
REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com
HP, INTEL COMPLETE IA-64 ROLLOUT
Virtual Memory, Interrupts More Conventional Than ISA

By Ke ith D ie fendor ff {4/10/00-01}

HP and Intel have finally finished the long-drawn-out task of revealing the IA-64 architecture,

a process that began more than two years ago at the 1997 Microprocessor Forum. Speaking at

Intel’s spring developer forum (IDF), IA-64-architects Jerry Huck and Rumi Zahir laid out
the details of the IA-64 system architecture, including descrip-
tions of its virtual-memory mechanisms, memory protection,
multiprocessor coherence, and interrupt structure.

Unlike the unconventional approach HP and Intel took
with IA-64’s VLIW instruction-set architecture (ISA) (see
MPR 5/31/99-01, “IA-64: A Parallel Instruction Set”), the
companies took a far less radical tack on system architecture.
Borrowing liberally from existing RISC processors, especially
from PA-RISC and PowerPC, IA-64 processors will require
little redesign of operating-system internals.

Although the vendors released system-architecture
details to selected IA-64 software developers under nondis-
closure agreements some time ago, the recent IDF disclosure
allows any company to create any level of software, right
down to and including operating-system kernels and plat-
form BIOSs. With this step, HP and Intel have now com-
pleted paving the way for the first Itanium processors to enter
the market, an event we expect to occur during the second
half of this year. Itanium (née Merced) silicon has been in the
hands of anointed software developers since late last year, and
at the International Solid-State Circuits Conference (ISSCC)
Intel revealed that the silicon will be introduced at a speed of
800MHz (see MPR 2/28/00-msb, “Itanium Meets 800MHz
Goal”), as we had previously anticipated.

VM Supports MAS and SAS
Operating systems are generally built on one of two virtual-
memory models: the multiple-address space (MAS) model—
© M I C R O D E S I G N R E S O U R C E S A P R I L 1 0
implemented by Windows NT, Linux, BSD, VMS, and Mach-
based versions of Unix—or the single-address-space (SAS)
model used in proprietary versions of Unix, such as HP-UX
and IBM’s AIX. (The SAS model is also referred to as the
global-address-space model.) Historically, processors have
supported one model or the other, making them more or less
adaptable to a given OS.

MAS operating systems typically use unique process
identifiers (PIDs) and simple multilevel-indexed page-table
Figure 1. An IA-64 process is mapped onto a 285-byte virtual address
space through eight region registers. This mapping supports either single-
address-space or multiple-address-space views of virtual memory.

64-bit Logical Address

RID0

RID1

RID2

RID3

RID4

RID5

RID6

RID7

8 Region Registers

18–24 Bits ••• •
•

•

2 18–2 24

Virtual Regions

261-Byte
Virtual
Region

Page Offset
(12–28 bits)

Virtual
Page
Number
(49–33 bits)

6163

Pages
(4K–256M)

Virtual
Region
Number
(3 bits)
, 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

2 HP, Intel Complete IA-64 Rollout
structures that isolate processes into separate address spaces.
SAS-based OSs, in contrast, allocate all tasks into a single,
very large virtual-address space, typically mapped by an
inverted or hashed page table. The choice of model is largely
one of OS-designer preference and of the target market for
the OS. The MAS model tends to be simpler and somewhat
more efficient for small systems, while the SAS model tends
to be favored for large multiprocessor systems, because it
makes sharing data among tasks more straightforward.

Because the processor hardware that is required to
support each model is somewhat different, porting a MAS-
based OS to a SAS-flavored processor, or vice versa, requires
the OS to go through a number of contortions to force-fit
its natural data structures to the dissimilar hardware.
Reworking the OS to conform to the opposite flavor of
processor is generally impractical, and the contortions can
introduce a significant performance burden.

With Microsoft (and Windows NT) on one side and its
partner HP (and HP-UX) on the other, Intel—in its inim-
itable fashion—took the obvious way out: it implemented
both models. This schizophrenic approach, however, is
probably justified in this case. Taking this approach makes
IA-64 processors OS agnostic—which fits nicely into Intel’s
plan of conquering the entire world with IA-64. And the
hardware cost for supporting both address-space models is
not large; while the MAS and SAS models are different in
critical respects, the actual hardware difference is small. As a
result, support for both models is unlikely to have any sub-
stantive adverse effects on cycle time or die area. Besides, the
burden IA-64 bears of supporting the IA-32 (x86) memory-
mapping model probably swamps the incremental cost
associated with dual MAS/SAS hardware.

Processes See Flat 264-Byte Space
As on other 64-bit RISC systems, processes that run on
IA-64 systems see a simple, flat 264-byte (≈2 x 1019-byte)
© M I C R O D E S I G N R E S O U R C E S A P R I L 1 0
logical-address space. Thus, IA-64 processes perform arith-
metic on full 64-bit pointers and can reach any addresses
within the enormous 264-byte space with a single load or
store—without the overhead of manipulating segment reg-
isters. This logical-address space is over 4 billion times as
large as that accessible by today’s IA-32-based (x86)
processes.

Although such an enormous address space is massive
overkill for today’s PC applications, addressability beyond
the 232-byte (≈4 x 109-byte) limit of x86 processors is al-
ready important for large database applications. In fact, 64-
bit addressing may soon become the ante to play in the
large-server market that HP and Intel covet for initial IA-64
processors. It may eventually become important in other
application areas as well; it does enable certain classes of al-
gorithms that require a large address space but populate it
only sparsely with data.

To support both the SAS and MAS models, the IA-64
system architecture defines virtual regions. Each processor
implements a minimum of 218 virtual regions and a maxi-
mum of 224, each 261 bytes in size. Each process can have up
to eight regions, which, as Figure 1 shows, are selected by the
three most-significant bits (called the virtual-region num-
ber, or VRN) of a logical address.

The OS maps a process’s eight regions onto the sys-
tem’s 218 (or 224) possible regions through region identifiers
(RIDs), which are loaded into eight hardware region regis-
ters (RRs) before the process executes. These registers are
part of the process context and are saved and restored across
process (context) switches. For SAS systems, RIDs can be
interpreted as the most-significant address bits of a 279-
(minimum) or 285- (maximum) byte global-virtual-address
space. For MAS systems, RIDs are treated as address-space
identifiers. Sharing between processes is facilitated by map-
ping shared regions into the RRs of multiple processes, as
Figure 2 shows.

IA-64 supports 32-bit virtual addressing by three
means: zero extension to 64 bits (used for all IA-32 accesses),
sign extension to 64 bits (which requires software to ensure
that the upper 32 bits of an address are always the same as bit
31), and pointer swizzling.

In the pointer-swizzling approach, the upper 2 bits of
a 32-bit address select one of four virtual regions, and the
entire 32-bit address (zero extended to 61 bits) is used as an
offset into each of the four accessible regions. Swizzling the
address bits in this manner supports either a flat 232-byte
space (with a single RID) or a multiregion space.

The multiregion capability is important to ease the
porting of old 32-bit programs onto new 64-bit IA-64 plat-
forms. Using pointer swizzling, the compiler and OS can
provide sharing and protection without requiring major
surgery on the 32-bit source code to make it 64-bit safe.
Sharing such things as dynamically linked libraries (DLLs)
is a useful method of conserving precious resources, such
as TLB entries.
Figure 2. Two IA-64 processes can share data or instructions by having
the OS allocate a common region (purple) to both processes.

Virtual Regions

Process A

Process B

•
•
•
•
•

•
•
•
•
•

, 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

3HP, Intel Complete IA-64 Rollout
Mapping to Physical Memory
At any point in time, a system can have many processes
ready to run (with virtual memory allocated), although
only a few are likely to be active (vying for CPU time), and
only one can actually be running (occupying the CPU). To
avoid having expensive physical memory (DRAMs) behind
every byte of allocated virtual memory, IA-64 systems
exploit temporal locality with demand paging, as do most
modern systems. IA-64 pages are variable in size from 4K to
256M in 10 power-of-two increments (4K, 8K, 16K, 64K,
256K, 1M, 4M, 16M, 64M, and 256M). The architecture
supports up to a 263-byte physical-address space, but cur-
rent page-table definitions limit this space to 250 bytes.
(The 64th physical address bit is usurped as a cachable/
uncachable memory attribute [described later] when vir-
tual addressing is disabled.)

For mapping virtual pages onto physical pages, the
IA-64 architecture defines a memory-based data structure
called the virtual hashed page table, or VHPT. The VHPT
has two possible organizations. The first, a simple per-
region linear page table, is directly indexed by the virtual-
page number (VPN); it uses a short-form (8-byte) entry. In
this format, the per-region page table is part of the same
region as the virtual address being translated. This organi-
zation will commonly be used by MAS systems. In MAS
systems using the short format, the VHPT typically doubles
as the OS page-table structure.

For SAS systems, IA-64 offers an alternative page-table
organization. This scheme, which is similar to that used by PA-
RISC and PowerPC, uses a hash function to index the VHPT
(hence the name, virtual hashed page table). Conventional
indexed page tables aren’t suitable for the SAS model, because
their size would be proportional to the size of virtual memory,
which is enormous. Hashing, however, compacts the page
table by taking advantage of the fact that the virtual-address
space is sparsely occupied. This trick makes the page-table size
proportional to the amount of implemented physical memory
rather than to the much larger virtual-address space. In this
form, IA-64 VHPT entries are 32 bytes in size.

VHPT entries are set up and maintained entirely by
software. Although the VHPT could be searched by software
for each translation, most IA-64 processors (including Ita-
nium) will implement a hardware tablewalker to increase
the search speed. This feature avoids draining the pipeline to
run an out-of-line software tablewalk routine, and it allows
asynchronous concurrent speculative translations.

While hardware tablewalkers are generally faster than
software for servicing individual TLB misses, the IA-64
hardware tablewalker is limited to one of the two predefined
page-table formats (per-region indexed or hashed). For
some operating systems, however, neither of these organiza-
tions is optimal, and better overall performance can some-
times be obtained with a different structure, despite the lack
of hardware tablewalk support. Therefore, motivated by a
strong desire to achieve ubiquity with IA-64, HP and Intel
© M I C R O D E S I G N R E S O U R C E S A P R I L 1
also provided mechanisms to support software tablewalk-
ing, allowing IA-64 to use any page-table format. To facili-
tate software tablewalking, the IA-64 architecture defines
fast, vectored TLB-miss interruptions, as well as special
instructions for manually loading and purging the TLBs.

TLB Includes Block-Address Translation
Even with a hardware tablewalker, however, performance
would be unacceptable if every address translation required a
search through a memory-based page table. So, like most
modern processors, IA-64 processors implement translation-
lookaside buffers to cache recent page translations on chip.
The IA-64 architecture provides for separate instruction and
data TLBs. Each TLB comprises two translation mechanisms:
translation registers (TRs) and a translation cache (TC).

TC entries are similar to the traditional TLB entries
found in most microprocessors; TRs are analogous to the
block-address translation registers (BATs) of PowerPC. They
are designed to efficiently map large, relatively static, areas of
memory, thereby improving the utilization of precious TC
entries, which usually map smaller, more-dynamic areas of
memory. TRs, while they have the same format as TC entries,
are managed strictly by software; that is, they are not auto-
matically replaced and filled by the hardware tablewalker. TRs
are filled by register number, using the insert-translation-
register (itr) instruction, and they are purged according to
virtual-address match using the purge-translation-register
(ptr) instruction. Similar instructions (itc and ptc) are pro-
vided for software managing the TC.

Each IA-64 implementation is expected to have a min-
imum of eight instruction TRs and eight data TRs that are
fully associative. The size and organization of the TCs are left
to the discretion of the implementation, but every processor
must have at least one data-TC entry and one instruction-
TC entry. The architecture supports multilevel TCs, but only
the first level is required to support all page sizes.

As Figure 3 indicates, memory accesses initiate an as-
sociative search for a matching virtual address across all
TLB entries. The search attempts to locate an entry that
matches both the virtual-page number (VPN) and the RID;
including the region identifier eliminates the need to flush
the TLB on a process switch.

On a TLB miss, the hardware tablewalker—if enabled—
searches the memory-based VHPT and attempts to load an
entry into the TC. In the event the tablewalker finds an empty
VHPT entry (a miss) or detects a hash collision (VPN and
RID do not match), it defers to software for a more exhaus-
tive search of the operating system’s primary page tables or of
alternate VHPT collision chains (associativities). Also, if the
tablewalker itself misses the TLB it will defer to the software
VHPT-miss handler.

Address translations stall the pipeline for as long as it
takes to resolve the physical address. In the case of a TLB
hit, no stall is introduced; a TLB miss adds tens to hundreds
of stall cycles, depending on which level of the memory
0 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

4 HP, Intel Complete IA-64 Rollout
hierarchy contains the desired VHPT entry and whether a
hardware or software tablewalk is performing the search.
Software tablewalk, which is invoked by a TLB miss inter-
ruption, takes more cycles, because the instruction pipeline
must be flushed, a software routing executed, and the pipe-
line restarted. On VHPT misses, which are always handled
by software, many thousands of additional stall cycles can
be added, depending on what action must be taken by the
OS. In the worst case of a page fault, which can occur in any
demand-paged virtual-memory system, many milliseconds
can be required to bring a page into memory from the
backing store on disk.

A Well-Protected System
The IA-64 system architecture defines elaborate facilities for
protecting processes from inadvertent (or intentional) dam-
age and for enforcing security policies among processes. Four
protection mechanisms are provided: addressability, access
rights, privilege level, and protection domains. Addressibility
is defined on a region basis, as previously described, and is
enforced by manipulation of RIDs by trusted software (the
OS). Appropriately configured, processes have no way to gen-
erate memory addresses that reference regions owned by
other processes unless, of course, the OS intentionally grants
shared access to a particular region.
© M I C R O D E S I G N R E S O U R C E S A P R I L 1 0
Beyond addressibility restrictions, each memory ac-
cess is required to run a gamut of protection tests before it
is permitted. The process must have an adequate privilege
level, it must be attempting an allowed type of access (read,
write, or execute), and the page being accessed must have a
key that is capable of unlocking the corresponding protec-
tion domain. If any one of these protection mechanisms
denies the access, a protection-violation fault is signaled to
the operating system. All protection mechanisms are imple-
mented with page granularity.

Four privilege levels are defined: 0, 1, 2, and 3. Level 0,
generally reserved for use by the OS, is the most privileged,
and it is the only level from which privileged instructions
can be executed. A field in the processor status register
(PSR.cpl) establishes the current privilege level. On each
memory access, PSR.cpl is compared with the privilege level
required by the page’s TLB entry (TLB.pl). If PSR.cpl is less
than or equal to TLB.pl, the access is permitted, as long as it
is of a type (read, write, or execute) that is allowed by the
access-rights field of the TLB.ar field in the TLB entry.
Table 1 shows the allowed-access combinations as deter-
mined by the PSR.cpl, TLB.pl, and TLB.ar fields.

In addition to the access-rights and privilege-level pro-
tection, pages can also be tagged as belonging to different
protection domains. Protection domains offer an efficient

method for the OS to control access
rights to groups of pages and, thereby,
to improve the utilization of TLB
entries. This feature is useful, for exam-
ple, when implementing large object
databases.

Domains are defined by protec-
tion-key registers (PKRs), of which
there are at least 16 in every IA-64
processor. On each memory access, a
key in the TLB entry associated with the
referenced page is compared against all
keys in the PKRs. The key size is imple-
mentation dependent, but it must be at
least as large as the RID (18–24 bits).
The matching entry, if one is found and
marked valid, specifies the combination
of access types (read, write, or execute)
that is allowed to the domain. Since the
OS controls the contents of the PKRs, it
can quickly alter the access privileges of
all the pages in a domain by changing
the content of one protection-key regis-
ter. Moreover, it can make this change
without purging TLB entries (thereby
increasing TLB utilization) and without
having to modify the memory-based
page-table entries of every affected page.

Protection domains are impor-
tant features to SAS systems, due to the

addresses to physical
 TLBs and data TLBs

mentation-dependent
rched by virtual-page
into the TLB from the
sis of privilege level,

ogical Address
Offsete Number

Offsete Number

e Number

12–28

0

 Physical Address

dress
Figure 3. Like most modern processors, IA-64 processors translate virtual
address though a page-based translation-lookaside buffer (TLB). Instruction
both consist of at least eight block-address translation registers and an imple
number of translation-cache entries. The TRs and TC are associatively sea
number and region ID. A TLB miss (dotted) causes an entry to be brought
memory-based VHPT. The TLB implements memory protection on the ba
access rights, and protection domains (keys).

64-bit LRegion Registers

6163Virtual Region Number

VHPT
in

Memory

Virtual Pag

Physical Pag

Virtual Page Number Physical PagKey Rights

Hash

Region ID
Search Search

TLB

Key Rights

Allow?Privilege Level and
Access Type

Search

62

Yes or Fault 63-bit

49–33

3

18–24 85-bit Virtual Ad
, 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

5HP, Intel Complete IA-64 Rollout
nature of the single global address space. MAS systems, how-
ever, rarely use protection domains and can disable protec-
tion-key checks using the PSR.pk bit in the processor-status
register. This capability is in keeping with one of the design
objectives set forth by IA-64 architects: to enable OS vendors
to quickly port simple MAS systems to IA-64 processors and
then gradually enable some of the more advanced SAS fea-
tures, such as protection domains.

Attributes Restrict Flexibility When Necessary
The IA-64 architecture grants implementations a great deal
of flexibility to cache, gather, reorder, or prefetch, as methods
of optimizing memory performance. Sometimes, however,
such activities create headaches for software, especially for
OS software that is trying to achieve some particular objec-
tive. Therefore, the architecture provides a mechanism that
software can use to restrict hardware’s aggressive memory
optimization activities.

To each virtual page, OS software can attach memory
attributes that hardware will honor for all memory accesses
© M I C R O D E S I G N R E S O U R C E S A P R I L 1 0
to that page. The attributes are set as a 3-bit field (TLB.ma)
in the TLB entry for the page, and they control its cach-
ability, write policy, sequentiality, speculation, and multi-
processor coherency. Five different combinations of attrib-
utes are supported, as Table 2 shows.

Data and instructions in a page marked “cachable” can
be freely copied into any level of the memory hierarchy. All
cachable pages are coherent, meaning that the processor/
memory system is responsible for ensuring that all processors
within the coherence domain (tightly coupled multiproces-
sors) have a consistent view of memory. Coherence is en-
forced on the basis of physical addresses; virtual aliases (mul-
tiple virtual addresses targeting the same physical address)
are supported, but performance can be degraded if aliased
addresses are not at least 1M apart. Coherence between in-
struction and data caches is not required for IA-64 memory
accesses, but it is required for IA-32 accesses. All cachable
pages are free to use a writeback (copyback) write policy and
to make speculative and out-of-order accesses.

Uncachable pages can be of two types: coalescing and
noncoalescing. Coalescing pages support multiple stores to
coalescing write buffers, which collect and merge store data
so it can be written to memory in larger, more-bandwidth-
efficient transactions. Similarly, loads may be merged to-
gether into larger read transactions. Coalescing pages are free
to run loads and stores out of order; by definition, stores to
coalescing buffers are performed out of order. Coalescing
buffers are not required to be coherent, but a load to a coa-
lesced page must see all prior stores from the same processor
to the same page. The content of coalescing write buffers can
be forced to memory with a flush-cache instruction (fc) that
targets an address within 32 bytes of the data in the write
buffer. Also, release operations (described later) have the side
effect of forcing the contents of write buffers to memory.
The architecture, however, provides no guarantee of when
the writes must complete.

Uncachable noncoalescing pages are sequential and
nonspeculative. Nonspeculative pages do not support spec-
ulative memory accesses, such as prefetches, advanced loads
(ld.a), speculative loads (ld.s), or eager register-stack engine
(RSE) spills and fills. However, to enable aggressive specula-
tion, speculative loads to nonspeculative pages defer fault
handling by suppressing the memory access and returning a
deferred-exception indicator (NaT or NatVal) to the desti-
nation register. These indicators are simply propagated
through subsequent operations, thereby deferring the actual
interruption until the speculation is checked by a nonspec-
ulative use or by a chk.s or a chk.a instruction.

The uncachable-exported attribute is similar to the un-
cachable attribute, but in some systems it provides an un-
cachable semaphore capability using the fetchadd instruction
(described later). But this feature is optional, and Itanium
processors do not support it.

Nonsequential pages allow load and store operations to
be performed out of order, subject only to the architectural
TLB.ar TLB.pl 3 2 1 0 Description
3 R R R R
2 R R R
1 R R
0 R
3 RX RX RX RX
2 RX RX RX
1 RX RX
0 RX
3 RW RW RW RW
2 RW RW RW
1 RW RW
0 RW
3 RWX RWX RWX RWX
2 RWX RWX RWX
1 RWX RWX
0 RWX
3 R RW RW RW
2 R RW RW
1 R RW
0 RW
3 RX RX RX RWX
2 RX RX RWX
1 RX RWX
0 RWX
3 RWX RW RW RW
2 RWX RW RW
1 RWX RW
0 RW
3 X X X RX
2 XP2 X X RX
1 XP1 XP1 X RX
0 XP0 XP0 XP0 RX

6
Read or write or

execute
 and read or write

7
Execute or promote

and
read or execute

4
Read only

and
read or write

5

Read or execute
and

read or write or
execute

2 Read or write

3 Read or write or
execute

Privilege Level (PSR.cpl)

0 Read only

1 Read or execute

Table 1. IA-64 processes can run at one of four privilege levels,
specified in the PSR. Each virtual page can be restricted to allow
accesses from only certain privilege levels and by only certain
types of memory requests. R = read, W = write, X = execute,
Pn = promote to privilege level n.
, 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

6 HP, Intel Complete IA-64 Rollout
requirement that read-after-write, write-after-write, and
write-after-read dependencies to the same memory location
be interlocked (executed in program order). Sequential
pages, on the other hand, require that all loads and stores to
the page be performed in the order specified by the program.
The uncachable, nonspeculative, and sequential attribute
would typically be specified for pages containing memory-
mapped I/O devices that have side effects or that are sensi-
tive to order (such as queues).

The NaTPage attribute precludes nonspeculative
loads to a page so marked and assures that all speculative
loads to the page return a deferred-exception indicator to
the destination register. IA-64 instruction fetches, stores,
and nonspeculative loads, as well as all IA-32 memory ac-
cesses to a NaTPage, invoke a NaT-page-consumption fault.
The purpose of the NaTPage is to enable aggressive use of
speculative loads while avoiding constant reentry to the OS
via exception because of speculative accesses to unmapped
memory.

Relax for Better Performance
For cachable memory, IA-64 specifies a relaxed ordering
model. In a relaxed model, most loads and stores have
unordered semantics, allowing the hardware to rearrange
them into an order different than that specified by the pro-
gram, to improve performance. Memory-data dependencies
impose order only between accesses to the same physical
address and only from the same processor. To enforce order
between memory operations to different addresses, or
between different processors to any address, ordered seman-
tics must be used.

For situations in which precise control over order is
required—such as updating code images or sharing mem-
ory and synchronizing processes in a multiprocessor sys-
tem—IA-64 provides strongly “ordered” memory-referenc-
ing instructions. These instructions impose an ordering
relationship with respect to other orderable memory oper-
ations, according to one of three semantics: acquire, release,
or fence.

Acquire semantics impose the restriction that the result
of a memory instruction must be architecturally visible to all
subsequent memory instructions. Release semantics require
© M I C R O D E S I G N R E S O U R C E S A P R I L 1 0
the result of a memory instruction to be visible after the
results of all previous memory instructions have been made
visible. Fence semantics combine acquire and release seman-
tics. In IA-64, ordered loads (ld.acq) have acquire semantics,
ordered stores (st.rel) have release semantics, and a special
memory-fence instruction (mf) enforces fence semantics.
Acquire, release, and fence semantics are observed by all
processors within the coherence domain.

In some multiprocessor situations, such as setting a
lock on a shared data structure, even strict ordering isn’t
sufficient to assure foolproof operation. For this task, IA-64
provides three ordered semaphore instructions: exchange
(xchg), compare and exchange (cmpxchg), and fetch and add
(fetchadd). The xchg instruction always has acquire seman-
tics, whereas the other two instructions have versions with
either acquire or release semantics.

Most RISC processors—including MIPS, Alpha, and
PowerPC—implement semaphores using a load-lock/store-
conditional mechanism. This mechanism detects an inter-
ceding store to the semaphore location and requires software
to retry the load-lock/store-conditional sequence until it
completes atomically. IA-64, however, reverts to an approach
used by some older processors, wherein special semaphore
instructions perform a read, a modify, and a write operation
as a single atomic (indivisible) operation.

Unlike some of the older processors that used bus
locking in noncachable memory to make these operations
indivisible, however, IA-64’s semaphore instructions oper-
ate in cachable memory, as do load-lock/store-conditional
instructions. Both systems rely on the cache-coherence
mechanisms to implement indivisibility. But the load-lock/
store-conditional mechanism has two drawbacks: first, it is
difficult to guarantee forward progress (deadlock-free
code), and second, it is not easy to assure that the semantics
will remain consistent across multiple processor genera-
tions without placing serious restrictions on how these
instructions are used. Because of the difficulties, and be-
cause of the fact that the load-lock/store-conditional mech-
anism is normally used to simulate compare-and-exchange
or fetch-and-add primitives anyway, Huck says it was just
easier, especially on the software trying to use them, to
implement the full primitives directly in hardware.

Wait Just a Millisecond
IA-64 processors implement precise
interruptions: that is, following an inter-
ruption, the processor is put into a state
that is consistent with in-order, non-
pipelined execution of the program.
Processor hardware is responsible for
unwinding the pipeline, for saving the
necessary state in interruption registers,
and for vectoring control to a software
interruption handler. After handling an
interruption, software executes a return-

l whether data and
s for more efficient

r maintained coher-

culative Coherent
Yes Yes
Yes No
No Yes
No Yes
n/a n/a
n/a n/a
n/a n/a
Yes n/a
Table 2. Each virtual page can be assigned certain attributes that contro
instructions on the page are eligible to be cached, coalesced into group
transfer to memory, performed out of order, performed speculatively, o
ent by the processor/memory system. n/a = not applicable.

Attribute TLB.ma Cachable Coalescing Sequential Spe
Write back 000 Yes No No
Write Coalescing 110 No Yes No
Uncachable 100 No No Yes
Uncachable Exported 101 No No Yes
Reserved for Software 001 n/a n/a n/a
Reserved 010 n/a n/a n/a
Reserved 011 n/a n/a n/a
NaTPage 111 Yes n/a No
, 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

7HP, Intel Complete IA-64 Rollout
from-interruption (rfi) instruction, which restores the
processor state and resumes execution of the interrupted
program.

IA-64 interruptions fall into two broad categories: IVA-
based and PAL-based. PAL-based interruptions are vectored
through hardware entry points and are handled by the
processor-abstraction-layer (PAL) firmware (described later),
which runs beneath the level of the OS kernel. IVA-based
interruptions are vectored through an interruption-vector
table (IVT), as Table 3 shows, and are handled by the OS.

IA-64 provides a large number of very specific inter-
ruption vectors and captures a considerable amount of infor-
mation about each interruption in control registers. These
features improve interruption response time and latency by
minimizing the amount of self-discovery that interruption
handlers must go through to determine the cause of the inter-
ruption and to decide the correct course of action.
© M I C R O D E S I G N R E S O U R C E S A P R I L 1 0
There are four types of interruptions: aborts, inter-
rupts, faults, and traps. (Note that in IA-64 terminology,
“interruption” refers to all four types generically, whereas
“interrupt” is one of the four specific types.) Aborts are PAL-
based interruptions and include machine checks (MCAs),
which occur in response to hardware errors, and processor
reset (RESET). Aborts are the only type of interruptions that
are not necessarily precise.

Interrupts include initialization interrupts (INITs),
platform-management interrupts (PMIs), and external in-
terrupts (INTs). INITs and PMIs are PAL-based interrupts,
while INTs are IVA based. External interrupts typically come
from I/O devices but can be generated by any processor in
the system, including the one being interrupted.

In IA-64 systems, external interrupts are delivered as in-
band-coded messages across the IA-64 system bus, as Figure 4
shows. This technique is more flexible and much easier to
configure than the traditional method of interrupt delivery,
which requires separate wires from all possible interrupt
sources to all possible interrupt sinks. External interrupts are
all delivered through IVT vector 0x3000, and the specific
interrupt is read by the interrupt-handler software from the
IVR control register. These interrupts are prioritized and vec-
tored through 256 unique vectors, including one for a non-
maskable interrupt (NMI) and another (ExtINT) for back-
ward compatibility with venerable 8259A interrupt
controllers (8259A interrupts are delivered through two dis-
crete interrupt-input pins, LINT0 and LINT1).

The remaining two interruption types, faults and
traps, occur in response to program-generated events; both
are IVA based. Faults are generated as a result of some un-
intended or illegal operation, such as a page fault, division
by zero, or an undefined opcode. Faults are synchronous
Vector Offset Vector Name
0x0000 VHPT translation vector
0x0400 Instruction TLB vector
0x0800 Data TLB vector
0x0C00 Alternate instruction TLB vector
0x1000 Alternate data TLB vector
0x1400 Data nested TLB vector
0x1800 Instruction key miss vector
0x1C00 Data key miss vector
0x2000 Dirty-bit vector
0x2400 Instruction access-bit vector
0x2800 Data access-bit vector
0x2C00 Break instruction vector
0x3000 External interrupt vector
0x3400–0x4C00 Reserved
0x5000 Page not present vector
0x5100 Key permission vector
0x5200 Instruction access rights vector
0x5300 Data access rights vector
0x5400 General exception vector
0x5500 Disabled FP-register vector
0x5600 NaT-consumption vector
0x5700 Speculation vector
0x5800 Reserved
0x5900 Debug vector
0x5A00 Unaligned reference vector
0x5B00 Unsupported data-reference vector
0x5C00 Floating-point fault vector
0x5D00 Floating-point trap vector
0x5E00 Lower-privilege transfer trap vector
0x5F00 Taken-branch trap vector
0x6000 Single-step trap vector
0x6100–0x6800 Reserved
0x6900 IA-32 exception vector
0x6A00 IA-32 intercept vector
0x6B00 IA-32 interrupt vector
0x6C00–0x7100 Reserved

Table 3. Following an IVA-based interruption, control is transferred
to the appropriate interruption-vector address (offset by the base
address of the vector table in the IVT control register). A large num-
ber of interruption vectors are provided to minimize the work soft-
ware handlers must do to determine the cause of an interruption.
Figure 4. IA-64 systems deliver external interrupts (purple) as mes-
sages passed over the system bus, which greatly simplifies system
configuration. Two traditional interrupt pins (LINT0 and LINT1) are
provided for backward compatibility with 8259A interrupt controllers.

External Interrupt
Controller

I/O Device
With

Interrupt ControllerI/O Device

I/O Device

I/O Bus

IA-64 System Bus

Bridge

IA-64
Processor

IA-64
Processor

IA-64
Processor LINT0

LINT1
, 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

8 HP, Intel Complete IA-64 Rollout
with instruction execution, and the fault handler is
invoked after the previous instruction is complete but
before the faulting instruction begins (or so it is made to
appear to software). Traps occur in response to calls for
operating system services. Like faults, traps are synchro-
nous with the instruction stream, but they are invoked
after the trapping instruction completes and before the
next instruction begins.

Register Banks Reduce Interruption Latency
In most processors, a taken interrupt disables further inter-
rupts until the interrupt handler has had a chance to safely
tuck away the contents of the registers it needs onto the
memory stack. But saving registers adds overhead to the
handler itself, and it increases the worst-case latency to sub-
sequent (nested) interrupts.

To reduce latency and speed low-level interruption
handlers—such as those for TLB misses, updating a TLB-
entry dirty bit, performing a misaligned memory access, or
emulating an instruction—IA-64 provides an alternate reg-
ister bank to hold OS data. The alternate register bank con-
sists of 16 registers that, on a first-level interruption, are
automatically switched into the general-register namespace
as GR16 through GR31. A bit in the PSR (PSR.bn) controls
which register bank is currently active, allowing the inter-
rupt handler to quickly switch back to the application’s reg-
isters if they are needed.
© M I C R O D E S I G N R E S O U R C E S A P R I L 1
On a first-level interruption, the stack frame is not
automatically changed, but the register-stack engine may
spill or fill registers as the interruption handler runs. Because
of the alternate register bank, however, the stack frame is not
normally modified by low-level handlers, preventing high-
speed handlers from having to manipulate the stack.

Huck says that the implementation cost of the extra
register bank is minimal, because the extra register cells can
be buried beneath the wires of the main register file. Per-
haps this ability is an example of the benefits of EPIC
design: in Athlon (see MPR 8/23/99-01, “Athlon Outruns
Pentium III”), for example, the future file (reorder buffer)
occupies the extra space under the register-file wires. With-
out a reorder buffer, however, Itanium can offer the extra-
bank feature with no increase in die area.

Abstraction Layers Isolate Hardware
In an effort to create a common IA-64 environment capable
of running shrink-wrapped operating systems on a variety
of platforms, HP and Intel have defined a firmware environ-
ment that abstracts the platform and processor hardware.
This abstraction layer makes low-level differences between
processors and platforms invisible to low-level system and
diagnostic software.

The IA-64 firmware environment consists of three
major components, as Figure 5 shows. The extensible firm-
ware interface (EFI) replaces some of the functions of the
traditional BIOS and provides a procedure-call interface to
the operating system for boot-time services, such as boot
prompt, console, serial interface, and (eventually) network-
boot facilities. The system abstraction layer (SAL) isolates
the operating system from underlying differences in the
platform hardware. And the processor abstraction layer
(PAL), which is completely specified by the IA-64-processor
architecture, serves to give the SAL and the OS a common
view of different processor implementations.

Primarily, the PAL abstracts processor functions that
are not performance critical and are not visible to applica-
tion software, such as processor initialization, configuration,
and error handling. Together, the PAL, SAL, and EFI layers
are responsible for booting the operating system. For the
most part, these layers play no part in running application
code, although they do provide some run-time services to
the OS for such things as machine checks and system resets.

Many of the processor resources that the PAL abstracts
are accessed through architecturally defined or implementa-
tion-specific control registers by privileged code. While such
control registers are present in most processors, they always
create some implementation challenges. For one, it is often
difficult to ensure that all the side effects of a control-register
change are complete before beginning execution of any subse-
quent instruction that depends on the new machine context.

PA-RISC solved this problem with a rather arbitrary
eight-instruction rule; that is, the effects had to be visible to
any instruction eight or more instructions downstream from
Figure 5. IA-64 architects envision a three-layer hardware-abstraction
architecture to allow shrink-wrapped operating systems to run on
multiple platforms. The processor abstraction layer makes all IA-64
processors appear identical to the OS—at least for features that are
not critical to performance and that are likely to change from imple-
mentation to implementation.

Platform Hardware

IA-64 Processor

Processor Abstraction Layer (PAL)

System Abstraction Layer (SAL)

Extensible Firmware
Interface (EFI)

EFI
Procedure
Calls

OS
Boot
Selection

OS
Boot
HandoffTransfers

to OS
Entry Points

for
Hardware

Events

Access
to

Platform
Resources

Transfers
to SAL
Entry Points

SAL Procedure Calls

PAL Procedure Calls

Inter-
rupts,
Traps,
and
Faults

Instruction
Execution

Performance-Critical
Hardware Events
(e.g., Interrupts)

Non-Performance-
Critical Hardware
Events (e.g., Machine Checks)

Operating System
0 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

9HP, Intel Complete IA-64 Rollout
the one that altered the control register. Such a rule, however,
can be ambiguous and difficult to implement in a pipelined
processor. To minimize these problems, IA-64 took an ap-
proach similar to that taken by PowerPC, which requires
explicit serialization instructions to be inserted in the code
stream at the point beyond which the effects of all pending
control-register changes must be visible. For this purpose,
IA-64 provides separate instructions for serializing control-
register changes that affect instruction processing (serialize.i)
and data processing (serialize.d).

End of an Era
The IA-64 architecture has been under development for
more than a decade, beginning with early VLIW research at
HP in 1989. Since 1994, HP and Intel have been working
together intensely to define the architecture. And for more
than two years now, the companies have been performing a
carefully orchestrated strip-tease designed to hype the archi-
tecture, to build momentum, and to mark time while putting
on the finishing touches. Now, with the system-architecture
disclosures described in this article, the long disclosure pro-
cess has, thankfully, come to a close.

Due to IA-64’s radically different VLIW (okay, EPIC)
instruction-set architecture, it may take several more years
to fully develop the requisite compiler technology, to learn
to craft high-performance chips around the new architec-
ture, and to establish a software base large enough to enable
IA-64 chips to penetrate the high-volume market. Although
© M I C R O D E S I G N R E S O U R C E S A P R I L 1 0

To subscribe to Microprocessor Report, phone 4
the IA-64 system architecture is, for some, disappointingly
conventional compared with the instruction-set architec-
ture, that choice was necessary to give IA-64 its best chance
of gaining a foothold in the market.

Piling radically new system architecture on top of an
unconventional ISA would have required operating systems
to be redesigned from the bottom up. It is unlikely that ini-
tial IA-64 chips (i.e., Itanium) will have sufficiently compel-
ling performance to motivate OS vendors to undertake such
a mammoth task. But this will not be necessary, thanks to
IA-64’s use of precise exceptions and sequential semantics,
its support for both MAS and SAS with graceful extension to
new features, and its convenient processor-abstraction layer.
With this conservative approach to system architecture, HP
and Intel have virtually guaranteed that a variety of operat-
ing systems will be available for IA-64 chips as soon as they
are ready for prime time later this year.
F o r M o r e I n f o r m a t i o n

The IA-64 system architecture specification is
available in HTML on HP’s Web site at http://
devresource.hp.com/devresource/Docs/Refs/IA64ISA/
index.html. A more printer friendly Acrobat version is
available on the Intel site at http://developer.intelcom/
design/ia-64/manuals/.
, 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

08.328.3900 or visit www.MDRonline.com

http://devresource.hp.com/devresource/Docs/Refs/IA64ISA/index.html
http://devresource.hp.com/devresource/Docs/Refs/IA64ISA/index.html
http://devresource.hp.com/devresource/Docs/Refs/IA64ISA/index.html
http://developer.intel.com/design/ia-64/manuals/
http://developer.intel.com/design/ia-64/manuals/

	HP, Intel Complete IA-64 Rollout
	VM Supports MAS and SAS
	Figure 1. An IA-64 process is mapped onto a...
	Processes See Flat 2^64 -Byte Space
	Figure 2. Two IA-64 processes can share data or...
	Mapping to Physical Memory
	TLB Includes Block-Address Translation
	A Well-Protected System
	Figure 3. Like most modern processors, IA-64...
	Attributes Restrict Flexibility When Necessary
	Table 1. IA-64 processes can run at one of four...
	Relax for Better Performance
	Table 2. Each virtual page can be assigned certain...
	Wait Just a Millisecond
	Table 3. Following an IVA-based interruption...
	Figure 4. IA-64 systems deliver external interrupts...
	Register Banks Reduce Interruption Latency
	Figure 5. IA-64 architects envision a three-layer...
	Abstraction Layers Isolate Hardware
	End of an Era

	F o r M o r e I n f o r m a t i o n

