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Motivation

• Several past studies on temperature-aware CPU designs
• BUT potential unexplored at higher-levels of system

asuwlink.uwyo.edu/ ~jimkirk/
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Cooling infrastructure
− At high-end, ~1W of cooling for every 1W of power!

− TCO costs: $4-8 million cooling costs for 10MW data center
− Environmental costs:          11M GJ + 2M tons CO2 for US machines

Reliability and availability
− Mechanical parts – failure rates
− Thermal redlining if inlet exceeds 30C
− Lower operational efficiency at higher temperatures

• 10-15C increase => server/disk failure rates up by 2X [Uptime, Cole]

Exacerbated by consolidation, overprovisioning & density trends

The Temperature Problem in Data Centers
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Addressing the Temperature Problem
• Conventional approaches at facilities level

− New cooling approaches or better cooling delivery

• This work: temperature-aware resource provisioning
− Architecting a temperature-aware resource scheduler

• Characterizing the indirectly-controlled delayed-response metric
− Metrology: Leverage thermo-dynamics-based air-flow equations

• Combining IT level and facilities level (space and topology relations)
− Monitoring: Deploy a location-aware knowledge plane [Splice]

• Dealing with discrete power states
− Policies: Algorithms for “zonal proximity”

− Preliminary results 
• Significant cooling savings (within 94% of best-effort case)
• Eliminate system failures caused by thermal emergencies
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Outline for talk
• Motivation
• Background and methodology
• Temperature-aware resource scheduling
−Metrology
−Monitoring
−Policy

• Summary and Future Work
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Background and Methodology
Conventional data center model

− 11.7mx8.5mx3.1m with 0.6m plenum
− 1120 servers 

• 4 rows x 7 racks x 40 1U servers
− 4 CRAC @ 86KW, hot/cold aisles
− Server-pair power states 

• 300W (idle), 580W (full)

Scheduling media rendering workloads
− @ utilizations of 25% and 50%
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Defining the problem: temperature 
as an indirectly-controlled metric

• Temperature as an indirectly-controlled metric
− Non-intuitive correlations between system usage, power, 

temperature
− Delayed response times
− Need metrology to characterize these effects

Individual server Data Center
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Metrology to capture temperature 
variation effects [Sharma+2003]

• Thermodynamics-based proxies for thermal behavior
− Model hot air infiltration into cold aisle and mixing
− Model short circuiting (cold air directly to CRAC inlet)

• Thermal policies for heat distribution
− W = Q/COP; COP = f(Tref); Q = mCp(Treturn-Tref)
− Reducing Treturn means Tref can be increased correspondingly

• This talk: Use exhaust temperature as first-order proxy
− Make exhaust temp uniform to maximize inlet temperature (~25C)
− Distribute heat inversely proportional to exhaust temp

− “Ideal distribution” 
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Savings from applying “ideal” policy

Smoothed exhaust temperature profile
Higher CRAC efficiency + higher return 
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Implementation?
• Thermodynamics-based formulation of objective 

function and actuation impact
• BUT how do we implement this in a real system

System  

Actuators

Analysis and control agents

Instrumentation  & 
monitoring 
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Instrumentation and Monitoring
• Current instrumentation approaches inadequate for 

temperature-aware resource scheduling

• Needs
− Instrumentation across IT/facilities layers

• “Expanded computing environment”
− Conventional IT metrics (e.g., CPU, network, etc.)
− Environmental sensors (power, temperature, humidity)

• Proprietary and diverse “publish models” (e.g, OPC)
• Synchronization

− Data repository and access
• Need for scalability to hundreds of sensors, millions of readings
• Notion of higher-level and hierarchical object views 
• Speed of query access 

Facilities,
Environment

Network

CPU/ 
RAM
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DatabaseData collection & 
filtering engine
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A location-aware information plane 
[Moore+2003]

− Instrumentation data sources
• Unified correlated data collection and aggregation

− Data collection and filtering
• Support for multiple interfaces

− Database schema
• Enables higher-level object views, scalable, support for newer data 

types
− Analysis and control agents

• SQL interface to database
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Deployment 
Splice deployed at HP Labs 

Utility Data Center (UDC)
− HP Openview for performance 

metrics and OPC interface for 
temperature and power sensors

Use with temperature-aware 
scheduling

But also other IT-facilities-
boundary optimizations
− E.g., operations automation 

(problem detection, cause-effect 
analysis, provisioning, …) 
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Policies

• “Ideal thermal policy” is analog
−How do we discretize it for server power states and 

static task scheduling with no workload migration?
−Simple heuristic based on thermal policy

• Sort exhaust temperatures
• Place hot loads on coolest spots

− For our data center => interior middle racks

System  

Actuators

Analysis and control agents

Instrumentation  & 
monitoring 
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40% worse compared to ideal!

• Discreteness leads to imbalance and new hot spots
− Increased energy to cool 

Ideal ColdInlet
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Proximity-based algorithms
• “Two-pass Discretize”
− Intra-row first-pass; inter-rack second-pass

• Schedule per floor of analog allocation
• Schedule excess with bias towards “median”

• “Proximity-based Poaching”
−Single pass through three-dimensional space

• Assign server load
• derate adjacent servers for new analog allocation
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Power savings close to ideal!

Ideal Poaching

• Heat distribution matches at zonal level
− Two-pass within 15%; Poaching within 6% of ideal
− Poaching yields close to 25% energy savings w.r.t bad scheduling
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Temperature-aware scheduling for 
thermal emergencies

• Faster response to thermal emergencies
−Controlling heat source better than adjusting heat sinks
−Same algorithms can be applied with emergency trigger 
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• Applying “proximity-based-poaching”
−Reduce thermal redlining servers by 55% in first 30 sec
−Potential to fully eliminate thermal redlining failures

Region

Temperature-aware scheduling for 
thermal emergencies
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Summary
• Temperature-aware provisioning valuable at data center level

− Cooling costs reduction and increased reliability/availability

• This work: Architecting a temperature-aware resource scheduler
− Characterizing the indirectly-controlled delayed-response metric

• Metrology: Leverage thermo-dynamics-based air-flow equations
− Combining IT level and facilities level (space and topology relations)

• Monitoring: Deploy a location-aware knowledge plane [Splice]
− Dealing with discrete power states

• Policies: Algorithms for “zonal proximity”

− Preliminary results 
• Significant cooling savings (within 94% of best-effort case)
• Eliminate system failures caused by thermal emergencies

• Ongoing work
− More elaborate thermal policies and coarser grain policies
− More discrete power states (v/f scaling, virtual machines)
− Control on CRAC air flow rates



June 30, 2004 21

Questions?
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Related Work
• Traditional approaches

− Facilities-level work on cooling systems [IPACK]
• Costs, granularity of control and response, do not address heat

− Power-aware IT resource scheduling [SOSP02, PACS02, WCOP01]
• Focus on IT power, temperature can be improved or worsened 

• Hybrid approach: Control at IT-facilities intersection
− Workload migration proposed in Sharma et al [HPLTR03]

• Focus on thermo-dynamic thermal policies in ideal scenario

• Our work: temperature-aware resource scheduling
• Real-world constraints, architected solution
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Temperature-aware scheduling: 
Challenges
• Temperature as an indirectly-controlled metric

− Non-intuitive correlations between system usage, power, 
temperature

− Delayed response times

• Need for location-enhanced knowledge plane
− Integrate IT-level metrics with facilities-level metrics
− Capture spatial and topological relationships

• Discreteness in power states
− Constraints on power modes in system
− Constraints on workload migration modes
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Backup
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Proximity-based scheduling

Ideal Poaching

Ideal Poaching


