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Abstract

Distributed computing using networked workstations o�ers cost-e�cient parallel computing, but the

higher rate of failure requires e�ective fault-tolerance. Asynchronous consistent checkpointing o�ers a

low-overhead solution.

Parallel Virtual Machine (PVM) allows a heterogeneous network of UNIX workstations to serve

immmediately as a distributed computer by providing message-passing services implemented on top of

UNIX inter-process communication.

We briey show that correct user-level support for an aggressive, asynchronous two-phase-commit

checkpointing protocol for PVM's virtual circuit mode requires message logging.

1 Introduction

Networks of workstations are readily accessible, and an environment providing the necessary support for

message-passing or shared-memory can immediately turn such a network into a distributed computer. UNIX,

being portable and the dominant operating system in research and high-performance computing, is frequently

the base for such environments. While a distributed computer like this may not be as e�cient as a network

of workstations built directly for the purpose, using an existing network and operating system is inexpensive

and convenient. The higher rate of failure in such systems, however, requires e�ective fault-tolerance.

Parallel Virtual Machine (PVM) [1] is the most common UNIX-based environment for distributed com-

puting. It implements a message-passing environment for a heterogeneous network of computers. It provides

two modes: direct process-to-process communication using UNIX sockets (virtual circuits), or daemon-to-

daemon communication, where the message is �rst passed to the PVM daemon on the sender's machine, then

to the daemon on the recipient's machine, and �nally to the recipient. PVM lacks an e�cient mechanism

for fault-tolerance; Fail-safe PVM [9] uses a slower sync-and-stop protocol.

We set out to implement for PVM's virtual circuit mode the aggressive two-phase-commit checkpointing

protocol described by Elnozahy, Johnson, and Zwaenepoel [5], in which computation is only suspended long

enough to fork a thread; checkpoints are written concurrently with computation. The overlap permits very

low failure-free overhead, typically less than 5% even with frequent checkpoints. We �nd, however, that a

correct user-level implementation for PVM requires message logging. UNIX sockets hide acknowledgements

in the kernel, but the protocol requires control of acknowledgements in the message routines. Kernel modi-

�cation is not an option; one of PVM's chief virtues is that it is strictly user-level code and can be installed

by any user on almost any system.

This paper describes the need for message logging in implementing the Elnozahy protocol for PVM.

Section 2 gives a brief overview of the semantics of consistent checkpointing. Section 3 describes the need

for logging. Section 4 describes related work, and we summarize our work in Section 5. Our study was done

using PVM version 2.4 [1].

2 Semantics of Consistent Checkpointing

The system is assumed to consist of a number of fail-stop processes [10] comprising a distributed application,

with one or more processes at each processor node. Processes are assumed to communicate only by passing
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messages. A process checkpoint consists of saving that process's state (memory contents and process context).

An application checkpoint consists of one checkpoint each per process comprising the application. This set

of checkpoints must represent a globally consistent state: the state that would exist upon restarting the

application from its checkpoints must not be a state impossible during uninterrupted operation. For example,

a state in which some process has received a message which no process has sent is not allowed.

When a failure is detected, the application terminates and restarts from its checkpoints, with the faulty

node not used. Checkpoints must be stored on a central server to provide maximum availability of the

checkpoints; storing checkpoints on individual nodes makes their availability subject to the node failures

which are to be defended against. In the case of uninterrupted server operation (a reasonably reliable server

can be attained through replication), consistent checkpointing is resilient to an arbitrary number of failures.

The individual processes can only a�ect each other through interprocess communication [3]. This means

e�cient fault-tolerance can be achieved by allowing processes to continue computing while they checkpoint.

Synchronizing communication is su�cient to achieve consistency. The two disallowed states are a message

which has been received but not sent (see Figure 1), and a message which has been successfully sent but not

received (see Figure 2).

p0

p1

Figure 1 p0 has recorded its checkpoint before sending the message; if restarted from the

checkpoint, it will restart in a state in which the message remains to be sent. p1, however, receives

the message before checkpointing, and will restart in a state in which it has received a message

that appears never to have been sent.

p0

p1

Figure 2 p1 has recorded its checkpoint before receiving the message; if restarted from the

checkpoint, it will restart in a state in which the message has not yet occurred. p1, however, sends

the message and receives the acknowledgement before checkpointing, and will restart in a state in

which it has already successfully sent the message and will not resend it.

Consistency is achieved using an asynchronous two-phase-commit protocol that restricts a process's view

of messages while checkpointing, but otherwise allows computation to continue. Two-phase-commit ensures

that the application's checkpoints all see a message as either successfully sent and received, or not successfully

sent and not received. This is accomplished by tagging each message with a consistent checkpoint number

(CCN) corresponding to the sender's current checkpointing epoch. A process must defer receipt of any

message or acknowledgement tagged with a CCN higher than its own until it too reaches that epoch.
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In the �rst phase a distinguished checkpoint coordinator initiates a checkpoint by sending to each process

a trigger message.

1

On receipt of a trigger, a process increments its CCN and takes the checkpoint. In the

second phase, each process replies with a success message if its checkpoint succeeded. When success messages

have been received from all processes, the coordinator sends to each a commit message, which causes the

tentative checkpoint to be made permanent and the previous permanent checkpoint to be discarded. If

there is a failure, an abort message is sent instead, the previous checkpoint is maintained, and the tentative

checkpoint is discarded; failure recovery is initiated if deemed necessary.

Use of the CCN ensures that all processes agree on the state of messages within an application checkpoint.

If some process sends a message in its epoch N +1, all recipients will defer receipt of that message until they

reach their epochs N + 1. If some process sends a message in its epoch N and the recipient acknowledges in

its epoch N +1, the recipient's checkpoint N has not seen the message, because the message hasn't o�cially

been received until the acknowledgement can be sent; the acknowledgment is deferred by the sender until the

sender also enters epoch N +1, and the sender's checkpoint N sees the recipient as not having acknowledged,

interpreting this on restart as a failed send. In both scenarios, on restart all processes agree the message

\never happened".

3 Implementing Consistent Checkpointing for PVM

3.1 The Problem

Implementing asynchronous two-phase-commit requires access to the message facilities in order to append

and check CCNs. The di�culty is that PVM's virtual circuit mode uses sockets, which are implemented

using TCP/IP in the UNIX kernel. Sockets present access to streamed communication, which appears to

the user as a two-way continuous stream of bytes (hence \virtual circuit"); the sender can write any number

of bytes and the receiver can read any number of bytes. Reliability is built in; acknowledgements, resending,

and duplicate elimination are all handled transparently by the kernel.

PVM's messaging routines, which are user-level code, thus cannot modify socket behavior to append

CCNs to messages. CCNs can easily be added to PVM's own message header, and this allows a recipient to

determine when a message should be deferred. This is not su�cient. The kernel performs acknowledgements,

but CCNs need to be appended to them, too. When doing a send, as soon as the message arrives at the

destination machine, that kernel sends an acknowledgement back and the sender regards the message as

successfully received. This creates the potential for sent-but-not-received inconsistencies.

3.2 The Solution

The best solution is sender-based logging. The sender simply saves messages, and in the event of a restart

after a failure, all processes must go through a special synchronization phase in which each process announces

the last message it has seen, and any messages which have been lost by that process are retransmitted. This

in fact amounts to allowing the messaging routines to control acknowledgements. Garbage collection is

easily achieved by exchanging vectors containing last-seen values, and this can take advantage of the fact

that processes must already perform periodic synchronization in order to checkpoint.

Sender-based logging only requires minor modi�cations to the described protocol, and because the bu�er

of sent messages is saved with the checkpoint, this scheme remains resilient to an arbitrary number of failures.

Additional overhead during failure-free operation consists only of saving and managing the messages.

4 Related Work

Koo and Toueg [8] describe consistent checkpointing using a two-phase-commit protocol, with a focus on

minimizing the number of processes which must take part in a checkpoint. They prove the need for a resilient

checkpoint algorithm to store at least two stable checkpoints.
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The coordinator uses some form of timer to initiate the checkpoints at regular intervals.
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Elnozahy, Johnson, and Zwaenepoel [5], whose two-phase-commit protocol we study, demonstrate ex-

cellent performance for consistent checkpointing under the V-System. This system exhibits less than 1%

overhead for a wide range of compute-intensive applications representing a range of memory and communi-

cation behavior, and at most 6% overhead for any application tested. These �gures are for checkpoints taken

every 2 minutes. Their implementation relies on kernel support; this also facilitates incremental checkpoint-

ing, in which only the state which has changed since the last checkpoint is written to disk. While a user-level

implementation such as PVM with checkpointing cannot hope to achieve comparable performance, it has

the advantage of platform-independence among UNIX systems, like PVM itself.

Le�on, Fisher, and Steenkiste [9] have implemented Fail-safe PVM, which takes coordinated checkpoints

by issuing a global barrier and waiting for a quiescent state, thus forcing a consistent state. This sync-and-

stop protocol, however, imposes a heavy penalty on failure-free performance. Our method of asynchronous

checkpointing using a two-phase-commit protocol avoids such delays; the only sources of overhead are con-

tention due to coordination, contention at the disk from writing of the checkpoint, and managing the sender

logs.

Borg et al [2] describe an implementation of UNIX, TARGON/32, which provides completely transparent

fault-tolerance, but the system relies on the existence of atomic three-way message delivery. TARGON/32

provides fault-tolerance for distributed applications by syncing each primary process with an inactive backup

process on a di�erent node. It requires all processes wishing to take advantage of this service to only

communicate via supplied messaging routines. Reported overhead is 10%. Recovery is automatic if the

failure does not also involve failure at the node with a needed backup process.

Elnozahy and Zwaenepoel [6] analyze the performance of consistent checkpointing, message-logging, and

Manetho (a hybrid of uncoordinated checkpoints and message logging) [7], and conclude that for applications

where output latency is not critical, consistent checkpointing is superior to the other methods.

5 Conclusions

PVM provides a convenient and inexpensive way to turn a network of workstations into a distributed com-

puter, but lacks an e�cient means of fault-tolerance. We describe an aggressive, asynchronous two-phase-

commit protocol for consistent checkpointing, originally suggested by Elnozahy et al [5]. For correct user-level

implementation under PVM, this protocol requires sender-based logging. Such a system will provide the su-

perior performance of asynchronous consistent checkpointing for a package which can be installed by a user

on any UNIX system.
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