Event-Driven Thermal Management in SMP Systems

Andreas Merkel • Frank Bellosa • Andreas Weissel
System Architecture Group
University of Karlsruhe

Second Workshop on Temperature-Aware Computer Systems
June 5, 2005
State of the Art in Thermal Design

- Worst case thermal design
 - Overprovisioning
 - High cost
- More moderate thermal design power
 - Throttling to handle “hot” tasks
 - Performance penalties
Thermal Imbalances in SMP Systems

- Difference in power consumption of tasks
- Hot and cold processors
- Our Approach:
 - Migrate hot tasks away from a hot processor
 - Combine hot tasks with cool tasks on a processor
 ➔ Reduce need for throttling
Contributions

- Migrate hot tasks away from a hot processor
- Combine hot tasks with cool tasks on a processor

Prerequisites:
- Characterization of tasks
 - Task Energy Profiles
- Policy for assigning tasks to CPUs
 - Energy-Aware Scheduling
Contributions

- Migrate hot tasks away from a hot processor
- Combine hot tasks with cool tasks on a processor

Prerequisites:
- Characterization of tasks
 - Task Energy Profiles
- Policy for assigning tasks to CPUs
 - Energy-Aware Scheduling
Contributions

- Migrate hot tasks away from a hot processor
- Combine hot tasks with cool tasks on a processor

Prerequisites:
- Characterization of tasks
 - Task Energy Profiles
- Policy for assigning tasks to CPUs
 - Energy-Aware Scheduling
Outline

- Task Energy Profiles
- Energy-Aware Scheduling
 - Energy Balancing
 - Hot Task Migration
- Evaluation
- Conclusion
Task Energy Profiles
Characterizing Tasks

- Thermal diode
 - High thermal capacitance of chip and heat sink
 - Short scheduling intervals
 ➔ CPU temperature: mix of multiple tasks' characteristics

- Power consumption
 - 37W to 61W on Pentium 4 Xeon (2.2 GHz) for compute-intensive tasks
 ➔ Characterize tasks by their individual power consumption
Characterizing Tasks

- **Power consumption**
 - 37W to 61W on Pentium 4 Xeon (2.2 GHz) for compute-intensive tasks

 - Characterize tasks by their individual power consumption
Task Energy Profiles

- **Definition:** Energy consumption for one timeslice
- **Behavior of tasks depends on input data**
 - Online energy estimation required
- **Tasks show phases of constant power consumption**
 - Exponential average of energy consumed during past timeslices
- **Requirement:**
 - Determine the amount of energy the CPU consumes during one timeslice
Energy Estimation using Event Monitoring Counters

- Estimate energy using event monitoring counters
- Count processor internal events
- Assign amount of energy to each event
- Calculate linear combination of counter values:
 - \[\text{Energy} = \sum_i \# \text{event}_i \cdot \text{weight}_i \]
- Error
 - < 10% for real-world integer applications
 - Higher for multimedia and floating point applications
Thermal Model

- What is the processor temperature after a task with power consumption P ran for one timeslice?
- Thermal model of processor and heat sink
- Models temperature with exponential function
Thermal Model

- What is the processor temperature after a task with power consumption P ran for one timeslice?
- Thermal model of processor and heat sink
- Models temperature with exponential function
Energy-Aware Scheduling
Energy Aware Scheduling

- Objectives:
 - Minimize the need for throttling processors
 - Avoid unnecessary migrations (cache affinity)

- Best policy depends on number of tasks per runqueue

 - More than one task
 - Balance power consumption between CPUs

 - One task
 - Migrate task before CPU overheats
Linear Energy Balancing

- Goal: Balance CPU temperatures
- Intuitive approach: Balance CPU power
 - Equalize the average of task energy profiles for all runqueues
 - Calculated power consumption rate
 - Mirrors future energy consumption
Linear Energy Balancing

- Goal: Balance CPU temperatures
- Intuitive approach: Balance CPU power
 - Equalize the average of task energy profiles for all runqueues
 - Calculated power consumption rate
 - Mirrors future energy consumption

- Problems:
 - Does not consider tasks that are blocked or have terminated
 - Heat produced by those tasks is still stored in the chip
 - Need to distinguish between hot and cool CPUs
Exponential Energy Balancing

- Fit averaging function to thermal model
- Exponential average of CPU's power consumption
 - Empirical power consumption rate
 - Mirrors past energy consumption ➔ temperature
 - Calibrate parameters to thermal model
Exponential Energy Balancing

- Fit averaging function to thermal model
- Exponential average of CPU's power consumption
 - Empirical power consumption rate
 - Mirrors past energy consumption ➔ temperature
- Calibrate parameters to thermal model

![Graph showing exponential energy balancing over time]
Energy Balancing

- Use both rates for energy balancing
- Migrate a hot task from CPU A to CPU B if both rates for A are greater than both rates for B
 - Hysteresis
 - Avoids ping-pong effects
 - Avoids over-balancing
Energy Balancing

- Use both rates for energy balancing
- Migrate a hot task from CPU A to CPU B if both rates for A are greater than both rates for B
 - Hysteresis
 - Avoids ping-pong effects
 - Avoids over-balancing
Energy Balancing

- Use both rates for energy balancing
- Migrate a hot task from CPU A to CPU B if both rates for A are greater than both rates for B
 - Hysteresis
 - Avoids ping-pong effects
 - Avoids over-balancing

![Graph showing energy balancing over time](image)
Energy Balancing

- Use both rates for energy balancing
- Migrate a hot task from CPU A to CPU B if both rates for A are greater than both rates for B
 - Hysteresis
 - Avoids ping-pong effects
 - Avoids over-balancing
Energy Balancing

- Scenario: 8 CPUs executing different tasks

- Disabled

- Enabled
Energy Balancing

- Scenario: 8 CPUs executing different tasks

- Disabled

- Enabled
Hot Task Migration

- Only one task in a runqueue
 - Balancing not possible
- Migrate task to cooler CPU if CPU temperature comes close to maximum
- Search for cool target CPU
 - Idle CPU
 - Migrate task
 - CPU executing cool task
 - Swap tasks
Hot Task Migration

- Scenario: 8 CPUs, 1 hot task

- Disabled

- Enabled
Hot Task Migration

- Scenario: 8 CPUs, 1 hot task

- Disabled

- Enabled
Evaluation
Evaluation

- Implementation of energy aware scheduling for the Linux kernel
- Test system:
 - 8-way Pentium 4 Xeon, 2.2 GHz
- Mixed workload:
 - 18 tasks
 - Power consumption ranging from 37W to 61W
- Temperature control:
 - Throttle a processor if temperature exceeds 38°C
 - Without temperature control highest temperature is 45°C
Results

- Energy-aware scheduling reduces need for throttling

- Throttling percentages in our example:
 - With energy-aware scheduling disabled: 15.2%
 - With energy-aware scheduling enabled: 10.2%

- Gain in duty cycles exceeds overhead for migrations
 - Increase in throughput

- In our example:
 - Number of tasks finished per time unit increases by 4.7%
Conclusion

- Characterize tasks by power consumption
- Determine energy profiles using event counters
- Use task energy profiles for energy-aware scheduling
 - Energy balancing
 - Hot task migration

- Reduce thermal imbalances in SMP systems
- Minimize throttling → increase duty cycles