Research Challenges on Temperature-Aware Computer Systems

Antonio González

Intel-UPC Barcelona Research Center

2nd Workshop on Temperature-Aware Computer Systems, Madison, WI, June 5, 2005

Temperature Affects Cooling Cost

- IBM S/390:
 - 350-V bulk power subassembly (under cover)
 - Processor cage:
 - Contains processors, memory and I/O
 - Dual redundant three-phase line cord
 - Distributes power to system
 - Five I/O slots
 - MCM/evaporator
 - 350-V integrated battery
 - Modular cooling unit
 - Expansion cage:
 - Powered from processor cage
 - Twenty-two I/O slots

Temperature Affects Performance and Power

Temperature Affects Reliability

The Arrhenius Equation: \(\text{MTF} = A \exp\left(\frac{E_a}{K \cdot T}\right) \)

- \(\text{MTF} \): mean time to failure at \(T \)
- \(A \): empirical constant
- \(E_a \): activation energy
- \(K \): Boltzmann's constant
- \(T \): absolute temperature

Failure mechanisms
- Die metalization (Corrosion, Electromigration, Contact spiking)
- Oxide (charge trapping, gate oxide breakdown, hot electrons)
- Device (ionic contamination, second breakdown, surface-charge)
- Die attach (fracture, thermal breakdown, adhesion fatigue)
- Interconnect (wirebond failure, flip-chip joint failure)
- Package (cracking, whisker and dendritic growth, lid seal failure)

Most of the above increase with \(T \) (Arrhenius)
Notable exception: hot electrons are worse at low temperatures
Temperature Variation

Temporal variation of SPEC applications over time

Source: “A Quick Thermal Tutorial”
Kevin Skadron, Mircea Stan, U. of Virginia 2005

Spatial

Thermal Map Pentium M (simulated)
(lowest) blue, green, yellow, orange, red (highest)

Source: Lev Finkelstein, Intel 2005

The Thermal Wall

Performance scaling of microprocessors

Same area (Moore’s law)
- Typical growth factors: 1.75X per generation
- Same area: 1.75X per generation
- Same power: 1.55X per generation

In a thermally limited environment
Evolutionary Uarch will diminish its performance return

Source: Ronny Ronen
Basic Concepts

- Temperature is a function of power density
- Reducing temperature implies
 - Increasing area
 - Increases wire delays \rightarrow Big impact on performance
 - Reducing power (slower transistors, simpler blocks)
 - May impact performance if not done carefully

Critical Areas of Research

- Modeling
 - Heat transfer
 - Thermal sensor’s response
- Floorplan
 - Tradeoff between wire delays and peak temperature
- Microarchitecture techniques
 - Throttling
 - Clustering
 - Thermal steering
 - Cluster hopping
 - DVS/DFS
 - GALS
 - At the core granularity (multi-core)
 - Adaptive microarchitectures
- More effective cooling solutions
 - Constrained by weight, noise and power
Will Put Off the Thermal Wall but...

- A breakthrough is needed
 - New materials (e.g. High-K gate dielectric)
 - New devices (e.g. Tri-gate transistors)
 - New technology (e.g. carbon nanotubes, III-V transistors)
 - New circuit design techniques (e.g. asynchronous)
 - New microarchitectures (e.g. many simple cores)
 - ...

The Challenge:

Reduce Energy While Increasing Performance