
44

In planning the new EPIC (Explic-
itly Parallel Instruction Computing) archi-
tecture, Intel designers wanted to exploit the
high level of instruction-level parallelism (ILP)
found in application code. To accomplish this
goal, they incorporated a powerful set of fea-
tures such as control and data speculation,
predication, register rotation, loop branches,
and a large register file. By using these features,
the compiler plays a crucial role in achieving
the overall performance of an IA-64 platform.
Here, we describe the electron code generator
(ECG), the component of Intel’s IA-64 pro-
duction compiler that maximizes the benefits
of these features.

The ECG consists of multiple phases occur-
ring in the order shown in Figure 1. The first
phase, translation, converts the optimizer’s
intermediate representation (IL0) of the pro-
gram into the ECG IR. Predicate region for-
mation, if conversion, and compare
generation occur in the predication phase.
The ECG contains two schedulers: the soft-
ware pipeliner for targeted cyclic regions and
the global code scheduler for all remaining
regions. Both schedulers make use of control
and data speculation. The software pipeliner
also uses rotating registers, predication, and
loop branches to generate efficient schedules
for integer as well as floating-point loops.

The ECG’s register allocator must handle
several IA-64 specific issues. These include
not-a-thing (NaT) bit maintenance during
spill/fill, advanced load address table (ALAT)
awareness for data-speculative registers, cor-
rect rotating register allocation for the soft-
ware pipeliner, and predicate awareness. NaT
bits are associated with a control speculation
mechanism. The ALAT is the hardware mech-
anism enabling data speculation.1

The predicator
Predication, or conditional execution of an

instruction based on a predicate, is one of the
key IA-64 architectural features. Using predi-
cation, the compiler can merge the execution of
multiple control flow paths. This increases ILP
by removing the penalty of mispredicted
branches2 and nonsequential control flow in
pipelined regions. In addition, predication
increases code motion freedom by allowing
instructions to be moved upward across
branches in a nonspeculative manner and to be
pushed downward into subsequent join blocks.

Region formation and if conversion
Predicate region formation selects a group

of connected basic blocks—a predicate
region—to be if-converted, that is, to remove
control flow edges within the region using

Jay Bharadwaj
William Y. Chen

Weihaw Chuang
Gerolf Hoflehner

Kishore Menezes
Kalyan Muthukumar

Jim Pierce
Intel

BY MAKING USE OF POWERFUL FEATURES TO GENERATE HIGH-PERFORMANCE

CODE, THE IA-64 ARCHITECTURE ALLOWS THE COMPILER TO EXPLOIT HIGH

INSTRUCTION-LEVEL PARALLELISM. THE AUTHORS DESCRIBE THE IMPORTANT

PHASES OF THE PRODUCTION COMPILER’S CODE GENERATOR.

0272-1732/00/$10.00 2000 IEEE

THE INTEL IA-64 COMPILER CODE
GENERATOR

predicates.3 The basic characteristic of the
selected predicate region is that the total num-
ber of static branches within the predicate
region should be reduced after if conversion.
The predicate region selection criteria depend
on the availability of dynamic profile infor-
mation. Without dynamic profile feedback,
the selection algorithm focuses on the avail-
ability of processor resources and the com-
patibility of individual critical paths. The
algorithm avoids including basic blocks in the
predicate region if they cause processor
resource oversubscription or if they signifi-
cantly increase the critical path through the
region. With dynamic profile feedback, the
selection criteria are extended to include the
cost of branch misprediction and the weight
of individual critical paths. The algorithm
focuses on the branches that produce the most
misprediction penalties and chooses the sur-
rounding blocks to form a predicate region.

Compare generation materializes all the
necessary predicates through the use of pred-
icate generation instructions. It computes
control dependence information for all basic
blocks within the predicate region and the
predicate region’s exit basic blocks. Basic block
B depends upon another basic block (A) for
control when the condition computed in A
dictates whether B gets executed. A control-
ling predicate, using the assigned virtual pred-
icate name, is generated for all the controlled

basic blocks within the predicate region and
all the region exit basic blocks.

Path collapsing merges the control flow
paths within the predicate region into a min-
imal set of control flow paths. The merged
basic blocks are physically placed next to each
other. Each basic block within the predicate
region is guarded with the correct virtual pred-
icate name. A side exit from the predicate
region occurs when the exiting basic block isn’t
contained within the predicate region. When
there are identical branch targets outside the
predicate region, these exit flow edges are
merged to remove duplicates.

Predicate optimizations
Predicate registers are virtually named and

materialized only when it becomes necessary.
Predicate name assignment generates a virtu-
al predicate name for all basic blocks within a
function (Figure 2). Basic blocks exhibiting
identical control flow behaviors are assigned
the same virtual predicate name. For all criti-
cal edges (edges from a node with multiple

45SEPTEMBER–OCTOBER 2000

ECG

Optimizer

Predication

Translation

Global code scheduler

Global register allocator

Postpass scheduler

Emit assembly

IL0

ECG IR

Software pipeliner

Figure 1. ECG phase order. IR designates
intermediate representation.

5050

80

10

p1

p1

p4
p5

p3p2

20

p1,
p2,
p3, p4

p5

p1

(a) (b)

Figure 2. Three control flow paths (a) are
reduced to two using predication (b). The deci-
sion to predicate is based on a combination of
dynamic profile information, resource availabil-
ity, and critical-path length compatibility. Merg-
ing the control flow paths accomplishes two
tasks. The unbiased conditional branch is elim-
inated, resulting in a highly biased conditional
branch. A larger basic block is formed from
otherwise small basic blocks. This offers more
opportunity for ILP to fill the issue bandwidth
and hide long latency instructions.

successors to a node with
multiple predecessors—such
as a missing else-block within
an if-then statement), predi-
cate name assignment creates
a nonvisible basic block hold-
er and assigns a virtual predi-
cate name. Later, due to
control flow changes, the
predicate name assignment
creates new virtual predicate
names.

To execute efficiently and
correctly, compare optimiza-

tion examines the collapsed region for oppor-
tunities to insert, merge, and replace
predicate-generating instructions within the
predicate region. The first step is to replace
predicate-generating instructions into paral-
lel semantics, if possible. This reduces the crit-
ical path through the predicate region. The
remaining conditional compares are examined
to discover unconditional compare opportu-
nities. When a conditional compare is con-
verted into an unconditional compare, it
removes the necessity for predicate initializa-
tion instructions. In general, predicate ini-
tialization instructions are inserted when the
predicate register isn’t defined on all paths to
the predicate register.

Predicate query system
PQS is a predicate relational database

accessed by later phases of the code generator.
It contains information such as predicate dis-
jointness, predicate dominance and post-
dominance, predicate promotion,4 and
predicate addition and subtraction. Without
accurate predicate information, the schedul-
ing, software pipelining, and register alloca-
tion must make conservative decisions that
would result in suboptimal code. PQS is based
upon work proposed by HP Labs.5

Global code scheduler
GCS is capable of scheduling the code in

any acyclic control flow subgraph. No restric-
tions are placed on the number of entries into
or exits from the subgraph. GCS may gener-
ally move code in either direction across a vis-
ible edge. To schedule loops, GCS removes
back edges to render the subgraph acyclic.
After the region of code is scheduled, it’s

abstracted away by nesting it. Thus, after
scheduling code in an inner loop, the nested
loop is represented as a single node containing
summary data flow information. This infor-
mation enables code motion across the nest-
ed inner loop. The code schedule in the inner
loop is not disturbed when scheduling the
outer loop. Also, GCS takes into account all
latencies for live-in and live-out values of the
inner loop.

To support global analysis in the presence of
control flow within the scheduling region, a
novel path-based data dependence represen-
tation is used. This representation merges con-
trol flow and data dependence information in
one structure.6

Wavefront scheduling and deferred compensation
code

Compensation is duplicated code that
needs to be inserted when moving code up
across control flow joins or down below con-
trol flow splits. Empty blocks called join-split
(JS) blocks7 are added on each edge that both
starts from a node with multiple successors
(split) and ends at a node with multiple pre-
decessors (join). These are placeholders for
scheduling compensation code. Blocks called
interface blocks are created for this same pur-
pose at side entries/exits, that is, blocks that
conditionally enter or exit the region. Adding
JS and interface blocks to an acyclic region
forms a scheduling region. We define a wave-
front in the scheduling region as a strongly
independent cut set.7 Figure 3 shows an
acyclic scheduling region and all possible
wavefronts in it.

In wavefront scheduling, the wavefront is
the partition between scheduled and unsched-
uled code. If scheduling top down, the nodes
above the wavefront are already scheduled,
and the schedule in these nodes won’t be
changed (unless we resort to backtracking).
The nodes below the wavefront don’t contain
scheduled code. The wavefront represents the
set of blocks into which instructions are cur-
rently being scheduled. The candidates for
scheduling into a block on the wavefront
include unscheduled data-ready instructions
originating from the same block or another
block that is either above or below the wave-
front. In a top-down scheduling scheme, the
wavefront first passes through the region entry

46

COMPILER CODE GENERATOR

IEEE MICRO

A

B

ED

F

HG

W0

W1

W2aW2b

W3

W4

C

Figure 3. Wavefront advancement in top-
down scheduler.

blocks. When code scheduling into a block is
completed, the scheduler declares it closed and
advances the wavefront across it. This block
now lies above the wavefront and represents
a fully scheduled block. Thus the wavefront
advances down the region until it finally pass-
es through all the exit nodes in the region.
When block B is closed, any unscheduled
instructions from B, or above, are implicitly
moved below B to be scheduled later. Hence
before declaring a block closed, the scheduler
examines both the correctness and profitabil-
ity of such downward code motion.

Figure 3 numbers the wavefronts to show a
wavefront’s advancement in a top-down
scheduling scheme. Note that there can be
multiple alternatives to the way the wavefront
is advanced, as shown in the figure by W2a
and W2b.

When performing an upward or downward
code motion that requires code duplication,
GCS postpones the generation of this com-
pensation code until it is actually scheduled.
In doing this, we provide scheduling freedom
for the compensation code since its destina-
tion block is not fixed a priori. We also ensure
that at most one copy of the instruction is exe-
cuted on any path through the region. Figure
4 illustrates how this is done.

When the wavefront is W1, copy I′ of
instruction I originating from block G is first
scheduled in block F. This motion requires
compensation since F doesn’t dominate G.
Instead of immediately generating and insert-
ing the compensation code for I in block B,
instruction I is left behind in block G along
with some bookkeeping information that
indicates that it remains to be scheduled along
control flow paths ABDEG and ABCEG. The
bookkeeping data also indicates that the com-
pensation code must be scheduled on or
before E to avoid execution of I (or its copies)
multiple times along path AFG.

The scheduling heuristics may not select I
for scheduling in block B if it isn’t an impor-
tant enough candidate in B. Assume that this
is the case and that the wavefront is advanced
to W2. It is then selected for scheduling in
block C, so copy I′′ of instruction I originat-
ing from block G is scheduled into block C.
Since F and C don’t collectively dominate
G—the block of origin of I—this scheduling
choice requires compensation. Now the

remaining instruction I in G represents the
compensation that needs to be scheduled in
block D. To avoid multiple executions of I
along path ABCEG, advancement of the
wavefront past W2 is constrained until I is
finally scheduled in block D. Bharadwaj et al.6

describe the bookkeeping scheme used to keep
track of this deferred compensation code in
greater detail.

Speculation and predication
GCS selects an instruction to schedule into

block B from a candidate list of data-ready
instructions. These instructions may originate
from any block in the region connected to B
by at least one control flow path. The specu-
lation support in IA-64 allows many depen-
dencies to be ignored when determining data
readiness. Control dependencies and data
dependencies on qualifying predicates can be
broken using control speculation. Data spec-
ulation allows unlikely memory dependencies
to be broken.

GCS selects the best candidate from all the
speculative and nonspeculative candidates based
on a cost-benefit analysis. Among other things,
this analysis takes into consideration the instruc-
tion’s global critical-path length, its resource
requirements, and its speculation and code
duplication costs. Speculation check instruc-
tions and recovery code8 are generated as a
byproduct of speculation; load safety informa-
tion9 avoids unnecessary control speculation.

Figure 5 (next page) provides an example
illustrating the costs of speculation and some
ways to avoid it. The cmp instruction sets the

47SEPTEMBER–OCTOBER 2000

A

D F

G

B

C

E

I′I′′

W1

W2

W3

I

Figure 4. Deferred compensation code generation.

first predicate and clears the second if the con-
dition is true and vice versa if the condition is
false. In this example three loads are moved
up across a controlling branch. One load, ld
v2=[v1], is known to be safe, so the corre-
sponding chk and its associated recovery code
aren’t necessary. Another load, ld v8=[v7], can
be guarded by the p2 nonbranch predicate,
which is complementary to branch predicate
p1. This load can be scheduled as soon as p2
is ready for use and treated as a normal load
since it won’t be executed speculatively. The
only load that ends up needing a speculation
check and recovery code is ld v4=[v3].

There are two kinds of costs associated with
generating speculation checks and recovery
code. One is incurred regardless of whether
the chk instruction fails and branches to
recovery, while another is incurred only on
each chk failure. Chk consumes an execution
unit resource on the main execution path.

Because they are used in the recovery code,
registers v2 and v3 must be kept alive until chk
executes. Thus speculation can extend live
ranges and thereby increase register pressure.
Addition of the recovery code increases the sta-
tic size of the binary. If chk fails and branches to

recovery, the penalty is high since chk may be
mispredicted and incur an additional cost to
jump to recovery. The recovery code may not
be in the cache and might prove costly to exe-
cute. So speculation must only be used when
based on a sound analysis of the likelihood of
speculation failure. Despite these costs, we spec-
ulated the load in Figure 5’s example because it
has a high critical-path length and we had deter-
mined that speculation failure was unlikely.

GCS uses predication support in the IA-64
architecture to convert a control speculative
instruction to a nonspeculative one. Some-
times an instruction being moved across a
branch is scheduled after the compare opera-
tion that controls the branch. If the predicate
produced by the compare is available for use,
the instruction is predicated. This eliminates
the need for a check instruction and recovery
code, as depicted in the example in Figure 5.

In addition, when a predicate is false, the
adverse effects of a speculative operation on
the data cache and TLB (translation look-
aside buffer) are avoided. When an instruc-
tion is moved across multiple branches, the
predicate controlling execution of the block
of origin may not be available. This may be
so because the compare generating the pred-
icate hasn’t been scheduled, or the compare’s
latency hasn’t yet expired. However, a predi-
cate for an intermediate block in the control
dependence chain may be available.

Predication with such a predicate will not ren-
der the instruction nonspeculative but will
reduce the instruction’s speculativeness when
the instruction executes (that is, the qualifying
predicate is true). To do this effectively, GCS
maintains a predicate promotion list and keeps
track of predicates that become available as com-
pare instructions are scheduled. This list is essen-
tially a form of control dependence information,
but in the predicate domain. GCS also uses the
predicate promotion list when speculating pred-
icated instructions. GCS speculates these
instructions by promoting the qualifying pred-
icate to an available predicate in the predicate
promotion list. If no predicate is available, the
instruction is unpredicated. Instruction predi-
cation, unpredication, and predicate promotion
are thus achieved on the fly while scheduling.

Downward code motion and branch generation
GCS benefits from downward code motion

48

COMPILER CODE GENERATOR

IEEE MICRO

Instructions Cycle

cmp p1,p0=…t // 1

(p1) br B10 // 1

ld v2=[v1] // safe load // 2

ld v4=[v3] // 2

ld v8=[v7] // 3

add v6=v2,v4 // 4

st[v8]=v6 // 5

Instructions Cycle

ld v2=[v1] //1 REC: Id v4=[v3]
ld.s v4=[v3] //1 add v6=v2,v4

br B11
cmp p1,p2=… //1

(p2) ld v8=[v7] //2

(p1) br B10 //2

add v6=v2,v4 //3
chk.s v6, REC //4

B11 :

st [v8] = v6 //4

(a)

(b)

Figure 5. Recovery code example for control speculation:
before (a) and after (b) scheduling.

in several ways. First, operations that cannot
be speculated—such as stores and speculation
check instructions—tend to stay in their block
of origin. It is advantageous to move these
instructions downward if they don’t fit into
the block’s schedule. Second, downward
motion can empty a block, eliminating an
unconditional branch or exposing an oppor-
tunity for multiway branch generation. To do
this effectively, GCS monitors and updates
block layout during scheduling. Finally,
downward code motion helps reduce the
amount of speculation or compensation code
needed to expose ILP.

To move stores down to a join node, GCS
must ensure they are predicated. Predicates are
only available for use in blocks dominated by
the compare instructions that generate them.
This places a limit on downward code motion.

The GCS design elements permit effective
use of the architectural features of IA-64 while
being sensitive to practical considerations such
as code size and compile time. Bharadwaj et
al.6 give further details on GCS features and
implementation.

Software pipelining
Software pipelining10 improves the perfor-

mance of a loop by overlapping the execution
of several iterations. The IA-64 architecture
provides extensive support for software-
pipelined loops, such as register rotation, and
special loop branches and registers.1 These fea-
tures enable efficient software pipelining of
loops without the accompanying increase in
code size seen in other architectures.

Register rotation provides a renaming
mechanism that eliminates the need for loop
unrolling to support software register renam-
ing. Special software-pipelined loop branch-
es support register rotation and, combined
with predication, reduce the need to generate
separate code blocks for the prolog and epi-
log phases.

The following example illustrates register
rotation. A swp_branch pseudoinstruction
(either br.wtop, br.ctop, br.wexit, or br.cexit)
represents a software-pipelined loop branch.1

Loop:stage1: ld4 r32 = [r10],4

// post increment by 4

stage2: // empty stage

stage3: st4 [r11] = r34,4

// post increment by 4

swp_branch Loop ;;

The pipelined loop has three stages. The
value that the load writes to r32 is read by the
store’s two iterations (and two rotations) later
as r34. Meanwhile, two more instances of the
load execute. Because of register rotation, those
instances write their results to different registers
and don’t destroy the value needed by the store.

The number of cycles between the start of
successive iterations in a software-pipelined
loop is called the Initiation Interval, or II. A
software-pipelined loop executes in three
phases: prolog, when the pipeline is ramped
up; kernel, when the pipeline is at steady state;
and epilog, when the pipeline is drained.

The input to the ECG software pipeliner is
the set of basic blocks in the loop. If the loop
has multiple basic blocks, it’s converted into
a loop consisting of a single basic block using
if conversion.

Instructions are overlapped across iterations
by using the modulo scheduling technique.11

Consider the following loop, shown with vir-
tual registers (prefixed with a “V”):

Loop:ld4 Vr1 = [Vr2], 4

add Vr3 = Vr1, Vr4

st4 [Vr5] = Vr3, 4

br.cloop Loop ;;

This loop has no dependencies across iter-
ations; that is, it has no loop-carried depen-
dencies. Therefore multiple loop iterations
can be executed in parallel. A possible pipeline
schedule for a source iteration of this loop,
assuming a load latency of two cycles, is

Stage 1: (p16) ld4 Vr1 = [Vr2], 4
Stage 2: (p17) // empty stage
Stage 3: (p18) add Vr3 = Vr1, Vr4
Stage 4: (p19) st4 [Vr5] = Vr3, 4

A predicate is assigned to each stage of the
software pipeline to control the execution of
the instructions in that stage. This predicate is
called the stage predicate. For counted loops,
we define p16 as the predicate for the first
stage, p17 as the predicate for the second stage,
and so on. Register rotation takes place at the
end of each stage, when the software-pipelined
loop branch is executed in the kernel loop.

49SEPTEMBER–OCTOBER 2000

Thus a 1 written to p16 enables the first
stage, then rotates to p17 at the end of the first
stage to enable the second stage for the same
source iteration. Each sequential 1 written to
p16 enables all the stages for a new source iter-
ation. This behavior enables or disables the
execution of the pipelined loop stages during
the prolog, kernel, and epilog phases.

After modulo scheduling and rotating reg-
ister allocation,12 LC, EC, and the rotating
predicate registers are appropriately initialized
in the loop’s preheader. Assuming a loop trip
count of 100 iterations, the example loop is
transformed as follows:

mov LC = 99 // LC = loop trip

count – 1

mov EC = 4 // EC = epilog stages

+ 1

mov pr.rot = 1 << 16 // p16 = 1,

rest = 0

Loop:

(p16) ld4 r32 = [r5], 4

(p18) add r35 = r34, r9

(p19) st4 [r6] = r36, 4

br.ctop Loop ;;

Note that an iteration starts and completes
every cycle at a steady state. This leads to a
throughput of one iteration per cycle, even
though each iteration takes four cycles to
complete.

In a counted loop, the br.ctop instruction
doesn’t depend on any other instruction in the
loop, allowing a quick decision about whether
to start a new source iteration. In while loops,
the decision to execute another source iteration
depends on a more general computation, ulti-
mately terminating in a compare that sets the
qualifying predicate for the br.wtop branch.
The computation may be complex and con-
tain loads or other long latency instructions.
Thus the br.wtop branch may not be ready for
execution until late in the source iteration,
resulting in limited overlap of the iterations.

To address this problem, we speculatively
start execution of subsequent iterations13

using IA-64’s support for control speculation.
The software pipeline stages prior to the one
containing the compare that sets the br.wtop’s
qualifying predicate are called the speculative
stages of the pipeline. It isn’t possible for the
compare and the br.wtop branch to control

the execution of these stages. Therefore, these
stages aren’t assigned stage predicates. The
result of the compare—in addition to being
the qualifying predicate for br.wtop—also acts
as a stage predicate to control the first non-
speculative pipeline stage. The compare,
rather than the br.wtop, generates the predi-
cate that enables the nonspeculative portion of
the next source iteration.

Consider the following while loop:

Loop:

ld4 Vr1 = [Vr2], 4 // (1)

add Vr3 = Vr1, Vr4 // (2)

st4 [Vr5] = Vr3, 4 // (3)

cmp Vp1, p0 = (Vr1 != 0)// (4)

(Vp1) br Loop

Without control speculation, this loop has a
recurrence cycle caused by a 4 → 1 → 4
sequence of edges.

Assuming a two-cycle load latency, this loop
can be pipelined with a minimum II of three
cycles. However, using control speculation,
the load of the next iteration can be specula-
tively executed even before we know the next
iteration will execute. This enables us to
pipeline the loop with an II of 1, with the fol-
lowing schedule:

Loop:stage 1: ld4 Vr1 = [Vr2], 4

stage 2: // empty stage

stage 3: (p18) add Vr3 = Vr1,

Vr4

(p18) cmp Vp1, p0 = (Vr1 != 0)

stage 4: (p19) st4 [Vr5] =

Vr3, 4

Here, stages 1 and 2 are speculative stages, and
stage 3 is the first nonspeculative stage. After
register allocation, we generate the following
pipelined loop, adding a check instruction to
the loop for the speculated load:

mov EC = 3 // #epilog stages +

#spec. stages

mov pr.rot = 1 << 16 ;; / /

p16 = 1, rest = 0

Loop:

ld4.s r32 = [r5], 4 // specu-

lative load

(p18) chk.s r34, recovery //

check r34 for exception

50

COMPILER CODE GENERATOR

IEEE MICRO

(p18) add r35 = r34, r9

(p18) cmp p17, p0 = (r34 != 0)

(p19) st4 [r6] = r36, 4

(p17) br.wtop Loop;

There is no stage predicate assigned to the
load because it is speculative. The check, how-
ever, is predicated by stage predicate p18.
Therefore, the deferred exception, if any, for
a load of iteration N will be serviced only if
iteration N is known to execute.

The compare sets p17. This is the branch
predicate for the current source iteration and,
after rotation, the stage predicate for the first
nonspeculative stage (stage three) of the next
source iteration. During the prolog, the com-
pare can’t produce its first valid result until the
kernel loop’s third iteration. The predicates’
initialization provides a pipeline of predicate
values that keeps the compare disabled until
the first source iteration reaches stage three.
At that point, the compare is enabled and
starts generating stage predicates to control
the nonspeculative pipeline stages.

During the last source iteration, the compare
result is zero. Therefore, during the next kernel
iteration, the stage predicate for the compare is
zero. The conditional compare stops writing
results, and a stream of zeros written by the
br.wtop branch rotates in to drain the pipeline.

The ECG software pipeliner has many other
interesting features such as data speculation,
back substitution, and riffling that enable
pipelining of many loops and better ILP.

Global register allocation
The GRA in the IA-64 compiler is a region-

based Chaitin/Briggs-style graph-coloring
scheme.14,15 Special consideration for IA-64 fea-
tures must be taken into account in the design.

NaT bits
Each general register has an associated NaT

bit. When the register is spilled, the NaT bit is
stored in the UNAT application register. The
spill address determines the bit location. To
obey this association, the register allocator spills
registers that may contain speculated values
into contiguous memory. In addition, since the
UNAT is a 64-bit register, after 64 registers are
spilled, the UNAT itself must be spilled. This
mechanism requires extra bookkeeping for the
register allocator.

Rotating registers
Traditional register alloca-

tors don’t support register
rotation. However, live ranges
that span multiple pipelined
loop stages can benefit from
the use of rotating registers. A
special allocator within the
software pipeliner allocates
these live ranges.12 The GRA
then allocates the remaining
live ranges.

Advanced loads
The use of data speculation

often increases register life-
times. The example in Figure 6 shows v1-v11
as the virtual registers.

Without data speculation, the live range
of v4 extends from instruction 11 to instruc-
tion 12. The live ranges of v1 and v6 end at
instructions 11 and 12. With data specula-
tion, since v1 and v6 are referenced in the
speculated computation, their live ranges
extend to within the recovery code. In addi-
tion, v4 is needed at chk.a, instruction 11;
however, it’s a special need. The physical reg-
ister assigned to v4, say r4, in instruction 2
is needed to index into the ALAT in instruc-
tion 11;1 that is, register index r4 is needed
for chk.a but not the actual value in r4.
Thus, r4 can be reused between instructions
4 and 11 but not as another advanced load
destination.

Predication
In the presence of predication, a virtual reg-

ister’s liveness can be a function of multiple
predicates because the qualifying predicate of
an instruction guards its definitions and uses.
Traditionally, liveness is represented as a bit
vector. However, in our predicate-aware reg-
ister allocator, it’s represented as a bit matrix
with predicates being the additional dimen-
sion. ECG’s register allocator is based upon
the work done by Gillies et al.5

We designed the ECG compiler to exploit
the features provided in the IA-64

architecture. Many novel techniques were
devised and implemented to make good use
of predication, control and data speculation,
rotating registers, and the register stack engine.

51SEPTEMBER–OCTOBER 2000

1) add v1=v2,v3 1) add v1=v2,v3
... 2) ld.a v4=[v1]
... 3) add v5=v4,v6
... 4) ...
10) st [v10]=v11 10) st [v10]=v11
11) ld v4=[v1] 11) chk.a v4, rec_code
12) add v5=v4,v6 rec_code:

100) ld v7=[v1]
101) add v5=v7,v6

(a) (b)

Figure 6. Comparing data speculation usage:
without (a) and with data speculation (b).

As IA-64 is a new architecture, we’ll learn
much more about how to more effectively use
these features over the next several years. Cur-
rently, the ECG compiler provides high per-
formance and a solid base upon which to
further leverage IA-64 strengths. MICRO

Acknowledgments
We acknowledge Kent Fielden, Dong-Yuan

Chen, Youfeng Wu, Roland Kenner, and Chris
McKinsey for their previous work in the design
and implementation of parts of the ECG.

References
1. IA-64 Application Developer’s Architecture

Guide, Order No. 245188, Intel Corporation,
Santa Clara, Calif., May 1999.

2. S.A. Mahlke et al., “Characterizing the
Impact of Predicated Execution on Branch
Prediction,” Proc. 27th Int’l Symp. Microar-
chitecture, IEEE Computer Society Press,
Los Alamitos, Calif., Dec. 1994, pp. 217-227.

3. J.C.H. Park and M.S. Schlansker, On Predi-
cated Execution, Tech. Report HPL-91-58,
HP Laboratories, Palo Alto, Calif., May 1991.

4. S.A. Mahlke et al., “Effective Compiler Sup-
port for Predicated Execution Using the
Hyperblock,” Proc. 25th Ann. Int’l Symp.
Microarchitecture, IEEE CS Press, Dec.
1992, pp. 45-54.

5. D.M. Gillies et al., “Global Predicate Analysis
and Its Application to Register Allocation,”
Proc. 29th Int’l Symp. Microarchitecture,
IEEE CS Press, Dec. 1996, pp. 100-113.

6. J. Bharadwaj, K. Menezes, and C. McKinsey,
“Wavefront Scheduling: Path Based Data
Representation and Scheduling of Sub-
graphs,” Proc. 32nd Int’l Symp. Microarchi-
tecture, IEEE CS Press, Nov. 1999,
pp. 262-271.

7. D. Berstein, D. Cohen, and H. Krawcyzk,
“Code Duplication: An Assist for Global
Instruction Scheduling,” Proc. 24th Int’l
Symp. Microarchitecture, IEEE CS Press,
Nov. 1991, pp. 103-113.

8. S.A. Mahlke et al., “Sentinel Scheduling for
Superscalar and VLIW Processors,” Proc.
Fifth Int’l Conf. Architectural Support for
Programming Languages and Operating
Systems, ACM Press, New York, Oct. 1992,
pp. 238-247.

9. D. Bernstein, M. Rodeh, and M. Sagiv,
“Proving Safety of Speculative Load Instruc-

tions at Compile-Time,” Proc. Fourth Euro-
pean Symp. Programming, 1992, pp. 56-72.

10. M.S. Lam, “Software Pipelining: An Effective
Scheduling Technique for VLIW Machines,”
Proc. ACM SIGPLAN 1988 Conf. Program-
ming Language Design and Implementation,
ACM Press, June 1988, pp. 318-328.

11. B.R. Rau, “Iterative Modulo Scheduling: An
Algorithm for Software Pipelining Loops,”
Proc. 27th Int’l Symp. Microarchitecture,
Dec. 1994, pp. 63-74.

12. B.R. Rau et al., “Register Allocation for Soft-
ware Pipelined Loops,” ACM Programming
Language Design and Implementation
(PLDI), ACM Press, June 1992, pp. 283-299.

13. P. Tirumalai, M. Lee, and M.S. Schlansker,
“Parallelization of Loops with Exits on
Pipelined Architectures,” Proc. Supercom-
puting 90, IEEE CS Press, Dec. 1990,
pp. 200-212.

14. P. Briggs et al., “Improvements to Graph
Coloring Register Allocation,” ACM Trans.
Programming Languages and Systems
(TOPLAS), Vol. 16, No. 3, May 1994, pp.
428-455.

15. G. Chaitin, “Register Allocation and Spilling
via Graph Coloring,” Proc. SIGPLAN 82
Symp. Compiler Construction, ACM Press,
Vol. 17, No. 6, June 1982, pp. 98-105.

Jay Bharadwaj is a senior staff engineer at Intel
Corporation, where he has been involved with
the IA-64 compiler since its inception. He is
currently investigating usage of hardware per-
formance monitors to enable continuous and
transparent profiling, and user program opti-
mization. His research interests include stat-
ic and dynamic program optimization.
Bharadwaj holds a master’s degree in com-
puter science from Rensselaer Polytechnic
Institute in New York.

William Y. Chen is a research scientist at Intel,
where he helped define the IA-64 architecture
and worked on its compiler. He started a pro-
ject for runtime optimizations on IA-64 bina-
ries. His interests include architecture,
compiler, and runtime compilation. Chen
holds a PhD degree in electrical and comput-
er science from the University of Illinois,
where he worked on control speculation, data
speculation, and predication.

52

COMPILER CODE GENERATOR

IEEE MICRO

Weihaw Chuang is a member of Intel’s IA-64
product compiler team. Previously, he worked
on the Itanium processor as a design automa-
tion engineer. Chuang received a BS degree
in computer science from MIT.

Gerolf Hoflehner, a senior compiler engineer
at Intel, works with the IA-64 product com-
piler team on register allocation and predica-
tion. His current interests are in compiler
optimization, algorithm design, and computer
architecture. Previously, he held various posi-
tions at Siemens. Hoflehner graduated from
the Technical University, Munich, Germany,
with a Diplom in mathematics.

Kishore Menezes is a senior compiler engi-
neer, working on the global code scheduler
with the IA-64 product compiler team. His
general interests are in the field of compilers
and computer architecture. Menezes obtained
a PhD degree in computer engineering from
North Carolina State University.

Kalyan Muthukumar, a senior compiler engi-
neer, also works with the Intel IA-64 product
compiler team. He has implemented several
optimizations in the software-pipelining phase
of the compiler. His interests are in compiler
optimization and computer architecture. Prior
to joining Intel, he worked at IBM and Apple
Computer. Muthukumar obtained a PhD
degree in computer science from the Univer-
sity of Texas at Austin.

Jim Pierce is an IA-64 architect at Intel, where
he has focused on compiler performance. Cur-
rently, he is the code-generator manager of the
IA-64 product compiler team. His current
interests are in architecture, compiler tech-
nology, and dynamic compilation. Pierce
received a PhD degree in computer science
from the University of Michigan.

Direct questions about this article to Jim
Pierce, Technology Research Labs, Intel Cor-
poration SC 12-305, Santa Clara, CA 95054;
jim.pierce@intel.com.

53SEPTEMBER–OCTOBER 2000

Call for
Articles
IEEE Micro seeks general-

interest submissions for
publication in upcoming
2001 issues. These works
should discuss the design,
performance, or application
of microcomputer and
microprocessor systems. Of
special interest are articles
on embedded systems.

Summaries of work in
progress and descriptions of
recently completed works
are most welcome, as are
tutorials.

Send a 150-word abstract
to IEEE Micro’s Magazine
Assistant at micro-ma@
computer.org. Include your
full contact information (author name(s),
postal/e-mail addresses, and phone/fax
numbers). Micro does not accept previ-
ously published material.

Check Micro’s home page at
http://computer.org/micro for author
guidelines and work/figure/reference lim-
its. All submissions pass through a peer-
review process consistent with other
professional-level technical publications,
and editing for clarity, readability, and
conciseness.

Direct questions to Micro’s Managing
Editor at m.english@computer.org.

