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State of the Art in Thermal Design

 Worst case thermal design
 Overprovisioning
➔ High cost

 More moderate thermal design power
 Throttling to handle “hot” tasks
➔ Performance penalties
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Thermal Imbalances in SMP Systems

 Difference in power consumption of tasks

 Hot and cold processors

 Our Approach: 
 Migrate hot tasks away from a hot processor
 Combine hot tasks with cool tasks on a processor
➔ Reduce need for throttling
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Contributions

 Prerequisites:
 Characterization of tasks

➔Task Energy Profiles
 Policy for assigning tasks to CPUs

➔Energy-Aware Scheduling

 Migrate hot tasks away from a hot processor

 Combine hot tasks with cool tasks on a processor
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Outline

 Task Energy Profiles

 Energy-Aware Scheduling
 Energy Balancing
 Hot Task Migration

 Evaluation

 Conclusion
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Characterizing Tasks

 Thermal diode
 High thermal capacitance of chip and heat sink
 Short scheduling intervals
➔ CPU temperature: mix of multiple tasks' 

characteristics
 Power consumption

 37W to 61W on Pentium 4 Xeon (2.2 GHz) for 
compute-intensive tasks

➔ Characterize tasks by their individual power 
consumption
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Task Energy Profiles

 Definition: Energy consumption for one timeslice
 Behavior of tasks depends on input data

➔ Online energy estimation required
 Tasks show phases of constant power consumption

➔ Exponential average of energy consumed during 
past timeslices

 Requirement:
 Determine the amount of energy the CPU 

consumes during one timeslice
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Energy Estimation using Event 
Monitoring Counters

 Estimate energy using event monitoring counters

 Count processor internal events

 Assign amount of energy to each event

 Calculate linear combination of counter values:
  

 Error 
 < 10% for real-world integer applications
 Higher for multimedia and floating point applications

Energy =∑i
#event i⋅weight i
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Thermal Model
 What is the processor temperature after a task with 

power consumption P ran for one timeslice?

 Thermal model of processor and heat sink

 Models temperature with exponential function
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Energy Aware Scheduling

 Objectives:
 Minimize the need for throttling processors
 Avoid unnecessary migrations (cache affinity)

 Best policy depends on number of tasks per runqueue

 More than one task
 Balance power consumption between CPUs

 One task
 Migrate task before CPU overheats
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Linear Energy Balancing
 Goal: Balance CPU temperatures
 Intuitive approach: Balance CPU power 

 Equalize the average of task energy profiles for all 
runqueues

➔ Calculated power consumption rate
 Mirrors future energy consumption
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 Problems:
 Does not consider tasks that are blocked or have 

terminated
 Heat produced by those tasks is still stored in the 

chip
 Need to distinguish between hot and cool CPUs

Linear Energy Balancing
 Goal: Balance CPU temperatures
 Intuitive approach: Balance CPU power 

 Equalize the average of task energy profiles for all 
runqueues

➔ Calculated power consumption rate
 Mirrors future energy consumption
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 Fit averaging function to thermal model
 Exponential average of CPU's power consumption

➔ Empirical power consumption rate
 Mirrors past energy consumption è temperature
 Calibrate parameters to thermal model

Exponential Energy Balancing
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Energy Balancing

 Use both rates for energy balancing
 Migrate a hot task from CPU A to CPU B if both rates 

for A are greater than both rates for B
➔ Hysteresis
➔ Avoids ping-pong effects
➔ Avoids over-balancing
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Energy Balancing

 Disabled  Enabled

 Scenario: 8 CPUs executing different tasks
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Hot Task Migration

 Only one task in a runqueue
➔ Balancing not possible

 Migrate task to cooler CPU if CPU temperature comes 
close to maximum

 Search for cool target CPU
 Idle CPU

➔Migrate task
 CPU executing cool task

➔Swap tasks
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Hot Task Migration

 Disabled  Enabled

 Scenario: 8 CPUs, 1 hot task
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Evaluation

 Implementation of energy aware scheduling for the 
Linux kernel

 Test system: 
 8-way Pentium 4 Xeon, 2.2 GHz

 Mixed workload:
 18 tasks 
 Power consumption ranging from 37W to 61W

 Temperature control:
 Throttle a processor if temperature exceeds 38°C
 Without temperature control highest temperature is 

45°C
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Results

 Energy-aware scheduling reduces need for throttling

 Throttling percentages in our example:
 With energy-aware scheduling disabled: 15.2%
 With energy-aware scheduling enabled: 10.2%

 Gain in duty cycles exceeds overhead for migrations
➔ Increase in throughput

 In our example:
 Number of tasks finished per time unit increases by 

4.7%
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Conclusion

 Characterize tasks by power consumption

 Determine energy profiles using event counters

 Use task energy profiles for energy-aware scheduling
 Energy balancing
 Hot task migration

 Reduce thermal imbalances in SMP systems

 Minimize throttling  è  increase duty cycles 
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