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Abstract*

TEAPC is an IBM/Intel-standard PC realization 
of a CPU temperature-adaptive feedback-control 
system. The control system adjusts the CPU frequency 
and/or voltage to maintain a constant set-point 
temperature. TEAPC dynamically adapts to changing 
CPU computation loads, as well as any other system 
phenomenon that affects the CPU temperature. For 
example, with the specific TEAPC hardware, should 
the CPU cooling fan fail, the control system detects 
the increase in CPU temperature and automatically 
reduces the CPU frequency and voltage to keep the 
CPU from overheating. In such a circumstance the 
system continues to operate. All of the adaptation is 
done dynamically, at runtime, on an unmodified 
standard operating system (Windows 2000) with a 
purely software-implemented feedback-control system. 

1. Introduction 

With today’s high-end processors dissipating 10’s 
of Watts, the CPU may become overheated. 
Overheating leads to reduced reliability at the least, 
and CPU damage and system failure at the extreme. 
Overheating is not often a show-stopping problem in 
desktop systems (Intel Prescott CPU’s excepted). 
However, it is of great concern in commercial systems 
such as server farms. By adjusting the temperature of 
such systems, or maintaining them at suitably low 
temperatures, reliability should increase markedly. 
Also, power consumption should decrease, and system 
efficiency should increase. System temperature control 
begins with the control of individual processors. 

Adaptive computing systems achieve the above 
characteristics, and can enhance performance [11, 12]. 
They “optimize” their operation for changes in the 
environment (e.g., temperature), operating conditions 
(e.g., supply voltage) and manufacturing conditions 
(e.g., production run quality). 

                                                           
*This work was partly presented in a prior, private venue [13]. 

Herein we present an adaptive prototype, TEAPC, 
based on the standard IBM/Intel PC architecture and 
realizing underclocking, that is, operating the system 
greatly below its specified frequency. We have 
implemented the entire TEAPC control system in 
software, in a Windows application. It runs in a 
normal application mode on Windows 2000, 
multitasking normally with other applications. CPU 
frequency and core voltage are changed dynamically, 
based on the output of a feedback control system using 
the CPU chip temperature as its input. The control 
loop and underclocking models should be usable for 
any PC to be built, as well as many that already exist. 

This paper’s contributions are as follows: 
Demonstration of temperature control of a COTS 
(Commercial Off-The-Shelf) based PC via a modern 
feedback control system; On-demand reliability and 
performance control; Reduced power consumption; 
Fine-grain frequency (about 0.2% increments) and 
voltage transitions, allowing a continuously active 
CPU (no lost cycles); Adaptation to the current CPU 
computational load and other conditions; and 
Underclocking for disaster tolerance. No operating 
system or hardware modifications are needed. 

In the rest of the paper, Section 2 discusses prior 
work. Section 3 describes the TEAPC feedback 
control system. In Section 4 TEAPC’s implementation 
is discussed, along with the experimental 
methodology. Section 5 presents the experiments, 
data, and analyses. We conclude in Section 6. 

2. Prior Work 

Performance-enhancing [7] and power-reducing 
[4] adaptive computing has only appeared in the last 
decade or so. Voltage- and frequency scaling are the 
usual methods employed. A survey is in [1]. Many 
thermal approaches and applications are presented in 
[9], including those for large multiprocessor systems. 
Most frequency-scaling is coarse-grained [3, 5, 6].  

Skadron et al [8] first considered the use of 
formal feedback control theory as applied to the on-
chip control of chip temperature of a microprocessor. 
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In [10] chip temperature was regulated without formal 
control theory since the relevant thermal delays and 
changes in frequency and temperature were small.  

Operating-system based approaches to thermal 
control [5, 15] propose to coarsely throttle the 
frequency, e.g., HLT or full speed, based on either 
task-level activity or CPU-counter based activity, in 
one case using open-loop temperature control [15]. 
Therefore, undesirable OS modifications are 
necessitated, a CPU could be shut-down for many 
seconds negatively-impacting critical applications, and 
a CPU could overheat due to inaccurate temperature 
estimation. The peak performance is unchanged, 
remaining at the worst-case design point.  

Systems such as SpeedStep [3] coarsely adjust 
both frequency and voltage to keep temperature within 
bounds, but CPU dead-times of many microseconds 
are required for the new settings to stabilize. 

3. The Feedback Control System 

The feedback control system was designed using 
formal control system theory to achieve a fast but 
stable frequency response to thermal changes. The 
basic control input is a temperature setting, Tset, used 
by the control system to maintain a CPU temperature 
of Tset degrees C. The single sensor input is the 
temperature reading obtained via the CPU’s embedded 
temperature-sensing thermal diode. (The diode is part 
of the CPU chip itself.) (Multiple sensors were used 
initially, but their control system requirements were 
excessive for this stage of our work.) Tset can be made 
equal to a temperature corresponding to a point above 
the maximum CPU frequency under full load, so as to 
maximize performance, or, more typically, Tset is kept 
somewhat lower to save power or increase the 
reliability of the CPU. Tset can be any value as long as 
it is below the maximum temperature spec for the 
CPU. Although our studies essentially kept Tset 
constant during an experiment, it may easily be 
dynamically modified for more system flexibility. 

The feedback control system was designed with 
state-of-the-art discrete-time techniques as an integral 
control system using state-space methods [2, 14]. The 
system was modeled from measured open-loop 
input/output data of TEAPC using the System 
Identification Toolbox (from the Mathworks). The 
Toolbox returned a second-order model with two real-
valued poles (i.e. two time constants). This model was 
approximated with a first-order system model by 
keeping only the dominant time constant.  

We made this approximation for two reasons. 
First, the dominant time constant was likely a reliable 
indicator of the behavior of the system under a range 
of operating conditions. Second, for a first-order 
system, there is only one state variable, which can be 

taken as the system output. The control system also 
contains an integrator (accumulator for clock 
frequency increments) and thus, the overall system is 
second order with both state variables measured.  

The two gains for a full-state feedback system are 
KFA and KG, shown in Figure 1. In effect, the KFA 
feedback block magnifies the transient behavior of the 
input data (temperature) to speed up changes in the 
output (frequency) so as to decrease the response time 
of the overall system. The gains were calculated to 
give a 10-second settling time to a step change in Tset.  

As in any integral control system, care must be 
taken whenever there is saturation (e.g. clock 
frequency at maximum or minimum limits). We deal 
with this as follows: whenever a calculated frequency 
increment would change the CPU frequency to a value 
beyond its limits, we put the frequency at its limit and 
turn off the integral action (that is, we do not 
accumulate the frequency increment). If the value of 
Tset is not attainable, the clock frequency will be 
pegged at one of its limits (upper or lower).  

The resulting control system has excellent 
response characteristics, having a frequency settling 
time of only about 10 seconds for a Tset change 
equivalent to a change in frequency from 2.5 GHz to 
3.5 GHz of the CPU under full load. 
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Figure 1. TEAPC feedback control system. 

4. Prototype and Experimental Setup 

The internal block diagram of TEAPC is shown in 
Figure 2, with its major relevant components listed in 
Table 1. Figure 3 is a photograph of TEAPC, 
including the display. 

To show the wide applicability of the results, we 
made TEAPC’s foundation a standard IBM/Intel PC 
architecture built primarily out of both hardware and 
software COTS parts. Therefore, the results of this 
work can easily be applied to commercial PC’s during 
their design, construction and/or testing, and in some 
cases even after their manufacture. 

We wished to be conservative, realizing a 
practical system, not a limit study. Thus, TEAPC was 
built out of harder-to-control high-end parts (at the 
time): a 3.0 GHz Intel Pentium 4 microprocessor with 
an 800 MHz bus and an Intel 875P chipset (a “chipset” 
is the glue logic that connects the CPU to the main 
memory and I/O devices; in Figure 2 it is the 

 



 

Northbridge/Southbridge pair of chips). The main 
memory is high speed DDR (Dual Data Rate) dynamic 
RAM. (Note: from now on, ‘frequency’ refers to the 
CPU’s frequency.) The frequency indirectly controls 
the Northbridge’s and memory’s frequencies. No other 
sub-systems’ frequencies or voltages were varied. 

The new TEAPC components consist solely of 
software; existing hardware is used. The new teapc 
program, for TEAPC control, is written in C and C++. 
It is a normal Windows user application, constructed 
with the Win32 standard API (Applications Program 
Interface). teapc is 800 Kbytes long, including the 
control system. Typically, teapc uses less than 1% 
of the CPU’s time, not including display overhead; 
little or no performance is lost. 
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Figure 2. Major relevant motherboard 

structures used in TEAPC. 
 

Table 1. Major TEAPC components. 
PC Component Manufacturer Part Number/Description 

Motherboard Gigabyte GA-8KNXP (Rev. 2); 
w/DPS regulator 

CPU Intel P4 3.0 GHz, 800 MHz bus 
Chipset Intel 875P, ICH5R 
Clock 
Synthesizer ICS ICS952635 

Super I/O 
(Environment 
Monitor) 

ITE IT8712F V0.6 

CPU Voltage 
Regulator 
Control 

ITE IT8206R V0.1 

Main Memory Ultra 
U10-5903R; 2 x 512 MB;  
400 MHz DDR, Dual Ch. 
(Operated at 320 MHz.) 

Operating System Microsoft Windows 2000 SP4,  
HT disabled 

Disk System – 
RAID 0+1 ITE GigaRAID IT8212F 

Disks Maxtor 4 x 6E040L0, 40 GB, 
133MHz IDE 

 
Figure 3.  TEAPC prototype, with 

instrumentation shown on the display. 
 
Referring to Figure 2, teapc reads the CPU’s 

core temperature, core voltage, and fan speed from the 
Super I/O chip. The program reads and sets the CPU 
frequency by accessing the Clock Synthesizer, and 
reads and sets the CPU core voltage via the Vcore 
Regulator Controller. The Synthesizer and Regulator 
are accessed with the two-wire SMBUS through the 
Southbridge. teapc accesses all components, 
including the chipset, via the x86 I/O address space. 

(In industry, sensor reading and device control are 
being standardized in the Common Information Model 
{CIM}. However, manufacturers are given wide 
latitude to implement their own proprietary 
specifications, keeping the data inaccessible to third 
parties. Therefore, these parties resort to reading part 
numbers off of the chips on the motherboard, finding 
the parts’ datasheets, and writing their own device 
drivers. While painful, this is certainly doable, and is 
not a problem for the PC manufacturers themselves.) 

In operation, teapc updates the feedback control 
loop every second. The control loop is represented in 
the program by a list of the non-CPU blocks shown in 
Figure 1. Every update the program starts with the 
input data (the running-averaged CPU temperature, the 
latter measured once a second), and re-calculates the 
control block values around the loop. The new CPU 
frequency is the main output; the CPU core voltage is 
sometimes linked to the frequency. For safety, the 
maximum and minimum possible output frequencies 
are hard limits; when reached, we say the frequency 
has “pegged” (as in an old analog meter). In all of the 
experiments, the frequency’s change with respect to 
time was solely determined by the control system’s 
dynamics. Being a normal application, teapc’s 
operation is often pre-empted by higher-priority 
programs. Such pauses are not an issue since the 
thermal dynamics are so slow (seconds). 

A simple on/off switch was added solely for the 
disaster tolerance experiment. Also, an external power 
meter measured changes in total PC power 
consumption, again solely for the experiments. 

 



 

5. Experiments 

These studies characterized TEAPC’s operation 
and showed its achievement of the project’s goals. 
Only the CPU frequency was directly varied by the 
control system. In some cases the CPU core voltage 
was varied as a square-root function of the frequency, 
in order to potentially simplify future control system 
analysis and design (the temperature is thus a function 
of the square of the frequency, not the cube).  

In general, the main results in Figure 4 and Figure 
5 show that although there is some oscillation in the 
dependent variables, it is not great. The CPU 
temperature may still oscillate, even with a constant 
CPU frequency; this is mainly due to load changes in 
the CPU-100%-loading burn-in program (SiSoft’s 
Sandra). Prior to obtaining these results, the system’s 
temporal characteristics were briefly examined. 

5.1.  Step Response to Frequency Change 

Table 2 shows TEAPC’s CPU temperature’s non-
linear reaction speed to changes in CPU frequency. 
Overall, the CPU neither heats up or cools very 
quickly. The settling time varies substantially with 
load and direction of frequency change. It is easy to 
heat up the CPU, but takes considerably longer to cool 
it, regardless of the CPU’s load. This is intuitive, as it 
is usually the case in thermodynamics that forced 
addition or removal of energy to a system will heat up 
or cool the system, respectively, faster than with a 
passive transfer mechanism. In TEAPC’s case the 
increasing frequency directly increases the CPU’s 
power consumption and temperature, whereas removal 
of the resulting heat depends on the thermal resistance 
and capacitance of the passive cooling system. 

The response times approximately doubled from a 
full load condition to an unloaded condition. This may 
arise from the internal CPU power control system, 
which shuts down major sections of the CPU when the 
sections are not used. Hence, in a lightly loaded 
system a given increase in frequency increases power 
consumption less than a fully loaded system; in the 
latter, the entire chip is affected by the frequency 
change, decreasing the response time. 

5.2. Basic Operation 

Figure 4 and Figure 5 show the basic operation of 
TEAPC and its control system. The latter senses 
changes in the CPU temperature and adjusts the 
frequency and/or voltage to counter the changes. This 
results in a relatively stable CPU operating 
temperature, centered around the Tset value. 

 

Table 2.  Step response of CPU temperature 
to frequency changes, under differing loads. 

Run 
ID 

CPU 
Utilization 

Frequency 
Transition 

(GHz) 

Start 
Temp. 

(deg. C.) 

End 
Temp. 

(deg. C.)

Settling 
Time 

(2%) (sec.)
91 100% 3.5 to 2.5 59.3 53.7 90 
92 100% 2.5 to 3.5 52.5 58.9 60 
93 ~5% 3.5 to 2.5 53.1 48.0 170 
94 ~5% 2.5 to 3.5 48.0 52.9 130 

 
The power’s staircase shape comes from the time-

varying execution profile of the CPU-loading 
program. Overclocking headroom is exploited. 

TEAPC dynamically and automatically adapts to 
computation load changes. In Figure 4 the system is 
initially stable at the upper peg point of 3.5 GHz, and 
under no load. At the point shown, the CPU-burn 
program is started, putting the CPU under full load. 
The control system senses the rapid increase in CPU 
temperature, and immediately lowers the frequency. 
Within about 50 seconds TEAPC’s frequency drops to 
2.65 GHz, on average, while the CPU temperature 
stays relatively constant. The power consumption 
stays about the same. In this case, the CPU core 
voltage was held constant at its high value, 1.5125 V. 

We performed the same experiment, but with the 
voltage a function of frequency as described earlier; 
see Figure 5. The lower voltage and a constant 
temperature allow a higher final operating frequency, 
about 3.0 GHz, with no change in power consumption. 
Thus, the voltage-to-frequency linking results in 
higher performance for the same power consumption. 

5.3. Disaster Toleration  

In this experiment, the CPU’s cooling fan is 
turned off while the CPU is under full load and at its 
“maximum” frequency. The fan’s airflow through a 
passive heatsink lowers the overall thermal resistance, 
thus increasing the heatsink’s dissipation abilities. 
Hence, stopping the fan is a disastrous condition, and 
an excellent test of TEAPC’s adaptation abilities.  

Figure 6 shows TEAPC’s response first to fan 
‘off’ and then fan ‘on’ conditions. Initially, the CPU 
ran at its “maximum” frequency of 3.50 GHz and a 
corresponding core voltage of 1.5125 V., and while 
under full load. The CPU’s core voltage was linked to 
the CPU frequency. As is shown in the figure, shortly 
after the CPU’s fan was turned off the CPU 
temperature began to rise, causing the control system 
to lower the frequency, and thus also its core voltage. 

Since the CPU’s temperature never dropped 
below the Tset value of 56 degrees C., the control 
system dropped the CPU’s frequency all the way 
down to its “minimum” value of 1.1 GHz and the 
corresponding minimum core voltage of 1.0875 V. 
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Figure 4. Basic operation and load adaptation 
test. Vcore NOT linked to CPU frequency. 

 
Other applications were run at the same time to 

test the CPU’s capabilities at such extreme conditions; 
the programs were: Sandra, IE 6 (including video 
clips), and PowerPoint. TEAPC was still functional at 
the low frequency and voltage; no OS or other crashes 
occurred. Thus, disaster tolerance is achieved.  

Also, the power savings at the low frequency and 
voltage settings were substantial. The overall PC 
power decreased from about 218 W. down to 132 W., 
under full load, a power savings of about 40%. 

The temperature dropped slightly as the frequency 
and voltage decreased, then rose slightly to a steady 
59o C. (The CPU’s specified limit is 70o C.) On-chip 
temperature transients can be fast: 50o C./sec. in a 
Pentium 4, but this is a result of normal operation and 
does not require the control system to react as quickly. 

With the fan back on, the control system sensed 
the drop in the CPU’s temperature and increased the 
CPU’s frequency. Thus, TEAPC always adapts to the 
existing conditions, taking advantage of favorable 
ones as well. Disaster recovery is also achieved. 
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Figure 5. Basic operation and load adaptation 
test. Vcore IS linked to CPU frequency. 

6. Summary 

TEAPC demonstrates the numerous and deep 
possibilities inherent in modern PC’s and 
microprocessors when advantage is taken of low-level 
inputs and outputs, and, most especially, when a well-
designed feedback-control system is used. 

TEAPC maintains a constant temperature while 
adapting to varying environmental and loading 
conditions. Thus, with high ambient temperatures 
TEAPC lowers the frequency (and possibly voltage) to 
keep the CPU temperature within specifications. 
Performance is limited, but the system still functions. 
Conversely, with low ambient temperatures the more 
favorable conditions can give improved performance. 
TEAPC also has disaster tolerance, and low-
power/high-reliability operation. We feel TEAPC 
could open the way for much more versatile and cost-
saving PCs, in many cases those that already exist. 
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Figure 6.  Disaster tolerance and recovery: CPU fan turned off then back on; system under full 
load. TEAPC remains functional at the low frequency and core voltage, even with the fan off, 

adapting to take the best advantage of existing conditions. (teapc is briefly idle around point ‘A.’)  
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