Instruction Set

- General Purpose Instruction
- X87 FPU Instruction
- SIMD Instruction
 - MMX Instruction
 - SSE Instruction
- System Instruction
General Purpose Instruction

- Data transfer
- Binary integer arithmetic
- Decimal arithmetic
- Logic operations
- Shift and rotate
- Bit and byte operations
- Program control
- String
- Flag control
- Segment register operations
X87 FPU Instruction

- Floating-point
- Integer
- Binary-coded decimal (BCD) operands
SIMD Instruction

- SIMD: Single Instruction Multiple Data
 - MMX instruction & SSE instruction
 - provides a group of instructions that perform SIMD operations on packed integer and/or packed floating-point data elements contained in the 64-bit MMX or the 128-bit XMM registers.
 - enables increased performance on a wide variety of multimedia and communications applications.
What’s new in Pentium III

- Pentium III = Pentium II + SSE
- SSE: Internet Streaming SIMD Extensions
- Seventy New Instruction
- Three Categories:
 - SIMD-Floating Point
 - New Media Instruction
 - Streaming Memory Instruction
The implementation of SSE

- SSE has 128-bit architectural width
 - Double-cycling the existing 64-bit data paths.
 - Deliver a realized 1.5 – 2x speedup
 - Only have 10% die size overhead
SIMD-FP Instruction

- SIMD feature introduce a new register file containing eight 128-bit registers
 - Capable of holding a vector of four IEEE single precision FP data elements
 - Allow four single precision FP operations to be carried out within a single instruction
SIMD-FP Instruction

Port 0
- Execution Unit 0
 - Multiplier SIMD FP MMX x87
 - MMX ALU0
 - Wire

Port 1
- Execution Unit 1
 - SIMD FP Adder
 - Shuffle
 - MMX ALU1
 - Reciprocal Estimates

Port 2
- LD/ST AGU 0

Port 3
- LD/ST AGU 1

Port 4
- Store Data
SIMD-FP Instruction

- The dispatch mechanism allows half of a SIMD multiply and half of an independent SIMD add to be issued together.

- The peak rate of one 128-bit operation is when the instructions alternate between different execution units.
SIMD-FP Instruction

- The news unit for shuffle instruction and reciprocal estimate
 - Rearranging elements within a vector
 - Two approximation instructions: RCP RSQRT

- Adding a new state
 - SIMD-FP and MMX or x87 instruction can be used concurrently
 - A new control/status register MXCSR
SIMD-FP Instruction

- Support two modes of FP arithmetic
 - Full IEEE-754 mode
 - Flush-to-zero(FTZ) mode
- More that SIMD-FP arithmetic
 - Need perform operations on a subset of elements within a vector
 - SIMD logical Instructions (AND,ANDN,OR,XOR)
 - MOVMSKPS instruction
SIMD-FP Instruction

- With MOVHPS, MOVLPS, SHUFPS instructions, Pentium III can transpose vectors with only a small overhead.

- Drawback of this implementation
 - Code-scheduling dilemma
New Media Instruction

- New integer instruction—extensions to the MMX instruction set
- Accelerate important multimedia tasks
 - PMAX PMIN: Viterbi-Search algorithm in speech recognition
 - PAVG: accelerate video decoding
 - PSADBW: Speed motion-search in video encoding
Streaming Memory Instruction

One Downside of SIMD engines
- Increase the processing rate above the memory system’s ability to supply data
- Intel increased the throughput of the memory system and the P6 bus

- Prefetch instruction
- Streaming store
- Enhanced write combining (WC)
Streaming Memory Instruction

- Prefetch instruction
 - Bring data into the cache before the program actually needs it
 - Overlap processing with long-latency memory read
 - Just hints never cause a program fault so can be hoisted arbitrarily far and retired before the memory access completes
Streaming Memory Instruction

- Specify the cache level to which data will be prefetched
- Streaming store Instruction
 - Store data directly to memory, bypassing the caches
 - Avoid polluting the caches when it knows the data being stored will not be accessed again soon
Streaming Memory Instruction

- Enhanced write combining (WC)
 - Increase to four WC buffers
 - Improve the buffer-management policies
 - SFENCE instruction
 - Flush the wc buffer
 - Ensure that all prior stores are globally visible
Conclusion

- Almost the same core with Pentium II
- SSE enhance the multimedia capability
- SSE has some advantages over 3Dnow