Rodinia: A Benchmark Suite for Heterogeneous Computing

Kevin Skadron and Shuai Che
University of Virginia

Agenda

• Benchmarking for heterogeneous platforms
• Brief overview of heterogeneous architecture issues, CUDA and its optimization strategies
• Overview of the Rodinia benchmark suite
• Discussion
Benchmarking

- Role of benchmarking
 - Help designers to explore architectural design
 - Identify bottlenecks
 - Compare different systems
 - Use benchmarks to conduct performance prediction

- Requirements
 - Demonstrate diverse behaviors in terms of both program characteristics and how they stress arch components
 - Span sufficiently large application space
 - Depend on research needs (general purpose vs. embedded architectures)

Related Work

- Benchmark suites
 - SPEC, SPLASH-2, Parsec, EEMBC ...
 - ALPBench, MediaBench, BioParallel ...
 - Parboil for GPU

- Benchmark analysis and design
 - Workload characterization
 - Redundancy
 - Performance prediction
A Suite for Heterogeneous Computing

- Accelerators, such as GPUs and FPGAs, are emerging as popular platforms for computing
 - High performance
 - Energy efficiency
 - Improving programmability
- Research issues
 - What problems can accelerators solve with high performance and efficiency?
 - How to optimize both CPU and accelerators to best work together on various workloads?
 - What features of programming model and hardware architecture are needed?
- We need a diverse set of applications
 - The Rodinia suite supports multicore CPU and GPU

Motivations in Designing Rodinia

- Program behaviors that are well/poorly suited to GPUs have not been systematically explored
- Architects need diverse applications to help decide what hardware features should be included in the limited area budgets
- Diverse implementations for GPUs provide exemplars for different types of applications, assisting in the porting of new applications
Parsec vs. SPLASH-2 vs. Rodinia

<table>
<thead>
<tr>
<th></th>
<th>Parsec</th>
<th>SPLASH-2</th>
<th>Rodinia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>CPU</td>
<td>CPU</td>
<td>CPU and GPU</td>
</tr>
<tr>
<td>Programming Model</td>
<td>Pthreads, OpenMP, TBB</td>
<td>PARMACS macros</td>
<td>OpenMP, CUDA</td>
</tr>
<tr>
<td>Machine Model</td>
<td>shared memory</td>
<td>shared memory</td>
<td>shared memory, offloading</td>
</tr>
<tr>
<td>Application Domain</td>
<td>scientific/engineering, finance, multimedia</td>
<td>scientific/engineering, graphics</td>
<td>scientific/engineering, data mining</td>
</tr>
<tr>
<td>NO. of Applications</td>
<td>3 kernels, 9 apps</td>
<td>4 kernels and 8 apps</td>
<td>6 kernels and 5 apps</td>
</tr>
<tr>
<td>Optimized for</td>
<td>multicore</td>
<td>distributed shared memory, multithreaded, accelerator</td>
<td>manycore, accelerator</td>
</tr>
<tr>
<td>Incremental Opt. Ver.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory Space</td>
<td>HW cache</td>
<td>HW cache</td>
<td>HW/SW cache</td>
</tr>
<tr>
<td>Problem Sizes</td>
<td>small - large</td>
<td>small - medium</td>
<td>small - large</td>
</tr>
<tr>
<td>Special SW techniques</td>
<td>SW pipelining</td>
<td>NA</td>
<td>ghost-zone, persistent thread-block</td>
</tr>
<tr>
<td>Synchronization</td>
<td>barrier/lock/condition</td>
<td>barrier/lock/condition</td>
<td>barrier</td>
</tr>
</tbody>
</table>

Other Benchmark Suites

<table>
<thead>
<tr>
<th></th>
<th>Multithreaded</th>
<th>Domain-specific</th>
<th>Model</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEC CPU 2006</td>
<td></td>
<td></td>
<td>NA</td>
<td>CPU</td>
</tr>
<tr>
<td>SPEC OMP 2001</td>
<td></td>
<td></td>
<td>OpenMP</td>
<td>CPU</td>
</tr>
<tr>
<td>ALPBench</td>
<td></td>
<td></td>
<td>Pthreads</td>
<td>CPU</td>
</tr>
<tr>
<td>Biobench</td>
<td></td>
<td></td>
<td>NA</td>
<td>CPU</td>
</tr>
<tr>
<td>BioParallel</td>
<td></td>
<td></td>
<td>OpenMP</td>
<td>CPU</td>
</tr>
<tr>
<td>MediaBench</td>
<td></td>
<td></td>
<td>NA</td>
<td>CPU</td>
</tr>
<tr>
<td>MineBench</td>
<td></td>
<td></td>
<td>OpenMP</td>
<td>CPU</td>
</tr>
<tr>
<td>Parboil</td>
<td></td>
<td></td>
<td></td>
<td>CUDA</td>
</tr>
</tbody>
</table>
Discussion

- Benchmarking needs? Are existing benchmarks well designed?
- How to define a *kernel* versus an *application*?
- Is porting the existing suites (e.g. Parsec, Splash2) to the new platforms enough?
- What kind of features do you need for your research?
- What metrics do you care about?

NVIDIA GPU Architecture

- Streaming Multiprocessor (SM), Streaming Processor (SP)
- Specialized memory spaces
CUDA’s Domain Based Model

- Hierarchical Model
 - CPU launch kernels with large number of threads
 - Single Instruction Multiple Threads (SIMT)
 - Computation Domain
 - Grid -> Block -> Warp -> Threads
 - Synchronization within a thread block

Memory Hierarchy

- Relaxed memory consistency model
- Each thread can:
 - R/W per-block shared memory
 - R/W per-grid global memory
 - RO per-grid constant memory
 - RO per-grid texture memory
Vector Add: CUDA Host Code

```c
float *GPU_add_vectors(float *A_CPU, float *B_CPU, int N) {
    // Allocate GPU memory for the inputs and the result
    int vector_size = N * sizeof(float);
    float *A_GPU, *B_GPU, *C_GPU;
    cudaMalloc((void **) &A_GPU, vector_size);
    cudaMalloc((void **) &B_GPU, vector_size);
    cudaMalloc((void **) &C_GPU, vector_size);
    // Transfer the input vectors to GPU memory
    cudaMemcpy(A_GPU, A_CPU, vector_size, cudaMemcpyHostToDevice);
    cudaMemcpy(B_GPU, B_CPU, vector_size, cudaMemcpyHostToDevice);
    // Execute the kernel to compute the vector sum on the GPU
    dim3 grid_size = ...
    add_vectors_kernel <<< grid_size, threads_per_block >>> (A_GPU, B_GPU, C_GPU, N);
    // Transfer the result vector from the GPU to the CPU
    float *C_CPU = (float *) malloc(vector_size);
    cudaMemcpy(C_CPU, C_GPU, vector_size, cudaMemcpyDeviceToHost);
    return C_CPU;
}
```

Vector Add: CUDA Kernel Code

```c
__global__ void add_vectors_kernel(float *A, float *B, float *C, int N) {

    // Determine which element this thread is computing
    int block_id = blockIdx.x + blockDim.x * blockIdx.y;
    int thread_id = blockDim.x * block_id + threadIdx.x;

    // Compute a single element of the result vector (if it is valid)
}
```
Vector Add: OpenMP Code

```c
float *CPU_add_vectors(float *A, float *B, int N) {

    // Allocate memory for the result
    float *C = (float *) malloc(N * sizeof(float));

    // Compute the sum;
    #pragma omp parallel for
    for (int i = 0; i < N; i++) C[i] = A[i] + B[i];

    // Return the result
    return C;
}
```

Basic CUDA Optimizations

- Minimize data transfer between the host and the GPU
 - Asynchronous transfers and overlapping transfers with computation
 - Pinned memory
 - Algorithm changes to avoid memory transfer
Basic CUDA Optimizations

• Minimize the usage of control-flow operations
 – The DES example (if statements vs. lookup table)

![Graph showing performance comparison between if statements and lookup table]

Basic CUDA Optimizations

• Take advantage of different GPU memory spaces
 – Shared memory (bank conflict)
 – Texture and constant memory
• Coalesced memory accesses
• An example:

![Diagram illustrating row-major and column-major memory access patterns]
Leukocyte

- Boyer et. al. (IPDPS’09)
- Leukocyte detects and tracks rolling leukocytes (white blood cells) in vivo video microscopy of blood vessels

Optimizations

- Demo (CPU vs. GPU detection)
A GPU vs. FPGA Comparison

- **GPU:**
 Fixed design with high throughput and memory bandwidth
- **FPGA:**
 Uncommitted logic arrays that can approximate customized design
- **Applications:**
 - Gaussian Elimination
 - Needleman Wunsch
 - Data Encryption Standard (DES)

Implementation Example

- Our implementations of the three applications on FPGAs and GPUs are algorithmically similar
- For example: DES bit-wise permutation

FPGA hardware module	CUDA Code
--- | ---

```cpp
__global__ void permutation_kernel(int *lookup_table, device ...)
{ //lookup table is saved in the device memory
  int x= threadIdx.x; //thread id
  __shared__ char per_source[DATA_LENGTH];
  __shared__ char per_destination[DATA_LENGTH];
  __shared__ char per_destination[DATA_LENGTH];
  //each thread is responsible for copying one data
  per_destination[thread_idx] = per_source[lookup_table[thread_idx]]; ...
}
```
Performance

- GPU implementations show their relative advantage for large data sets
- The FPGA usually has the lowest overhead, but if taking clock frequency into account, it is not necessarily the fastest.

Mapping Applications to Accelerators

<table>
<thead>
<tr>
<th>Fit Good</th>
<th>GPU</th>
<th>FPGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>No interdependency and massively parallel (Gaussian Elimination).</td>
<td>Functions which are not directly supported by general purpose instruction sets (DES).</td>
<td></td>
</tr>
<tr>
<td>Operations that can not be efficiently implemented on the GPU (DES).</td>
<td>Implementations can take advantage of streaming and pipelining (Needleman-Wunsch).</td>
<td></td>
</tr>
<tr>
<td>Limited parallelism and low arithmetic intensity (Needleman-Wunsch)</td>
<td>Require a lot of complexity in design (Gaussian Elimination).</td>
<td></td>
</tr>
</tbody>
</table>
Challenges of Heterogeneous Systems

- Metrics for fair comparison
 - Other physical behaviors are equally important such as power, temperature, QoS, etc.
- Allocate tasks to the best-fit cores
- How many core types do we need?
- Models for different architectures
 - Things that make the world complicated:
 Different types of cores, memory hierarchy, coherence protocol, die size, etc.
- The balance between SW and HW design

OpenCL

- A unified framework for various platforms
- Similar to CUDA
- The techniques we used for Rodinia will be easily translated into OpenCL
- Work items, work groups, global memory space, synchronization in per-work-group storage
OpenCL vs. CUDA

• Revisit vectorAdd()

C for CUDA Kernel Code:
```c
__global__ void
t vectorAdd(const float * a, const float * b, float * c)
{
    // Vector element index
    int nIndex = blockIdx.x * blockDim.x + threadIdx.x;
    c[nIndex] = a[nIndex] + b[nIndex];
}
```

OpenCL Kernel Code
```c
__global__ void
t vectorAdd(const float * a,
             __global const float * b,
             __global float * c)
{
    // Vector element index
    int nIndex = get_global_id(0);
    c[nIndex] = a[nIndex] + b[nIndex];
}
```

The code is from NVIDIA Corporation, NVIDIA OpenCL JumpStart Guide, April 2009

Images are cited from OpenCL Parallel Computing for Heterogeneous Devices, http://www.khronos.org/opencl/
OpenCL Host Code:

```c
const unsigned int cnBlockSize = 512;
const unsigned int cnBlocks = 3;
const unsigned int cnDimension = cnBlocks * cnBlockSize;

// create OpenCL device & context
cl_context hContext;
hContext = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, 0, 0, 0);

// query all devices available to the context
size_t nContextDescriptorSize;
clSetContextInfo(hContext, CL_CONTEXT_DEVICES, 0, 0, &nContextDescriptorSize);
cld_device_id_t dDevices = malloc(nContextDescriptorSize);
clSetContextInfo(hContext, CL_CONTEXT_DEVICEST, nContextDescriptorSize, dDevices, 0);

// create a command queue for first device the context reported
cl_command_queue hCmdQueue;
hCmdQueue = clCreateCommandQueue(hContext, dDevices[0], 0);

// create & compile program
cl_program hProgram;
hProgram = clCreateProgramWithSource(hContext, 1, sProgramSource, 0, 0);
clBuildProgram(hProgram, 0, 0, 0, 0, 0);
```

The code is from NVIDIA Corporation, NVIDIA OpenCL JumpStart Guide, April 2009

Rodinia: A Benchmark Suite for Heterogeneous Computing

OpenCL Host Code:

```c
// create kernel
cl_kernel hKernel;
hKernel = clCreateKernel(hProgram, "vectorAdd", 0);

// allocate host vectors
float * hA = new float[cnDimension];
float * hB = new float[cnDimension];
float * hC = new float[cnDimension];

// initialize host memory
randomInit(hA, cnDimension);
randomInit(hB, cnDimension);

// allocate device memory
cl_mem hDeviceMemA, hDeviceMemB, hDeviceMemC;
hDeviceMemA = clCreateBuffer(hContext,
   CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, cnDimension * sizeof(cl_float),
   hA, 0);

hDeviceMemB = clCreateBuffer(hContext,
   CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, cnDimension * sizeof(cl_float),
   hB, 0);

hDeviceMemC = clCreateBuffer(hContext,
   CL_MEM_WRITE_ONLY, cnDimension * sizeof(cl_float),
   hC, 0);
```

The code is from NVIDIA Corporation, NVIDIA OpenCL JumpStart Guide, April 2009

Rodinia: A Benchmark Suite for Heterogeneous Computing
OpenCL Host Code

```c
// setup parameter values
clSetKernelArg(hKernel, 0, sizeof(cl_mem), (void *)&hDeviceMemA);
clSetKernelArg(hKernel, 1, sizeof(cl_mem), (void *)&hDeviceMemB);
clSetKernelArg(hKernel, 2, sizeof(cl_mem), (void *)&hDeviceMemC);

// execute kernel
clEnqueueNDRangeKernel(hCmdQueue, hKernel, 1, 0,
                       &cnDimension, 0, 0, 0);

// copy results from device back to host
clEnqueueReadBuffer(hContext, hDeviceMemC, CL_TRUE, 0,
                     cnDimension * sizeof(cl_TFloat),
                     &pC, 0, 0, 0);

delete[] pA;
delete[] pB;
delete[] pC;

cReleaseMemObject(hDeviceMemA);
cReleaseMemObject(hDeviceMemB);
cReleaseMemObject(hDeviceMemC);
```

The code is from NVIDIA Corporation, NVIDIA OpenCL JumpStart Guide, April 2009

Questions and Discussions

- What is the best way to deal with the portability and legacy code issues? New languages (e.g. OpenCL) or old languages (e.g. OpenMP, PGI) with compiler support?
- What is the best way to deal with large code bases?
- If software is optimized for specific hardware details, how to deal with rapid evolution?
The *Rodinia* Benchmark Suite

- Five applications and seven kernels
 - CUDA for GPUs and OpenMP for multicore CPUs
 - Various optimization techniques
- *Berkeley Dwarfs* are used as guidelines to choose applications with diverse characteristics.
 - Discussion: are the dwarfs a good taxonomy for application classification?
- A diverse range of application domains
- Different versions for several applications by applying incremental optimizations

Rodinia Applications

<table>
<thead>
<tr>
<th>Applications</th>
<th>Dwarfs</th>
<th>Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukocyte Det./Track</td>
<td>Structured Grid</td>
<td>Medical Imaging</td>
</tr>
<tr>
<td>SRAD</td>
<td>Structured Grid</td>
<td>Physics Simulation</td>
</tr>
<tr>
<td>HotSpot</td>
<td>Structured Grid</td>
<td>Image Processing</td>
</tr>
<tr>
<td>Back Propagation</td>
<td>Unstructured Grid</td>
<td>Pattern Recognition</td>
</tr>
<tr>
<td>Needleman Wunsch</td>
<td>Dynamic Programming</td>
<td>Bioinformatics</td>
</tr>
<tr>
<td>K-means</td>
<td>Dense Linear Algebra</td>
<td>Data Mining</td>
</tr>
<tr>
<td>Streamcluster</td>
<td>Dense Linear Algebra</td>
<td>Data Mining</td>
</tr>
<tr>
<td>Breadth-First Search</td>
<td>Graph Traversal</td>
<td>Graph Algorithms</td>
</tr>
<tr>
<td>Heartwall tracking</td>
<td>Structured Grid</td>
<td>Medical Imaging</td>
</tr>
<tr>
<td>MUMmerGPU</td>
<td>Graph Traversal</td>
<td>Bioinformatics</td>
</tr>
<tr>
<td>LU Decomposition</td>
<td>Dense Linear Algebra</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>CFD</td>
<td>Unstructured Grid</td>
<td>Fluid Dynamics</td>
</tr>
</tbody>
</table>
Use *Rodinia*

- Download site
- Can be used for running on both native GPUs and simulators such as GPGPUsim (ISPASS'09)
- We are preparing an OpenMP package compatible with the M5 simulator
- Rodinia is useful in
 - Manycore architecture research
 - Providing versions with successive layers of optimization, allowing designers to evaluate the impact of ways of parallelization on architectural design

A Rodinia Sub-Suite Hard for Compilers

- We provide a list of applications that may be relatively hard for compilers to automatically generate GPU codes
- Applications: *Needleman Wunsch, LU Decomposition, Myocyte, Heartwall and Leukocyte*
- Some applications have multiple levels of parallelism that is hard to detect
- Useful for comparing compiler generated code with manually optimized *Rodinia* code
Rodinia Usage

- Package Structure

```plaintext
rodinia_1.0/bin  : binary executables
rodinia_1.0/common : common configuration file
rodinia_1.0/cuda  : source code for the CUDA implementation
rodinia_1.0/data  : input files
rodinia_1.0/openmp : source code for the OpenMP implementation
```

- Modify common/make.config

```plaintext
# Rodinia home directory
RODINIA_HOME = ~/rodinia

# CUDA binary executables
CUDA_BIN_DIR = $RODINIA_HOME/bin/linux/cuda

# OpenMP binary executable
OMP_BIN_DIR = $RODINIA_HOME/bin/linux/openmp

# A CUDA Toolkit installation path
CUDA_DIR = /usr/local/cuda

# A CUDA SDK installation path
SDK_DIR = /amd64/toolset/NVIDIA_CUDA_SDK
```

- In the Rodinia home directory, simply type `make` to build

Case I: HotSpot

- A widely used tool to estimate processor temperature
- **Dwarf: Structured Grid**
 - Each cell in the 2-D grid represents the average temperature value of the corresponding area of the chip

![Naive Implementation Diagram]

- Naïve Implementation
 - Each data block is mapped to one thread block
 - The boundary data is exchanged between two iterations
 - Poor performance
 - global memory accesses
 - synchronization via kernel call
Ghost-Zone

- Use a ghost zone of redundant data around each block to minimize global communication overhead
- If the base is an $N \times N$ data block, then after one iteration, the inner $(N - 2) \times (N - 2)$ data block contains valid results.
- Take advantage of the low-latency shared memory and reduce kernel-call overhead

![Ghost-Zone Diagram]

Case II: Kmeans

- A widely used clustering algorithm
- Dwarf: Dense Linear Algebra
- Procedures
 - Initial k cluster centers are chosen
 - Associate each data object to closest centers
 - Recalculate centers by taking the mean of all data objects in clusters
 - Repeat until no objects move from one cluster to another
- CUDA implementation
 - Data objects are partitioned into thread blocks, with each thread associated with one data object
- Optimizations
 - The array holding the centers is organized to fit in the constant memory
 - The read-only main array is bound to a texture to take advantage of the texture memory
Case III: Needleman-Wunsch

- A global optimization method for DNA sequence alignment
- **Dwarf: Dynamic Programming**
- Two major phases:
 1) It fills the matrix with scores in a diagonal-strip manner (parallel)
 2) A trace-back process finds the optimal alignment (sequential)
- Optimizations: two levels of parallelism
 - Data elements on the same diagonal within a thread block
 - Thread blocks on the same diagonal within the overall matrix

```
cudaMalloc((void**)&reference_cuda, sizeof(int)*size);
cudaMalloc((void**)&matrix_cuda, sizeof(int)*size);
cudaMemcpy(reference_cuda, reference, sizeof(int) * size, cudaMemcpyHostToDevice);
cudaMemcpy(matrix_cuda, input_sequences, sizeof(int) * size, cudaMemcpyHostToDevice);

dim3 dimGrid;
dim3 dimBlock(BLOCK_SIZE, 1);
int block_width = (num_cols - 1)/BLOCK_SIZE;

printf("Processing top-left matrix\n");
for(int i = 0; i < block_width; i++){
dimGrid.x = 1;
dimGrid.y = i;
needle_cudashared_1<<dimGrid, dimBlock>>(reference_cuda, matrix_cuda,
num_cols, penalty, i, block_width);
}
printf("Processing bottom-right matrix\n");
for(int i = block_width; i >= 1; i--){
dimGrid.x = 1;
dimGrid.y = i;
needle_cudashared_2<<dimGrid, dimBlock>>(reference_cuda, matrix_cuda,
num_cols, penalty, i, block_width);
}
cudaMemcpy(output_sequences, matrix_cuda, sizeof(int) * size, cudaMemcpyDeviceToHost);
```
Code Walk-Through (NW kernel)

```
__shared__ int temp[4] = [BLOCK_SIZE / 4];
__shared__ int ref[BLOCK_SIZE / 4];

if (tx == 0)
    temp[tx / 4] = matrix_cuds[tx_index_n];

for (int ty = 0; ty < BLOCK_SIZE / 4; ty++)
    ref[ty * tx] = reference[index + 4 * tx * ty];
__syncthreads();

tmp[(tx / 4) + tx_index_m * cols * tx] = matrix_cuds[tx_index_n];
__syncthreads();
tmp[(tx / 4) + tx_index_m * cols * tx] = matrix_cuds[tx_index_n];
__syncthreads();

for (int n = 0; n < BLOCK_SIZE / 4; n++)
    if (tx == 0)
        int t_index_p = n - tx + 1;
    temp[t_index_p * 4] = reference[tx_index_m] + ref[tx_index_p * 4];
    temp[t_index_p * 4] = penalty, temp[t_index_p * 4] = penalty;
__syncthreads();

for (int n = BLOCK_SIZE / 4; n < BLOCK_SIZE; n++)
    if (tx == 0)
        int t_index_p = tx + BLOCK_SIZE - n;
    temp[t_index_p * 4] = reference[t_index_m] + ref[t_index_p * 4];
    temp[t_index_p * 4] = penalty, temp[t_index_p * 4] = penalty;
__syncthreads();

for (int ty = 0; ty < BLOCK_SIZE / 4; ty++)
    matrix_cuds[index + 4 * ty * tx] = tmp[ty * tx];
```

Incremental Performance Improvement

- Which optimization to apply and the order to apply optimizations is not always intuitive
Experience Using CUDA and Lesson Learned

- Mappings of applications’ data structures to CUDA’s domain-based model
- Non-intuitive algorithmic optimization techniques
- Memory access patterns
- Global memory fence
- Offloading decision considering various overheads
- Tradeoff between single-thread performance and parallel throughput

Performance

- GPU: NVIDIA Geforce GTX 280 (1.3 GHz shader clock)
- CPU: Intel Quad-core Intel Core 2 Extreme (3.2 GHz)
- Speedups: 5.5 ~ 80.8 (single-thread) and 1.6 ~ 26.3 (four-thread)
Diversity Analysis

- **Microarchitecture-Independent Workload Characterization (MICA)** by Hoste and Eeckhout (*IISWC’06*)
- **Metrics:** Instruction mix, Register traffic, Working set, Data-stream size and Branch-predictability, etc.

Rodinia Statistics

<table>
<thead>
<tr>
<th></th>
<th>KM</th>
<th>NW</th>
<th>RS</th>
<th>BP</th>
<th>SRAD</th>
<th>LC</th>
<th>BFS</th>
<th>SC</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>kernels</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Barriers</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Exec Count</td>
<td>100</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Optimizations</td>
<td>C/CAS/1</td>
<td>S</td>
<td>S/Pyramid</td>
<td>S</td>
<td>S</td>
<td>C/CAS/1</td>
<td>S</td>
<td>S/CA</td>
<td></td>
</tr>
<tr>
<td>Problem Size</td>
<td>8926 points</td>
<td>34 features</td>
<td>290x290 data points</td>
<td>500x500 data points</td>
<td>65536 input nodes</td>
<td>2048 x 2048 pixels/frame</td>
<td>219 x 460 pixels/frame</td>
<td>956 nodes</td>
<td>55536 points</td>
</tr>
<tr>
<td>CPU execution time</td>
<td>20.9 s</td>
<td>395.1 ms</td>
<td>3.6 ms</td>
<td>94.2 ms</td>
<td>40.6 s</td>
<td>122.4 s</td>
<td>3.7 s</td>
<td>171.0 s</td>
<td>33.9 ms</td>
</tr>
<tr>
<td>1.2 Miss Rate (%)</td>
<td>27.4</td>
<td>41.7</td>
<td>7.9</td>
<td>7.8</td>
<td>1.8</td>
<td>0.06</td>
<td>21.0</td>
<td>8.4</td>
<td>11.7</td>
</tr>
</tbody>
</table>

C = Constant Memory; CA = Coalesced Memory Access; T = Texture; S = Shared Memory

- Resource usage
- Problem size
- Number of kernels and threads
- Optimization techniques
 - Hardware-level optimizations
 - *Shared, Constant and Texture* memory, and *Coalesced Access*
 - Algorithm-level optimizations
 - *Ghost Zone (HotSpot)*, Persistent Thread Block (Leukocyte)
Breakdown of Execution Time

- Memory copying: 2%-76%, excluding I/O and initial setup
 - Due to CPU phases between GPU kernels: SRAD, Back Propagation
 - All the computations are done on the GPU: Needleman Wunsch, HotSpot

Power Consumption

- GPU power consumption: 38 ~ 87 W (186 W idle power)
- The power-performance efficiency almost always favors the GPU
Comparison with Parsec

- Major features evaluated:
 instruction mix, working set, and sharing behavior
- A Pintool is used to collect program characteristics
- Clustering analysis is based on distances between applications
- Principal component analysis (PCA) is used to identify important characteristics

\[
Z_i = \sum_{j=1}^{p} a_{ij} X_j \\
X_1, X_2, \ldots, X_p \rightarrow Z_1, Z_2, \ldots, Z_p
\]

(i) \(\text{Var}[Z_1] \geq \text{Var}[Z_2] \geq \ldots \geq \text{Var}[Z_p] \)

(ii) \(\text{Cov}[Z_i, Z_j] = 0, \forall i \neq j \)

Comparison with Parsec

- Parsec and Rodinia span almost similar application space
Instruction Mix

- *Rodinia* demonstrates instruction mix features not in Parsec

Working Set

- Mummer in *Rodinia* is significantly different from the rest
Sharing

- Heartwall in Rodinia is significantly different from the rest

Confidence

\[\sum_{i=1}^{p} Var[X_i] = \sum_{i=1}^{p} Var[Z_i] \]

Variance Explained: \(\frac{\sum_{i=1}^{q} Var[Z_i]}{\sum_{i=1}^{p} Var[X_i]} \)
General Discussions about Benchmarking

• How to make benchmark suites more useful? What are potential research questions in benchmarking?
• How optimized? Average or Code Hero?
• Stressmarks, building blocks, standalone applications, workflows?
• What languages?
• What is the new “general purpose”? (supercomputing, cloud computing, mobile platforms, netbooks, etc.)
• What are the new metrics?
• How to make it more useful for prediction?
• Any comments on the Rodinia design, its To-Do list and potential usage?
• A small exercise:

 What is your top-3 wish list for what is missing in current multicore/heterogeneous benchmarking?

Conclusion

• The Rodinia benchmarks exhibit diverse application characteristics
• Rodinia is the first suite that allows comparison between multicore CPU and GPU
• Future work includes:
 – Add new applications, including the ones with poor GPU performance
 – Include more inputs representing diverse behavior
 – Extend Rodinia to support more platforms
 – Develop architecture-independent metrics and tools to compare different platforms
Thank you!

Please visit

http://lava.cs.virginia.edu/wiki/rodinia