
TEAPC: Temperature Adaptive Computing in a Real PC

Augustus K. Uht and Richard J. Vaccaro
University of Rhode Island

Microarchitecture Research Institute
Department of Electrical and Computer Engineering

4 East Alumni Ave.
Kingston, RI 02864, USA

{uht@ele.uri.edu, vaccaro@ele.uri.edu}

Abstract*

TEAPC is an IBM/Intel-standard PC realization
of a CPU temperature-adaptive feedback-control
system. The control system adjusts the CPU frequency
and/or voltage to maintain a constant set-point
temperature. TEAPC dynamically adapts to changing
CPU computation loads, as well as any other system
phenomenon that affects the CPU temperature. For
example, with the specific TEAPC hardware, should
the CPU cooling fan fail, the control system detects
the increase in CPU temperature and automatically
reduces the CPU frequency and voltage to keep the
CPU from overheating. In such a circumstance the
system continues to operate. All of the adaptation is
done dynamically, at runtime, on an unmodified
standard operating system (Windows 2000) with a
purely software-implemented feedback-control system.

1. Introduction

With today’s high-end processors dissipating 10’s
of Watts, the CPU may become overheated.
Overheating leads to reduced reliability at the least,
and CPU damage and system failure at the extreme.
Overheating is not often a show-stopping problem in
desktop systems (Intel Prescott CPU’s excepted).
However, it is of great concern in commercial systems
such as server farms. By adjusting the temperature of
such systems, or maintaining them at suitably low
temperatures, reliability should increase markedly.
Also, power consumption should decrease, and system
efficiency should increase. System temperature control
begins with the control of individual processors.

Adaptive computing systems achieve the above
characteristics, and can enhance performance [11, 12].
They “optimize” their operation for changes in the
environment (e.g., temperature), operating conditions
(e.g., supply voltage) and manufacturing conditions
(e.g., production run quality).

*This work was partly presented in a prior, private venue [13].

Herein we present an adaptive prototype, TEAPC,
based on the standard IBM/Intel PC architecture and
realizing underclocking, that is, operating the system
greatly below its specified frequency. We have
implemented the entire TEAPC control system in
software, in a Windows application. It runs in a
normal application mode on Windows 2000,
multitasking normally with other applications. CPU
frequency and core voltage are changed dynamically,
based on the output of a feedback control system using
the CPU chip temperature as its input. The control
loop and underclocking models should be usable for
any PC to be built, as well as many that already exist.

This paper’s contributions are as follows:
Demonstration of temperature control of a COTS
(Commercial Off-The-Shelf) based PC via a modern
feedback control system; On-demand reliability and
performance control; Reduced power consumption;
Fine-grain frequency (about 0.2% increments) and
voltage transitions, allowing a continuously active
CPU (no lost cycles); Adaptation to the current CPU
computational load and other conditions; and
Underclocking for disaster tolerance. No operating
system or hardware modifications are needed.

In the rest of the paper, Section 2 discusses prior
work. Section 3 describes the TEAPC feedback
control system. In Section 4 TEAPC’s implementation
is discussed, along with the experimental
methodology. Section 5 presents the experiments,
data, and analyses. We conclude in Section 6.

2. Prior Work

Performance-enhancing [7] and power-reducing
[4] adaptive computing has only appeared in the last
decade or so. Voltage- and frequency scaling are the
usual methods employed. A survey is in [1]. Many
thermal approaches and applications are presented in
[9], including those for large multiprocessor systems.
Most frequency-scaling is coarse-grained [3, 5, 6].

Skadron et al [8] first considered the use of
formal feedback control theory as applied to the on-
chip control of chip temperature of a microprocessor.

mailto:uht@ele.uri.edu
mailto:vaccaro@ele.uri.edu

In [10] chip temperature was regulated without formal
control theory since the relevant thermal delays and
changes in frequency and temperature were small.

Operating-system based approaches to thermal
control [5, 15] propose to coarsely throttle the
frequency, e.g., HLT or full speed, based on either
task-level activity or CPU-counter based activity, in
one case using open-loop temperature control [15].
Therefore, undesirable OS modifications are
necessitated, a CPU could be shut-down for many
seconds negatively-impacting critical applications, and
a CPU could overheat due to inaccurate temperature
estimation. The peak performance is unchanged,
remaining at the worst-case design point.

Systems such as SpeedStep [3] coarsely adjust
both frequency and voltage to keep temperature within
bounds, but CPU dead-times of many microseconds
are required for the new settings to stabilize.

3. The Feedback Control System

The feedback control system was designed using
formal control system theory to achieve a fast but
stable frequency response to thermal changes. The
basic control input is a temperature setting, Tset, used
by the control system to maintain a CPU temperature
of Tset degrees C. The single sensor input is the
temperature reading obtained via the CPU’s embedded
temperature-sensing thermal diode. (The diode is part
of the CPU chip itself.) (Multiple sensors were used
initially, but their control system requirements were
excessive for this stage of our work.) Tset can be made
equal to a temperature corresponding to a point above
the maximum CPU frequency under full load, so as to
maximize performance, or, more typically, Tset is kept
somewhat lower to save power or increase the
reliability of the CPU. Tset can be any value as long as
it is below the maximum temperature spec for the
CPU. Although our studies essentially kept Tset
constant during an experiment, it may easily be
dynamically modified for more system flexibility.

The feedback control system was designed with
state-of-the-art discrete-time techniques as an integral
control system using state-space methods [2, 14]. The
system was modeled from measured open-loop
input/output data of TEAPC using the System
Identification Toolbox (from the Mathworks). The
Toolbox returned a second-order model with two real-
valued poles (i.e. two time constants). This model was
approximated with a first-order system model by
keeping only the dominant time constant.

We made this approximation for two reasons.
First, the dominant time constant was likely a reliable
indicator of the behavior of the system under a range
of operating conditions. Second, for a first-order
system, there is only one state variable, which can be

taken as the system output. The control system also
contains an integrator (accumulator for clock
frequency increments) and thus, the overall system is
second order with both state variables measured.

The two gains for a full-state feedback system are
KFA and KG, shown in Figure 1. In effect, the KFA
feedback block magnifies the transient behavior of the
input data (temperature) to speed up changes in the
output (frequency) so as to decrease the response time
of the overall system. The gains were calculated to
give a 10-second settling time to a step change in Tset.

As in any integral control system, care must be
taken whenever there is saturation (e.g. clock
frequency at maximum or minimum limits). We deal
with this as follows: whenever a calculated frequency
increment would change the CPU frequency to a value
beyond its limits, we put the frequency at its limit and
turn off the integral action (that is, we do not
accumulate the frequency increment). If the value of
Tset is not attainable, the clock frequency will be
pegged at one of its limits (upper or lower).

The resulting control system has excellent
response characteristics, having a frequency settling
time of only about 10 seconds for a Tset change
equivalent to a change in frequency from 2.5 GHz to
3.5 GHz of the CPU under full load.

KG

KFA

KTf
¯C/freq

∆N

KNT

N/¯K

Tset

()¯C
-

+
-

+

17.4

∆¯K
¯C

∆N

1
s

N N
freq freq

freq/N

KfN B

s + A

B=0.0364
A=0.03345

8.26e6

(Hz) (Hz)

0.28

70.0 Clock Synthesizer, CPU
and CPU internal sensor

Figure 1. TEAPC feedback control system.

4. Prototype and Experimental Setup

The internal block diagram of TEAPC is shown in
Figure 2, with its major relevant components listed in
Table 1. Figure 3 is a photograph of TEAPC,
including the display.

To show the wide applicability of the results, we
made TEAPC’s foundation a standard IBM/Intel PC
architecture built primarily out of both hardware and
software COTS parts. Therefore, the results of this
work can easily be applied to commercial PC’s during
their design, construction and/or testing, and in some
cases even after their manufacture.

We wished to be conservative, realizing a
practical system, not a limit study. Thus, TEAPC was
built out of harder-to-control high-end parts (at the
time): a 3.0 GHz Intel Pentium 4 microprocessor with
an 800 MHz bus and an Intel 875P chipset (a “chipset”
is the glue logic that connects the CPU to the main
memory and I/O devices; in Figure 2 it is the

Northbridge/Southbridge pair of chips). The main
memory is high speed DDR (Dual Data Rate) dynamic
RAM. (Note: from now on, ‘frequency’ refers to the
CPU’s frequency.) The frequency indirectly controls
the Northbridge’s and memory’s frequencies. No other
sub-systems’ frequencies or voltages were varied.

The new TEAPC components consist solely of
software; existing hardware is used. The new teapc
program, for TEAPC control, is written in C and C++.
It is a normal Windows user application, constructed
with the Win32 standard API (Applications Program
Interface). teapc is 800 Kbytes long, including the
control system. Typically, teapc uses less than 1%
of the CPU’s time, not including display overhead;
little or no performance is lost.

CPU
Intel P4

Northbridge
Intel 875P

Southbridge
I/O

Controller
Intel ICH5R

Main Memory
1 GB Dual Channel

400 MHz
Ultra

Super I/O
ITE 8712F

Clock
Synthesizer
ICS 952635

CPU Vcore
Regulator
Control

CPU
Vcore

Power Supply

FSB

(FSB - Front Side Bus)

LPC Bus

(LPC - Low Pin Count)

SMBUS - IIC Bus

CPU Clock Memory Clock

CPU
Fan

Speed

CPU
Vcore
Volt.

CPU
core

Temp.

Vcore VID

VID

Only directly relevant components
and connections are shown.

(Environment
Monitor)

Figure 2. Major relevant motherboard

structures used in TEAPC.

Table 1. Major TEAPC components.
PC Component Manufacturer Part Number/Description

Motherboard Gigabyte GA-8KNXP (Rev. 2);
w/DPS regulator

CPU Intel P4 3.0 GHz, 800 MHz bus
Chipset Intel 875P, ICH5R
Clock
Synthesizer ICS ICS952635

Super I/O
(Environment
Monitor)

ITE IT8712F V0.6

CPU Voltage
Regulator
Control

ITE IT8206R V0.1

Main Memory Ultra
U10-5903R; 2 x 512 MB;
400 MHz DDR, Dual Ch.
(Operated at 320 MHz.)

Operating System Microsoft Windows 2000 SP4,
HT disabled

Disk System –
RAID 0+1 ITE GigaRAID IT8212F

Disks Maxtor 4 x 6E040L0, 40 GB,
133MHz IDE

Figure 3. TEAPC prototype, with

instrumentation shown on the display.

Referring to Figure 2, teapc reads the CPU’s

core temperature, core voltage, and fan speed from the
Super I/O chip. The program reads and sets the CPU
frequency by accessing the Clock Synthesizer, and
reads and sets the CPU core voltage via the Vcore
Regulator Controller. The Synthesizer and Regulator
are accessed with the two-wire SMBUS through the
Southbridge. teapc accesses all components,
including the chipset, via the x86 I/O address space.

(In industry, sensor reading and device control are
being standardized in the Common Information Model
{CIM}. However, manufacturers are given wide
latitude to implement their own proprietary
specifications, keeping the data inaccessible to third
parties. Therefore, these parties resort to reading part
numbers off of the chips on the motherboard, finding
the parts’ datasheets, and writing their own device
drivers. While painful, this is certainly doable, and is
not a problem for the PC manufacturers themselves.)

In operation, teapc updates the feedback control
loop every second. The control loop is represented in
the program by a list of the non-CPU blocks shown in
Figure 1. Every update the program starts with the
input data (the running-averaged CPU temperature, the
latter measured once a second), and re-calculates the
control block values around the loop. The new CPU
frequency is the main output; the CPU core voltage is
sometimes linked to the frequency. For safety, the
maximum and minimum possible output frequencies
are hard limits; when reached, we say the frequency
has “pegged” (as in an old analog meter). In all of the
experiments, the frequency’s change with respect to
time was solely determined by the control system’s
dynamics. Being a normal application, teapc’s
operation is often pre-empted by higher-priority
programs. Such pauses are not an issue since the
thermal dynamics are so slow (seconds).

A simple on/off switch was added solely for the
disaster tolerance experiment. Also, an external power
meter measured changes in total PC power
consumption, again solely for the experiments.

5. Experiments

These studies characterized TEAPC’s operation
and showed its achievement of the project’s goals.
Only the CPU frequency was directly varied by the
control system. In some cases the CPU core voltage
was varied as a square-root function of the frequency,
in order to potentially simplify future control system
analysis and design (the temperature is thus a function
of the square of the frequency, not the cube).

In general, the main results in Figure 4 and Figure
5 show that although there is some oscillation in the
dependent variables, it is not great. The CPU
temperature may still oscillate, even with a constant
CPU frequency; this is mainly due to load changes in
the CPU-100%-loading burn-in program (SiSoft’s
Sandra). Prior to obtaining these results, the system’s
temporal characteristics were briefly examined.

5.1. Step Response to Frequency Change

Table 2 shows TEAPC’s CPU temperature’s non-
linear reaction speed to changes in CPU frequency.
Overall, the CPU neither heats up or cools very
quickly. The settling time varies substantially with
load and direction of frequency change. It is easy to
heat up the CPU, but takes considerably longer to cool
it, regardless of the CPU’s load. This is intuitive, as it
is usually the case in thermodynamics that forced
addition or removal of energy to a system will heat up
or cool the system, respectively, faster than with a
passive transfer mechanism. In TEAPC’s case the
increasing frequency directly increases the CPU’s
power consumption and temperature, whereas removal
of the resulting heat depends on the thermal resistance
and capacitance of the passive cooling system.

The response times approximately doubled from a
full load condition to an unloaded condition. This may
arise from the internal CPU power control system,
which shuts down major sections of the CPU when the
sections are not used. Hence, in a lightly loaded
system a given increase in frequency increases power
consumption less than a fully loaded system; in the
latter, the entire chip is affected by the frequency
change, decreasing the response time.

5.2. Basic Operation

Figure 4 and Figure 5 show the basic operation of
TEAPC and its control system. The latter senses
changes in the CPU temperature and adjusts the
frequency and/or voltage to counter the changes. This
results in a relatively stable CPU operating
temperature, centered around the Tset value.

Table 2. Step response of CPU temperature
to frequency changes, under differing loads.

Run
ID

CPU
Utilization

Frequency
Transition

(GHz)

Start
Temp.

(deg. C.)

End
Temp.

(deg. C.)

Settling
Time

(2%) (sec.)
91 100% 3.5 to 2.5 59.3 53.7 90
92 100% 2.5 to 3.5 52.5 58.9 60
93 ~5% 3.5 to 2.5 53.1 48.0 170
94 ~5% 2.5 to 3.5 48.0 52.9 130

The power’s staircase shape comes from the time-

varying execution profile of the CPU-loading
program. Overclocking headroom is exploited.

TEAPC dynamically and automatically adapts to
computation load changes. In Figure 4 the system is
initially stable at the upper peg point of 3.5 GHz, and
under no load. At the point shown, the CPU-burn
program is started, putting the CPU under full load.
The control system senses the rapid increase in CPU
temperature, and immediately lowers the frequency.
Within about 50 seconds TEAPC’s frequency drops to
2.65 GHz, on average, while the CPU temperature
stays relatively constant. The power consumption
stays about the same. In this case, the CPU core
voltage was held constant at its high value, 1.5125 V.

We performed the same experiment, but with the
voltage a function of frequency as described earlier;
see Figure 5. The lower voltage and a constant
temperature allow a higher final operating frequency,
about 3.0 GHz, with no change in power consumption.
Thus, the voltage-to-frequency linking results in
higher performance for the same power consumption.

5.3. Disaster Toleration

In this experiment, the CPU’s cooling fan is
turned off while the CPU is under full load and at its
“maximum” frequency. The fan’s airflow through a
passive heatsink lowers the overall thermal resistance,
thus increasing the heatsink’s dissipation abilities.
Hence, stopping the fan is a disastrous condition, and
an excellent test of TEAPC’s adaptation abilities.

Figure 6 shows TEAPC’s response first to fan
‘off’ and then fan ‘on’ conditions. Initially, the CPU
ran at its “maximum” frequency of 3.50 GHz and a
corresponding core voltage of 1.5125 V., and while
under full load. The CPU’s core voltage was linked to
the CPU frequency. As is shown in the figure, shortly
after the CPU’s fan was turned off the CPU
temperature began to rise, causing the control system
to lower the frequency, and thus also its core voltage.

Since the CPU’s temperature never dropped
below the Tset value of 56 degrees C., the control
system dropped the CPU’s frequency all the way
down to its “minimum” value of 1.1 GHz and the
corresponding minimum core voltage of 1.0875 V.

1

1.5

2

2.5

3

3.5

0 100 200 300 400

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

47

48

49

50

51

52

53

54

55

0 100 200 300 400
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)
Temp. Set (deg. C.)

No load -to- Full load

Figure 4. Basic operation and load adaptation
test. Vcore NOT linked to CPU frequency.

Other applications were run at the same time to

test the CPU’s capabilities at such extreme conditions;
the programs were: Sandra, IE 6 (including video
clips), and PowerPoint. TEAPC was still functional at
the low frequency and voltage; no OS or other crashes
occurred. Thus, disaster tolerance is achieved.

Also, the power savings at the low frequency and
voltage settings were substantial. The overall PC
power decreased from about 218 W. down to 132 W.,
under full load, a power savings of about 40%.

The temperature dropped slightly as the frequency
and voltage decreased, then rose slightly to a steady
59o C. (The CPU’s specified limit is 70o C.) On-chip
temperature transients can be fast: 50o C./sec. in a
Pentium 4, but this is a result of normal operation and
does not require the control system to react as quickly.

With the fan back on, the control system sensed
the drop in the CPU’s temperature and increased the
CPU’s frequency. Thus, TEAPC always adapts to the
existing conditions, taking advantage of favorable
ones as well. Disaster recovery is also achieved.

1

1.5

2

2.5

3

3.5

0 100 200 300 400

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

47

48

49

50

51

52

53

54

55

0 100 200 300 400
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)
Temp. Set (deg. C.)

No load -to - Full load

Figure 5. Basic operation and load adaptation
test. Vcore IS linked to CPU frequency.

6. Summary

TEAPC demonstrates the numerous and deep
possibilities inherent in modern PC’s and
microprocessors when advantage is taken of low-level
inputs and outputs, and, most especially, when a well-
designed feedback-control system is used.

TEAPC maintains a constant temperature while
adapting to varying environmental and loading
conditions. Thus, with high ambient temperatures
TEAPC lowers the frequency (and possibly voltage) to
keep the CPU temperature within specifications.
Performance is limited, but the system still functions.
Conversely, with low ambient temperatures the more
favorable conditions can give improved performance.
TEAPC also has disaster tolerance, and low-
power/high-reliability operation. We feel TEAPC
could open the way for much more versatile and cost-
saving PCs, in many cases those that already exist.

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250

C
PU

 F
re

q.
 &

 P
C

 T
ot

al
 P

ow
er

1.1

1.2

1.3

1.4

1.5

1.6

C
PU

 C
or

e
Vo

lta
ge

CPU Freq. (GHz)
PC Tot. Pwr. (100's of W.)
CPU Voltage (V.)

52

53

54

55

56

57

58

59

60

0 50 100 150 200 250
Time (seconds)

Te
m

pe
ra

tu
re

 (d
eg

. C
.)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
PU

 F
an

 S
pe

ed

Temp. CPU Raw (deg. C.)
Temp. CPU Averaged (deg. C.)
Temp. Set (deg. C.)
CPU Fan Speed (KRPM)

CPU Fan turned OFF CPU Fan turned ON

A

Figure 6. Disaster tolerance and recovery: CPU fan turned off then back on; system under full
load. TEAPC remains functional at the low frequency and core voltage, even with the fan off,

adapting to take the best advantage of existing conditions. (teapc is briefly idle around point ‘A.’)

References

[1] D. Brooks and M. Martonosi, "Dynamic Thermal Management
for High-Performance Microprocessors," in Proceedings of the
Seventh International Symposium on High-Performance
Computer Architecture (HPCA'01). Nuevo Leone, Mexico:
IEEE, January 20-24, 2001, pp. 171-184.

[2] G. F. Franklin, M. L. Workman, and D. Powell, Digital Control
of Dynamic Systems, 3rd ed: Prentice-Hall, 1997.

[3] Intel Staff, "Get a Notebook That Enables Extended Battery
Life," Intel Corporation, 2003.

[4] T. Kuroda, K.Suzuki, S. Mita, T. Fujita, F.Yamane, F. Sano, A.
Chiba, Y. Watanabe, K. Matsuda, T. Maeda, T. Sakurai, and T.
Furuyama, "Variable Supply-Voltage Scheme for Low-Power
High-Speed CMOS Digital Design," IEEE Journal of Solid-State
Circuits, vol. 33, no. 3, pp. 454-462, March 1998.

[5] E. Rohou and M. D. Smith, "Dynamically Managing Processor
Temperature and Power," in Proceedings of the 2nd Workshop
on Feedback-Directed Optimazation, November 1999.

[6] H. Sanchez, B. Kuttanna, T. Olson, M. Alexander, G. Gerosa,
R. Philip, and J. Alvarez, "Thermal Management System for
High Performance PowerPCTM Microprocessors," in
Proceedings of COMPCON 97. San Jose, CA, USA: IEEE,
February 23-26, 1997, pp. 325-330.

[7] A. E. Sjogren and C. J. Myers, "Interfacing Synchronous and
Asynchronous Modules Within a High-Speed Pipeline," in
Proceedings of the 17th Conference on Advanced Research in
VLSI (ARVLSI '97), 1997, pp. 47-61.

[8] K. Skadron, T. Abdelzaher, and M. R. Stan, "Control-Theoretic
Techniques and Thermal-RC Modeling for Accurate and
Localized Dynamic Thermal Management," in Proc. of the 2002
International Symposium on High-Performance Computer
Architecture. Cambridge, MA, USA: IEEE, 2002.

[9] K. Skadron and M. Stan, "First Workshop on Temperature-
Aware Computer Systems (TACS-1)," in 2004 International
Symposium on Computer Architecture (ISCA) Munich,
Germany, June 2004.

[10] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K.
Sankaranarayanan, and D. Tarjan, "Temperature-Aware
Microarchitecture," in Proceedings of the 30th International
Symposium on Computer Architecture. San Diego, CA, USA:
IEEE and ACM, June 2003.

[11] A. K. Uht, "Going Beyond Worst-Case Specs with TEAtime,"
Computer, vol. 37, no. 3, pp. 51-56, March 2004.

[12] A. K. Uht, "Uniprocessor Performance Enhancement through
Adaptive Clock Frequency Control," IEEE Transactions on
Computers, vol. 54, no. 2, pp. 132-140, February 2005.

[13] A. K. Uht and R. J. Vaccaro, "TEAPC: Adaptive Computing
and Underclocking in a Real PC," in Proceedings of the First
IBM P=ac2 Conference. Yorktown Heights, NY, USA: IBM T.J.
Watson Research Center, October 6-8, 2004, pp. 45-54.

[14] R. J. Vaccaro, Digital Control: A State-Space Approach:
McGraw-Hill, 1995.

[15] A. Weissel and F. Bellosa, "Dynamic Thermal Management
for Distributed Systems," in Proceedings of the First Workshop
on Temperature-Aware Computer Systems (TACS), at ISCA
2004. Munich, Germany, June 2004.

	Introduction
	Prior Work
	The Feedback Control System
	Prototype and Experimental Setup
	Experiments
	Step Response to Frequency Change
	Basic Operation
	Disaster Toleration

	Summary

