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Benefits of Dynamic Thermal Management

■ Cooling servers, server clusters
◆ cooling facilities often dimensioned for worst-case temperatures or 

overprovisioned

■ Guarantee temperature limits
◆ no need for overprovisioning of cooling units

◆ reduced costs (floor space, energy consumption, maintenance, ...)

■ Increased reliability
◆ safe operation in case of cooling unit failure

◆ avoid local hot-spots in the server room

➜ Temperature sensors
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Drawbacks of Existing Approaches

■ If critical temperature is reached
◆ throttle the CPU:

e.g. halt cycles, reduced duty cycle, reduced speed

■ But: neglect of application-, user- or service-specific requirements
due to missing online information about
◆ the originator of a specific hardware activation and

◆ the amount of energy consumed by that activity

➜ Throttling penalizes all tasks
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Outline

■ From events to energy
◆ event-monitoring counters

◆ on-line estimation of energy consumption

■ From energy to temperature
◆ temperature model

■ Energy Containers
◆ accounting of energy consumption

◆ task-specific temperature management

■ Infrastructure for temperature management in distributed systems
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Approaches to Energy Characterization

■ Reading of thermal diode embedded in modern CPUs
◆ low temporal resolution

◆ significant overhead

➜no information about originator of power consumption
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Approaches to Energy Characterization

■ Reading of thermal diode embedded in modern CPUs
◆ low temporal resolution

◆ significant overhead

➜no information about originator of power consumption

■ Counting CPU cycles
◆ time as an indicator for energy consumption

◆ time as an indicator for contribution to temperature level

◆ throttling according to runtime

➜but: wide variation of the active power consumption
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Approaches to Energy Characterization

■ P4 (2 GHz) running compute intensive tasks: CPU load of 100%
◆ variation between 30–51 W
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From Events to Energy: Event-Monitoring Counters

■ Event counters register energy-critical events in the complete system 
architecture.
◆ several events can be counted simultaneously

◆ low algorithmic overhead

◆ high temporal resolution

◆ fast response

■ Energy estimation

➜correlate a processor-internal event to an amount of energy

◆ select several events and use a linear combination of these event 
counts to compute the energy consumption
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From Events to Energy: Methodology

■ Measure the energy consumption of training applications

■ Find the events with the highest correlation to energy consumption

■ Compute weights from linear combination of event counts and real 
power measurements of the CPU

➜solve linear optimization problem:
find the linear combination of these events that produce the minimum 
estimation error

➜avoid underestimation of energy consumption


� �����	
 ��
��	
 ��������������–⋅



∑

��������������� � �����	
 ��
��	
⋅



∑≤



Dynamic Thermal Management for Distributed Systems
© Andreas Weissel • University of Erlangen-Nuremberg • Computer Science 4 (Operating Systems) • 2004

10

T
A

C
S

’0
4

From Events to Energy: Methodology

■ Set of events and their weights

■ Limitations of the Pentium 4
◆ insufficient events for MMX, SSE & floating point instructions

◆ the case for dedicated Energy Monitoring Counters

event weight [nJ]

time stamp counter 6.17

unhalted cycles 7.12

µop queue writes 4.75

retired branches 0.56

mispred branches 340.46

mem retired 1.73

ld miss 1L retired 13.55
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Outline

■ From events to energy
◆ event-monitoring counters

◆ on-line estimation of energy consumption

■ From energy to temperature
◆ temperature model

■ Energy Containers
◆ accounting of energy consumption

◆ task-specific temperature management

■ Infrastructure for temperature management in distributed systems
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From Energy to Temperature: Thermal Model

■ CPU and heat sink treated as a black box with energy in- and output

◆ energy input: electrical energy being consumed

◆ energy output: heat radiation and convection

CPUEnergy(#Events)

Thermal Capacity

Heat Sink
Thermal Resistance

Energy(∆Temp)
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From Energy to Temperature: Thermal Model

■ Energy input: energy consumed by the processor

CPUEnergy(#Events)

Thermal Capacity

Heat Sink
Thermal Resistance

Energy(∆Temp)
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From Energy to Temperature: Thermal Model

■ Energy output: primarily due to convection

CPUEnergy(#Events)

Thermal Capacity

Heat Sink
Thermal Resistance

Energy(∆Temp)
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From Energy to Temperature: Thermal Model

■ Altogether:

◆ energy estimator ➔ power consumption P

◆ time stamp counter ➔ time interval dt

◆ the constants ,  and  have to be determined
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From Energy to Temperature: Thermal Model

■ Altogether:

◆ energy estimator ➔ power consumption P

◆ time stamp counter ➔ time interval dt

◆ the constants ,  and  have to be determined

■ Solving this differential equation yields
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Thermal Model: Dynamic Part

■ Measurements of the processor temperature
◆ on a sudden constant power consumption and

◆ a sudden power reduction to HLT power.

➜fit an exponential function to the data: coefficient = ��
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Thermal Model: Static Part

■ Static temperatures and power consumption of the test programs
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Thermal Model: Static Part

■ Linear function to determine  and �� ��
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Thermal Model: Implementation

■ Linux 2.6 kernel

■ Periodically compute a temperature estimation from the estimated 
energy consumption

■ Deviation of a few degrees celsius over 24 hours
◆ or if ambient temperature changes

■ Re-calibration with measured temperature every few minutes
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Thermal Model: Accuracy
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Outline

■ From events to energy
◆ event-monitoring counters

◆ on-line estimation of energy consumption

■ From energy to temperature
◆ temperature model

■ Energy Containers
◆accounting of energy consumption
◆ task-specific temperature management

■ Infrastructure for temperature management in distributed systems
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Properties of Energy Accounting

■ Accounting to different tasks/activities/clients
◆ example: web server serving requests from different client classes

◆ e.g. Internet/Intranet, different service contracts

■ “Resource principal” can change dynamically

■ Client/server relationships between processes
◆ account energy consumption of server to client
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Energy Containers

■ Resource Containers [OSDI ’99] ➔ Energy Containers
◆ separation of protection domain and “resource principal”

■ Container Hierarchy
◆ root container (whole system)

◆ processes are attached to containers

◆ this association can be changed 
dynamically (client/server relationship)

➜energy is automatically accounted to 
the activity responsible for it

■ Energy shares
◆ amount of energy available (depending on energy limit)

◆ periodically refreshed

◆ if a container runs out of energy, its processes are stopped

web server

root

Intranet Internet

80% 20%

131.188.34.*
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Energy Containers

■ Example:
web server working for two clients with different shares

0 100 200 300
time (seconds)

0

10

20

30

40

50

60
p
o
w

e
r 

co
n
su

m
p
tio

n
 (

W
a
tt
)

web server (total)
client1 (80% share)
client2 (20% share)

Start throttling



Dynamic Thermal Management for Distributed Systems
© Andreas Weissel • University of Erlangen-Nuremberg • Computer Science 4 (Operating Systems) • 2004

26

T
A

C
S

’0
4

Task-specific Temperature Management

■ Periodically compute an energy limit for the root container
(depending on the temperature limit )

■ Dissolve to  ➔ 

■ Energy budgets of all containers are limited according to their shares

■ Tasks are automatically throttled according to their contribution to the 
current temperature

■ Throttling is implemented by removing tasks from the runqueue
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Temperature Management

■ Example: Enforcing a temperature limit of 45º
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Outline

■ From events to energy
◆ event-monitoring counters

◆ on-line estimation of energy consumption

■ From energy to temperature
◆ temperature model

■ Energy containers
◆ accounting of energy consumption

◆ task-specific temperature management

■ Infrastructure for temperature management in distributed 
systems



Dynamic Thermal Management for Distributed Systems
© Andreas Weissel • University of Erlangen-Nuremberg • Computer Science 4 (Operating Systems) • 2004

29

T
A

C
S

’0
4

Energy Containers

■ Distributed energy accounting

◆ Id transmitted with the network packets (IPv6 extension headers)

◆ receiving process attached to the corresponding energy container

◆ temperature and energy are cluster-wide accounted and limited

◆ transparent to applications and unmodified operating systems

id 1

root

Id 2 id 1

root

id 2 id 1

root

id 2

IPv6 IPv6



Dynamic Thermal Management for Distributed Systems
© Andreas Weissel • University of Erlangen-Nuremberg • Computer Science 4 (Operating Systems) • 2004

30

T
A

C
S

’0
4

Energy Containers

■ Energy accounting across machine boundaries
◆ requests from two different clients represented by two containers

◆ web server sends requests to factorization server

➜the energy consumption of the server is correctly accounted to the client
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Infrastructure for DTM in Distributed Systems

■ Distributed energy accounting

■ Foundation for policies managing energy and temperature in server 
clusters
◆ account, monitor and limit energy consumption and temperature of 

each node

■ Examples
◆ set equal energy/temperature limits for all servers

➜cluster-wide uniform temperature and power densities, no hot spots in 
the server room

◆ use energy/temperature limits to

➜throttle affected servers in case of a cooling unit failure

➜reduce number of active cooling units in case of low utilization
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Conclusion

■ Event-monitoring counters enable
◆ on-line energy accounting

◆ task-specific temperature management

■ Correctly account client/server relations across machine boundaries

■ Transparent to applications and unmodified operating systems

■ Future directions
◆ examine more sophisticated energy models

◆ task-specific frequency scaling to adjust the thermal load
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