation. The
intent is to look at the concept of EPIC (explicitly parallel
instruction-set computing) as embodied in IA-64 and how
it may work out in practice.

The Superscalar Competition
Out-of-order superscalar instruction issue with register
renaming has become the standard method for implement-
ing both RISC and CISC architectures. Microprocessor
designers have adopted this approach for several reasons:

• Dividing instruction execution into many steps makes it
possible to increase frequency, even though it results in
more pipeline stages.

• Complex instructions can be cracked into simpler ones,
making it less important that the instruction-set archi-
tecture (ISA) matches the internal instructions given to
the function units. This practice simplifies the imple-
mentation of a CISC architecture such as x86, but it also
benefits some RISC-style machines.

• Large reorder buffers make it possible to execute loads
in advance, thus covering memory latency. If branch
© M I C R O D E S I G N R E S O U R C E S F E B R U A R
prediction is wrong, long-latency loads can be canceled
while still in flight.

• Superscalar processors generally confine the execution of
instructions to the predicted path. Thus, relatively few
function units are required in comparison with strategies
that speculatively execute instructions on multiple paths.
Fewer function units simplify bypassing and reduce
power consumption.

• Dynamic adjustment of the instruction schedule based
on the actual execution path and cache misses results in
good instruction-level parallelism (ILP).

Of course, these advantages come at a price. The entire
concept stands on the effectiveness of branch prediction.
Mispredicting a branch requires the pipeline to be drained
and refilled. This penalty is what motivates complex hierar-
chical branch-prediction hardware. But the results have
been surprisingly good: greater than 95%-accurate predic-
tion is common.

In addition to the complexities of branch prediction,
there is considerable complexity in the dependency check-
ing and register renaming that is required to remove false
dependencies from a large instruction reorder buffer. Alias-
detection hardware is also required to permit loads to be
hoisted above stores in the program sequence, which is
Y 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

2

required to reduce pipeline stalls on memory accesses. In
spite of these difficulties, experience has shown that it is
hard to beat the performance of a well-designed superscalar
processor.

Hard Choices in Microprocessor Performance
Computer performance is a function of clock frequency
(megahertz), the number of instructions required to per-
form the given task (also called path length), and the aver-
age number of cycles per instruction (CPI). It is often easy
to improve one of these terms, but it is not so easy to make
a change that produces a net improvement. Let’s look at
how this may work out for IA-64.

One of the surprises about IA-64 is that we hear no
claims of high frequency, despite claims that an EPIC
processor is less complex than a superscalar processor. It’s
hard to know why this is so, but one can speculate that the
overall complexity involved in focusing on CPI, as IA-64
does, makes it hard to get high megahertz. One place where
IA-64 may have sacrificed frequency for CPI is in perform-
ing compares and dependent branches in the same cycle.

Another frequency problem could be predicated exe-
cution. Predication depends on the existence of many func-
tion units, because the results of roughly half the predicated
instructions executed are discarded. But more function
units make for longer wires and additional complexity that
can hurt frequency. Furthermore, power consumption
places a serious limit on frequency. The massive resources
used by IA-64 processors will consume more power, making
it even more difficult to operate at high frequency.

The dynamic path length on IA-64 processors will
tend to be longer than that of other architectures. Several
factors contribute to this longer path length:

• Speculation results in the execution of instructions that
were not needed. Also, at the point where a speculative
computation is consumed, there must often be an explicit
“check operation.”

• The results of roughly half of the predicated instructions
are discarded.

• Unlike the loads and stores in most architectures, IA-64’s
have only a base register, with no displacement field.
Therefore, in most cases, the effective address must be
explicitly computed in advance. Although IA-64 has a
post-execution-update form that permits some subse-
quent loads to use the same base and thereby avoid an
explicit address computation, the high frequency of loads
and stores with nonzero displacements guarantees a sig-
nificantly longer path length.

• IA-64 has no sign-extended loads. On a 64-bit machine
executing C code—where an integer is 32 bits—this will
noticeably increase path length.

• IA-64 has no integer multiply or divide in the general reg-
isters. Instructions must explicitly copy data to and from
the floating-point registers to perform these operations.

Guest Viewpoint: A Critical Look at IA-
© M I C R O D E S I G N R E S O U R C E S F E B R U A R
IA-64 has some instructions that will reduce path
length, such as a shift-and-add instruction that will be useful
in subscript computations, where compiler optimizations
such as strength reduction aren’t applicable. In addition,
predication reduces the number of branch instructions.
Nevertheless, the path length on IA-64 will usually be con-
siderably longer than on conventional RISCs or CISCs.

CPI is a more complex factor. For this we must exam-
ine instruction-cache and data-cache effects as well as infi-
nite-cache CPI. IA-64’s instruction bundles of 128 bits each
contain three instructions. In the same number of bits, a
typical RISC machine would encode four instructions and
an x86 processor might have six or eight. Moreover, IA-64
imposes restrictions on which instructions can occupy a
particular position in a bundle. And, finally, all branches
must target the beginning of a bundle. The net result is a
much larger code footprint and, in most cases, more cycles
required to execute it.

Recovery code, which is required to undo the effects of
speculative operations that cause an exception, adds to the
overall code space. If this recovery code is nearby, it results
in more instruction-cache pollution. If it is far away, an
exception may trigger a second exception to a page-fault
handler to bring in the recovery code from disk. In either
case, the larger code size will result in a higher CPI.

All in all, it is possible that IA-64 code could be four
times larger than that of the x86 to perform the same work,
which would put a great deal of pressure on the instruction
cache. In addition, speculative execution of loads whose
results are never used will pollute the data cache and use
valuable bandwidth.

There are also situations where IA-64’s in-order execu-
tion will result in a pipeline stall, whereas an out-of-order
superscalar will not stall. Consider two loads executed in
parallel:

load ra = // Both ops are executed
load rb = ;; // in parallel (;; marks end of bundle)

If in a later bundle ra and rb are used:

add rx = ra // Both ops are executed
load ry = [rb] ;; // in parallel

If the load of ra causes a cache miss, an event that cannot
generally be predicted ahead of time, a superscalar proces-
sor will modify its schedule to execute the load of ry—and
instructions that depend on it—in parallel with the cache
miss. The add will be executed when the operand becomes
available. IA-64 may be able to launch the load of ry, but it
will have to stall before proceeding any further.

The massive resources and large number of useless
instructions that are executed almost guarantee that IA-64
will do well on infinite-cache CPI, where pipeline stalls due
to cache effects are not a factor. But on real-cache CPI,
which is what really matters, superscalar processors are
likely to do much better than IA-64.

64
Y 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

IA-64 architects have made a series of choices to
improve performance. At this time it is not at all clear that
the choices they have made will produce an overall improve-
ment on megahertz, path length, or CPI. It is also necessary
to factor in time to market. Complex designs take longer to
implement and so, in effect, are slower than simple designs.

The Complexity Trap
Everyone is in favor of simple designs. The difficulty is
achieving low cost, short schedule, and high performance
while maintaining overall simplicity. Let’s look at a hypo-
thetical line of reasoning that may have led to some of the
complex features in IA-64. Speculation is the central idea of
IA-64, so we can start there.

If the reorder buffer and register renaming facility of a
superscalar processor are replaced with explicit hardware,
then there must be some means of deferring exceptions. The
essential mechanism for deferring exceptions in IA-64 is the
NaT (Not a Thing) bit associated with each general register.

Speculative loads that cause an exception set the NaT
bit of the destination register, which is then propagated to
the results of all instructions that use that register until it is
overwritten or a check instruction is encountered. If the
check instruction finds the NaT bit set, a deferred exception
is taken. The check instruction transfers control to recovery
code that reexecutes the dependent ops.

This check feature permits loads and other instruc-
tions that depend on them to be moved over branches (con-
trol speculation). NaT bits, however, represent machine
state that must be saved and restored. To accomplish this
task, there are two application registers to collect NaT bits,
as well as instructions to modify, test, and retrieve NaT val-
ues.

Moving loads ahead of stores (data speculation)
requires a memory-alias-detection table—in IA-64 this
hardware table is called the advanced-load-address table, or
ALAT. Special loads place entries in the ALAT, and stores
whose addresses match an ALAT entry will remove that
entry. For data speculation, check instructions access the
ALAT to detect stores to a memory location that has been
fetched by a load that was moved ahead of the store. (Data
speculation can use a check load that does the recovery in
some simple cases.) The recovery code requires that the
operands for the original instructions must still be available,
so they can be reexecuted. This increases the register require-
ments and must have been one of the factors that led to the
large register files (128 general, 128 floating-point registers).

Unfortunately, more registers imply more state, which
must be saved and restored across procedure calls and
returns. To reduce the cost of saving and restoring registers,
IA-64 defines a register-stacking process, reminiscent of reg-
ister windows in Sun’s SPARC architecture. A current frame
marker (CFM) register with six fields controls stacking.

To make register stacking work, the processor leaves
register names 0–31 unaltered but dynamically remaps reg-

Gue
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
3

isters 32–127 by adding the stack-frame base from the CFM.
(It’s actually more complicated than this because of the
rotating-register feature that treats rotating-register reloca-
tion in a different manner.) This register-stacking facility
requires administrative special-purpose registers to control
the storing of registers in memory on a stack overflow.
Because stack-frame overflow might occur at a frequent call
point, a register stack engine (RSE) asynchronously saves
and restores registers in the background. This RSE mecha-
nism must take page faults, etc., and it requires yet more
special registers and instructions. Whether or not all this
mechanism was entirely motivated by speculation, it is hard
to view IA-64 processors as simple machines. In fact, the
Alpha 21264, which does out-of-order execution and regis-
ter renaming, and operates at a very high frequency, has two
fewer stages in its pipe than Merced, which has 10 stages.

Dynamic Information Helps
A superscalar machine makes extensive use of information
that it dynamically gathers from the executing program. In
contrast, IA-64 machines rely almost entirely on decisions
made statically at compile time. This will sometimes result
in poor performance for IA-64 processors. Here is an exam-
ple of a source program that hasn’t been optimized:

cmp p1, p2 = …
(p1) br.cond low probability path ;;

l ra = [rb] ;;
add rc = ra,rd ;;
use of (rc)

If the IA-64 compiler assumes that taking the branch
has a low probability, it might transform the code to do con-
trol speculation in the following manner (other intervening
ops have been left out):

l.s ra = [rb] ;; // speculative load
add rc = ra,rd // and dependent add
cmp p1, p2 = …

(p1) br.cond low probability path ;;
check.s rc,recovery code
use of (rc)

Now suppose that the values in rb are random when the
low-probability path is taken. In that case, a cache miss will
cause the processor to stall on encountering the add instruc-
tion. It must then wait for the load (l.s) into ra to complete,
which could require hundreds of cycles if the data must come
all the way from main memory. Even if the low-probability
case occurs only 10% of the time, performance could be seri-
ously degraded. If the compiler gets the probabilities wrong,
the results will be terrible. (Note that the add cannot be pred-
icated unless it follows the compare. Predication introduces
new dependencies that inhibit scheduling, which do not exist
in a superscalar processor.) A superscalar processor, on the
other hand, just executes the first program, starting the load
as early as possible, canceling it if the low-probability path is

st Viewpoint: A Critical Look at IA-64
 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

4 Guest Viewpoint: A Critical Look at IA-64
taken. The superscalar processor’s advantage is that it can
change its assumptions on the basis of dynamic program
behavior, whereas IA-64 must live with the code as compiled.

There are other similar situations where frequency and
detailed cache- and TLB-miss information is useful to a
processor. Some of this information is complex, involving
© M I C R O D E S I G N R E S O U R C E S F E B R U A R
multiple interacting performance phenomena. This has led
IA-64 to a heavy reliance on super-smart compilers. But the
types of optimizations required are rather different from
those used by today’s RISC and CISC compilers.

Compiler technology has traditionally relied on trans-
formations that have a high probability of improving the
The following is a rough estimate of the code bloat
likely to be seen on IA-64 processors compared with x86
processors. It is based on my experience in dealing with an
IBM research processor having characteristics similar to
those of IA-64. I have also incorporated some rumors of
what IA-64 code is actually like.
• The code bloat for RISC-style architectures over x86

architectures is usually larger than that cited by RISC
advocates. We frequently see a 2:1 blowup. Let’s
assume it’s only 1.5:1.

• IA-64 contains three instructions within the same num-
ber of instruction bits that a RISC computer uses to con-
tain four. That’s a 1.33:1 increase over RISC.

• Because of restrictions on the types of instructions that
can be placed in each slot of an IA-64 bundle, IA-64
requires NOPs in unfillable slots. The average number of
useful instructions per bundle will be about two. That’s
another 1.33:1 penalty.

• Branches must target the beginning of a bundle. This
requirement means that code must be duplicated at the
branch point whenever the target is in the middle of the
bundle. Branches normally constitute 20% of all code. I
estimate that half of the time extra instructions will be
required. That’s a 10%, or 1.1:1, expansion.

• Check ops are required for control and data speculation.
Without considerable use of speculative execution of
loads, it is hard to see how IA-64 can compete with
superscalar performance. Let’s assume that 25% of all
instructions are loads, and half are speculated. Even with
some dual use of check ops, this is probably a 1.1:1
penalty.

• There are no base + displacement loads on IA-64 as there
are on RISCs. Also, unlike the x86, there are no base +
index + displacement loads. Thus, many IA-64 loads and
stores must perform these address computations with
explicit instructions. IA-64 has a post-increment form of
memory instructions that can eliminate some of these,
but, given that memory instructions constitute 35% of all
instructions, it’s hard to see how the code expansion can
be much less than 15%—and that may be low. That’s a
1.15:1 contribution to code bloat.

• Recovery code is required for many check ops. However,
it can be out of line, so we’ll note its existence but not
factor it in. (With half the check ops requiring recovery

I A - 6 4 C o
code, recovery blocks averaging two instructions to be
replayed, and one a branch required because the return
address is not a bundle boundary, this would be a factor
of 1.2:1, if it were counted.)

• There are no sign-extended loads. We note this fact but
will not include it in the final count.

• Predication is a two-edged sword. Sometimes it saves
code space by eliminating branches, but some tech-
niques that use predication will result in duplication of
instructions. Again, we note its presence but will not
include it.

• There is a class of optimizations that can be performed
for all machines but aren’t used much on RISC and CISC
machines because they do not result in significant
speedup. These optimizations are crucial to IA-64 per-
formance. They include procedure in-lining, which is
required by IA-64 to get wide enough windows for
compile-time optimization; various VLIW scheduling
techniques, such as trace scheduling; global scheduling;
and tail duplication. It’s hard to know exactly what the
cost of these optimizations will be, but they are suffi-
ciently expensive that other processors make only the
most judicious use of them; x86 machines make even
less use than RISCs because of the lack of registers. A
code blowup of 1.3:1 on IA-64 over x86 probably
underestimates the cost for these optimizations.

Taken together, these factors predict that IA-64 code
will be 4.8 times larger than x86 code to perform the same
task. Ignoring the 30% overhead for optimization, the
blowup would be only 3.7 times. To be fair, we should also
list some things that may reduce IA-64 code size:
• Post-increment updates on load base-address registers

can sometimes eliminate an add instruction in a loop.
• The ability to combine a compare and a logical operation

can save an occasional instruction.
• IA-64 includes an add that computes r1 + r2 + 1.
• Rotating register files can save instructions in some

loops.

These are interesting, but all four combined probably
don’t amount to a 5% difference. I conclude that a factor
of four for IA-64 code bloat over x86, excluding recovery
code, is a reasonable estimate for optimized code.

d e B l o a t
Y 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

5Guest Viewpoint: A Critical Look at IA-64
program. Examples include code motion out of loops, elim-
ination of redundant computations, constant propagation,
and register allocation. IA-64 compilers will require these
transformations, plus a whole new set for predication and
speculation. IA-64 compilers will also depend heavily on
code profiling to optimize transformations.

While code profiling has been somewhat useful in
making transformations in RISC and CISC compilers, the
benefits have not been so great as to make it essential. This is
a good thing. It is extremely difficult to get programmers to
simply turn on the compiler option for optimization, much
less convince them to profile their code. Furthermore, cre-
ating a test suite for profiling that is truly representative of all
the environments in which the code will be run over many
years is nearly impossible, and the logistics of profiling pro-
grams having a million lines of code or more are formidable.

Programming is the single biggest problem in com-
puting today, and increasing its difficulty is not what com-
panies need when they are trying to ship a product. In fact,
I highly recommend that the SPEC consortium change its
rules to forbid profile-directed feedback on baseline SPEC
benchmarks. (Of course, profiling should still be allowed for
the peak performance measurements.) To the extent that we
make performance comparisons based on programs com-
piled using profile-directed feedback, we ignore the realities
of program development. It is simply not wise to encourage
the design of machines that do well on benchmarks but are
mediocre when used in demanding, diverse development
environments. It is highly likely that IA-64 processors will
fall into this category.

There is one final concern: a serious question about
the reliability of exception-recovery code produced by a
© M I C R O D E S I G N R E S O U R C E S F E B R U A R

To subscribe to Microprocessor Report, phone
compiler. This code can be extraordinarily complex, but it is
difficult to test because it is invoked only infrequently and is
generally not repeatable. If programmers begin to see mys-
terious errors, their first reaction will be to blame the recov-
ery code and immediately turn off optimizations as a pre-
cautionary measure. This practice is likely to extend even to
programs without problems.

Conclusion
The EPIC approach is based on the application of massive
resources. These resources include more load-store, compu-
tational, and branch units, as well as larger, lower-latency
caches than would be required for a superscalar processor.
Thus, IA-64 gambles that, in the future, power will not be
the critical limitation, and that massive resources, along
with the machinery to exploit them, will not penalize per-
formance with their adverse effect on clock speed, path
length, or CPI factors. My view is clearly skeptical, and my
experience is that, in computer architecture, no clever idea
goes unpunished. But these are complex issues, and only
time will tell if IA-64 machines will outperform x86 CISC or
RISC implementations.

Marty Hopkins is an IBM Fellow who has worked for
IBM for 30 years in the areas of compilers, programming lan-
guages, and CPU architecture. He was one of the original
architects of the IBM 801—the first RISC—and he managed
the pl.8 compiler project that pioneered global optimization
and register allocation using register coloring. He has con-
tributed to compilers and architectures for IBM 390, POWER,
PowerPC, and AS/400 processors. Marty can be reached for
comment at meh@us.ibm.com.
Y 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

 408.328.3900 or visit www.MDRonline.com

