
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 8, AUGUST 1994 805

The Combining DAG: A Technique
for Parallel Data Flow Analysis

Robert Kramer, Rajiv Gupta, and Mary Lou Soffa

Absrruct- As the number of available multiprocessors in-
creases, so does the importance of providing software support for
these systems, including parallel compilers. Data flow analysis,
an important component of software tools, may be computed
many times during the compilation of a program, especially when
compiling for a multiprocessor. Although converting a sequential
data flow algorithm to a parallel algorithm can present some op-
portunities for computing data flow in parallel, more parallelism
can be exposed by the development of new parallel data flow
algorithms. In this paper, we present a technique that computes
rapid data flow problems in parallel and thus is applicable for
commonly used classical data flow problems, including reaching
definitions, reachable uses, available expressions, and very busy
expressions. Unlike previous techniques, our technique exploits
the inherent parallelism in the data flow computation that occurs
across independent paths, within linear paths, and in paths
through loops of a control flow graph. The technique first changes
cyclic structures in a control flow graph to acyclic structures
and then builds a combining directed acyclic graph (DAG) that
represents the paths through the control flow graph needed to
compute data flow. Data flow is then computed using two passes
over the DAG by computing the data flow for the nodes on each
level of the DAG in parallel. We also present experimental results
comparing the performance of our algorithm with a sequential
algorithm and a parallelized sequential algorithm.

Index Terms-Data flow analysis, control flow graph, iterative
method, structured analysis, node listings

1. INTRODUCTION
LTHOUGH parallelizing compilers continue to receive A much research attention, the increased availability of

parallel processors has recently generated an increased interest
in the design and implementation of parallel compilers [6],
[171. With the availability of multiprocessor environments, we
no longer need to use a uniprocessor to compile programs that
are targeted for a multiprocessor system, but rather can use
the multiprocessor itself. A very important component of any
compiler is data flow analysis. Data flow information is used
in various phases of compilation, including code generation,
code scheduling, traditional optimizing transformations, and
parallelizing transformations. Consequently, a single program
compilation may involve the computation of the solution to
several data flow problems at different points in the language
translation process. For large programs, the data flow analysis

Manuscript received June 16, 1992; revised June 16, 1993. This work
was supported in part by the National Science Foundation under Presidential
Young Investigator Award CCR-9157371 and under Grant CCR-9109089 to
the University of Pittsburgh.

The authors are with the Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15260 USA; e-mail: gupta@cs.pitt.edu.

IEEE Log Number 9401218.

performed during compilation can be time-consuming. Also,
a number of important code transformations, such as loop
unrolling, loop splitting, and in-line code substitution, increase
the code size. This larger code size further adds to the cost of
data flow analysis. Finally, data flow analysis is also used in
other program tools, such as editors, testers, and debuggers,
in both sequential and parallel programming environments
[2]-[5], [8], [14], [151. The computation of data flow in parallel
is beneficial for a number of tools running in a multiprocessor
environment.

In developing parallel algorithms, there are two approaches
that can be taken. In one approach, a sequential algorithm
is adapted to a parallel version of the algorithm. Using this
approach, moderate amounts of parallelism can typically be
detected. The other approach is to develop novel techniques
and algorithms to solve a problem that more fully exploit
the inherent parallelism of the problem. In this way, more
parallelism is exposed. Both approaches have been used in
recent algorithms for parallelizing data flow analysis [7], [131,
[181.

To compute data flow information in parallel, the data
flow problem is decomposed into subproblems, which are
solved in parallel. The results from the subproblems are then
combined to obtain a data flow solution for the entire program.
The decomposition is achieved by partitioning the control
flow graph and decomposing the data flow problem into
subproblems associated with these partitions. When adapting
a sequential algorithm to a parallel algorithm, the partitioning
of the data flow problem is based upon the natural partitioning
imposed by thc data flow analysis algorithm, such as intervals
or maximal strongly connected components. Parallel versions
of the sequential Allen-Cocke interval analysis algorithm
[I], [71, [181 and a parallel version of a hybrid method for
computing data flow [121, [I31 have been developed using the
natural partitioning of the sequential algorithms.

In the parallel interval analysis algorithm, computation for
each interval in a given graph of a derived sequence is per-
formed in parallel [7], [18]. A similar approach uses a hybrid
algorithm [131 that combines an iterative technique with a
structured technique to compute data flow 1121. In this parallel
algorithm, the maximal strongly connected components of
a program are detected, and local data flow problems are
solved, for each component in parallel. A propagation phase
distributes the data flow information to the components. Global
data flow is then computed for the blocks in each compo-
nent in parallel. The major problem with these algorithms
is that there is no control over the decomposition of the

1045-9219/94$04.00 0 1994 IEEE

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 11, 2009 at 17:08 from IEEE Xplore. Restrictions apply.

mailto:gupta@cs.pitt.edu

806 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 8, AUGUST 1994

flow graph. It could happen that the sizes of the intervals or
strongly connected components (i.e., loops) vary considerably.
It could also happen that the flow graph decomposes into
very few partitions. For example, if a program had one
major loop, then there would be only one partition, and
no parallelism would be exploited. Both the size and the
number of partitions are determined purely by the structure
of the program and the natural partitioning of the algorithm.
Thus, some components could be very large, whereas others
are not large at all, causing problems in mapping to the
processors. The dependence on the program structure restricts
the exploitation of the parallelism in the computation of data
flow.

The second approach of developing parallel algorithms has
been used in the development of techniques that partitions a
control flow graph without consideration of the flow graph
structure [7]. In this paper, we present a new technique for
computing parallel data flow that is applicable to structured
control flow graphs and solves rapid data flow problems [9],
[lo]. Thus, it is oriented toward the four classic (and com-
monly used) data flow problems, namely, reaching definitions,
live uses of variables, available expressions, and very busy
expressions. The technique detects the inherent parallelism in
data flow analysis using three sources.

1) The parallelism in the data flow computation across
independent paths (traces) in a control flow graph is
detected.

2) Within each independent path, the parallelism in com-
puting data flow for a linear path is detected by path
partitioning.

3) The parallelism in data flow paths through loops in
the control flow graph is detected by transforming the
cyclic structures to acyclic structures. The resulting
acyclic structure enables the computation of data flow
information within the loop to be carried out in parallel
with the computation of data flow information for code
preceding the loop and with code following the loop
(overlapped execution).

In our approach, all three possible parallel opportunities are
detected. Using the control flow graph, the technique first
converts the cyclic structures of a control flow graph into
acyclic structures, and then constructs a directed acyclic graph
(DAG) from the acyclic control flow graph, in which each
node represents subpaths in the control flow graph. The data
flow for subpaths is computed and combined with other
subpaths. The data flow for nodes at each level in the DAG is
computed in parallel. The decision about the extent to which
this parallelism can be exploited will be made based upon
the communication costs on a specific parallel architecture.
Depending on the architecture, the nodes of the DAG can
either be scheduled to execute in parallel or be merged
with other nodes and scheduled using standard scheduling
techniques, such as proposed by Sarkar [161. It should be noted
that such scheduling techniques do not uncover additional
parallelism. Instead, they determine only how much of the
detected parallelism will actually be exploited during parallel
execution.

In this paper, we first present an overview of our technique,
together with examples demonstrating the subpath partitioning
and data flow computation. The rest of the sections then
provides more details about our algorithms. We present data
flow equations and a parallel algorithm for computing data
flow along a linear path. We also present a technique for
integrating the data flow computation of independent paths
that interact by the merging and branching of paths in the
control flow graph. Transformation techniques, which are
applied to cyclic structures, are presented that further enhance
the detection of parallelism. Experimental results comparing
our technique to the parallel hybrid technique [13] that uses
only the structure of the program for its parallelism are also
presented.

11. OVERVIEW

Data flow analysis involves the computation of information
about the flow of data along execution paths using a control
flow graph. The goals of the parallel data flow analysis
algorithm are to propagate the information along a path as
quickly as possible and also to propagate information along
different paths in parallel. We first give a general overview
of a parallel algorithm that achieves the above goals. To
simplify the discussion, we discuss our technique in the
context of reaching definitions (i.e., a forward, union data
flow problem), although our technique can be used to solve
the other rapid data flow problems, including reachable uses,
available expressions, and very busy expressions (i.e., forward,
backward, union, and intersection).

Consider a linear chain of basic blocks. Although it appears
that computing data flow for a linear path must take linear
time, that is, O (n) time for a path containing n basic blocks,
we present a faster algorithm. From this chain, a tree can be
built whose leaves represent the basic blocks, whose internal
nodes represent subpaths, and whose root represents the entire
data flow path. Using this tree, the computation of data flow
information is carried out in two passes. In the first pass,
the tree is traversed in a bottom-up fashion, and the set of
definitions preserved and the set of definitions generated by
each node in the tree are computed. In the second pass, starting
at the root of the tree and traversing down the tree, the set
of data flow items entering a node (the IN set) and the set
of definitions exiting the node (the OUT set) are computed.
The above process is completed in O(1ogn) time, because the
nodes at a given level are processed in parallel (assuming that
the number of processors is at least equal to the maximum
number of nodes at any level and a constant time operation
at each node). Fig. l(a) shows a chain of basic blocks, and
Fig. l(b) shows the corresponding combination tree. The node
labeled “1.2” represents the subpath consisting of blocks 1
and 2.

An acyclic flow graph can be viewed as consisting of
several linear paths. The flow graph in Fig. 2(a) contains three
paths, 1.2.3.4.5.6, 1.2.7.8.5.6, and 1.2.3.8.5.6. To compute
data flow for an acyclic graph, a tree corresponding to each
of these linear paths is built by combining two nodes from
lower levels. Portions of paths may overlap. For example,

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 11, 2009 at 17:08 from IEEE Xplore. Restrictions apply.

KRAMER et al.: COMBINING DAG 807

(12345B

(a) (b)

Fig. 1. Propagating data flow information along a linear path.

Fig. 2. Propagating data flow information in an acyclic graph.

subpath 1.2 appears in all three paths of Fig. 2(a). The nodes
corresponding to the shared portions of the paths are shared
among the trees constructed for different paths. This results
in a combination DAG, as shown in Fig. 2(b). It should be
noticed that the sharing of nodes occurs at all levels in the
tree. The computation of data flow is carried out as before,
with a bottom-up pass of the combination DAG followed by
a top-down pass. In this process, the computation of data
flow for independent paths, or independent portions of the
paths, is being carried out in parallel. If a node has multiple
parents, it will receive information from each of its parents.
This information is combined using union and intersection
operators, depending upon the data flow problem being solved.
The maximum speedup that can be achieved is bounded by the
length of the longest path in the program. Note that the height
of the acyclic graph in Fig. 2(b) is the same as the graph in
Fig. 1 , because the length of the longest path is the same.

Loops introduce cycles in the flow graph. We transform
the flow graph into an acyclic graph by removing the back
edge of a loop and introducing additional copies of the nodes
belonging to the loop (i.e., loop unwinding). The copies are
introduced to ensure that the paths in the cyclic graph along
which data flow information is propagated are also present
in the transformed acyclic graph. Fig. 3 demonstrates the
transformation of a single loop into an acyclic graph. The
loop unwinding transformations are described in detail in the
next section. The length of the longest path in the code will
not necessarily double as a result of replication of the loop,
because the computation of data flow for the replicated nodes
can be carried out in parallel with the nodes following the loop.
Once an acyclic graph is obtained, the combination DAG is
constructed.

During the transformation of a cyclic graph into an acyclic
graph, certain nodes are replicated. The data flow set of a node
in the original control flow graph is the union of the data flow
sets of replicated copies in the transformed graph.

Fig. 3. Transforming a cyclic graph into an acyclic graph

Given: A reducible control Row graph G = WE). where V IS the se1 of basic blocks and E 1s L k se1 of
e d g e s m the Row graph
Outpul: In and Our for each B E V.

Algorithm:
For each pnredure in G Loop

Elimime Loops: The lwps in G are unwound and the replicaled copies of the loop

Creme Combinbrwn DAG: Considering all data Row paths in C creak a DAG showing

Compure Darapow: Perform computations ai each node in the DAG, firs1 Sponrmcou

bodies are connecled ln the Row graph. This resulls in an acyclic graph.

the evaluation and combination order.

and Presewed in bollom-up order, then IN and OUT in topdown order.
End For

Fig. 4. The parallel data flow analysis algorithm.

The major steps of the parallel data flow analysis algorithm
are summarized in the algorithm shown in Fig. 4. First, the
control flow graph is transformed into an acyclic graph through
the unwinding of loops. Next the combination DAG for the
acyclic graph is built, which is then used to compute the
data flow information in parallel. Once a combination DAG
has been built, it can be used repeatedly to solve the same
or different data flow problems. The overall algorithm for
computing data flow in parallel is summarized in Fig. 4.

111. LOOP UNWINDING TRANSFORMATIONS

In this section, we discuss the transformation of a flow
graph containing loops into an acyclic graph. The acyclic graph
should provide the same data flow information as the original
flow graph. In order to guarantee correct data flow information,
we rely on the following properties.

Condition-]: All acyclic paths in the original flow graph
must also be present in the transformed flow graph.
Condition-2: The transformed flow graph should not
contain any path that was not present in the original flow
graph.

The above observations were used by Kennedy [I l l in
developing node listings for carrying out data flow analysis of
structured programs. Next we describe the transformations for
handling a single loop as well as nested loops. We also prove
that our transformations are in accordance with the properties
described above. In the discussion of these transformations,
we assume that the goal of any forward data flow analysis
algorithm is to compute the data flow information immediately
following each node (i.e., the OUT set for the node). The OUT
set of a node is the function of the OUT sets of the node’s
predecessors.

Consider the flow graph in Fig. 5(a), which contains a single
repeat loop. In the flow graph representation, the node labeled

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 11, 2009 at 17:08 from IEEE Xplore. Restrictions apply.

808 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 8, AUGUST 1994

(-$ acycli

1 t

(a)

Fig. 5. Unwinding transformations for non-nested loop.

“head” represents the entry to the loop, and “tail” represents
a dummy node that marks the exit of the loop. The data flow
information can be propagated to all the nodes by iterating
through the loop twice for a rapid data flow problem, because
one pass around the loop summarizes the loop’s data flow
contributions. Hence, duplicating the loop once, as shown
in Fig. 5(a), is sufficient to ensure the propagation of data
flow information from any node in the loop to every node
in the loop. As we can see, this process creates all acyclic
paths present in the original control flow graph. The entire
loop, except the tail of the loop, is duplicated; the tail is
not duplicated, because the information arriving at the exit
of the tail does not change as a result of propagating data flow
information along the loop back edge. A while loop is handled
similarly, as shown in Fig. 5(b).

Claim I : The transformation for unwinding a single loop
will lead to the computation of correct data flow information.

Proof: In order to prove this claim, we must show
that the unwinding transformations in Fig. 5 satisfy the two
conditions stated at the beginning of this section. Consider a
pair of nodes ni and n j belonging to the loop. There is an
acyclic path from n i to 71,~ in the original control flow graph.
This acyclic path is also present in the transformed graph. If
this path does not go through the back edge, then the path is
present in the first copy of the loop in the transformed graph.
If the path goes through the back edge, then it is present
from the first copy of n,i and the second copy of n,. Thus,
the acyclic path is present in the transformed graph; hence,
condition-1 is satisfied. In the transformed graph, there is no
direct edge between a pair of nodes that are not connected in
the original control flow graph. Thus, no new paths are added

0
The transformation of nested loops is carried out as follows.

Consider the nested loops shown in Fig. 6(a), where the head
and tail of each loop are directly connected by an edge. First,
we handle the outermost loop by replicating the loop body and
connecting the tail of one copy with the head of the newly
created copy. This process creates the acyclic paths solely due
to the outermost loop. Next we must create the acyclic paths
for the inner loop. This process does not require replication
of the inner loop, because the replication has already been
carried out. The acyclic paths solely due to the inner loop are
created by connecting the tail of the first copy to the head
of the second copy. The resulting acyclic graph is shown in
Fig. 6(b).

by the transformation, and condition-2 is satisfied.

@ acycli

t

1
(a) (b)

Unwinding C shell loops: Head and tail connected directly Fig. 6.

Claim 2: The transformation for unwinding a multiply
nested loop with head and tail directly connected will lead
to the computation of correct data flow information.

Proof In order to show that condition-1 is satisfied, we
proceed as follows. Let us first consider the acyclic paths in the
outer loop that do not traverse the back edge corresponding to
the inner loop. The edge connecting tl to hl in the transformed
acyclic graph creates all such paths. This directly follows from
claim 1. Similarly, it also follows from claim 1 that all acyclic
paths that traverse the back edge of the inner loop are created
by connecting t 2 to h 2 in the transformed graph. We can
also see that condition-2 is satisfied by this transformation
because no two nodes are directly connected in the transformed
graph, unless they are not directly connected by an edge in the
original control flow graph. Thus, the transformation leads to

0
In the previous case, the exit of the loop is directly con-

nected by the back edge to the loop entry. In some situations,
the loop may contain a sequence of back edges that connects
the exits of loops to the entries of loops (see Fig. 7(a)). In this
situation Fig. 7(b) gives the final acyclic graph. In order to
create the acyclic paths in the loop (hl , acg,, t l) , we replicate
(hl , acgl); to create the acyclic paths in the loop (t l , acg2,
t z) , we replicate (tl, acg2).

the computation of correct data flow information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 11, 2009 at 17:08 from IEEE Xplore. Restrictions apply.

809 KRAMER et al.: COMBINING DAG

I

(a) (b)

Fig. 7. Unwinding climbing loops: Head and tail connected indirectly.

Claim 3: The transformation for unwinding a multiply
nested loop with head and tail indirectly connected will lead
to the computation of correct data flow information.

Proof: In order to show that condition-1 is satisfied, we
consider the following cases.

Acyclic Paths Among the Nodes Without Going Through
Any Back Edge: These paths are present in the trans-
formed graph since the entire loop body is included in
the transformed graph.
Acyclic Paths From acg, to acg, via Back Edge tz ---f tl:

These paths are included by making a copy of t l and
acg, and connecting t 2 to t l in the transformed graph.
Acyclic Paths From acg, to acgl via Both Back Edges:
These paths are also present, because there is a path
starting at the first copy of acg, that goes through t2
and the second copies of t l and hl leading to the second
copy of acgl in the transformed graph.
Acyclic Paths From acgl to acg, via Back Edge tl ---f hl:
Although loop unwinding produces multiple copies of a
node, a common data set is associated with all copies.
For example, the OUT set of a node in the original
control flow graph is the union of the OUT sets of all
of its copies in the transformed graph. Because of the
unioning of the data flow sets for the replicated copies of
tl, there is an implicit path from t l to hl, as indicated by
the dotted edge in Fig. 7(b). Thus, the acyclic paths from
acgl to acg, via back edge t l ---t h,l are represented in
the transformed graph.

Thus, condition-1 is satisfied by this transformation. For the
same reasons as those given for claims 1 and 2, condition-2 is
also satisfied. 0

An overall algorithm that converts a structured cyclic flow
graph into an acyclic flow graph is given in Fig. 8. This
algorithm essentially selects the order in which the four
transformations discussed in this section are applied. The
application of unwinding transformations is preceded by the
detection of loops. We identify the largest outermost loop, and,
depending upon its structure, use an appropriate transformation
to unwind it. The unwinding is carried out by the function
Unwind. If an unwinding transformation can eliminate all back
edges among the nodes in the current loop, then we apply
the transformation. However, if this is not the case. it means
that there are other loops nested within this loop that must

Given: A suuctured control flow graph G = (V E)
Oulput: An acyclic graph G' =(V'.E').

Algorithm:
Procedure Unwind (L loop)

Let B denote h e set of all backedges among the nodes in L;
Let B denote lhe set of backedges lhat will be removed by applying
one of the following uansformauons appropriate for L

TI: Transformation of Single Loop. Repeat Structure;
TI: Transformauon of Single Loop. While Structure;
TJ: Transformation of Multiple L w p , Direct edges between Head and wl: or
Tq: Transformation of Multiple Lwp, Indirect edges between Head and lail.

apply the appropnale unwinding Vansformalion T,
I f B = B Then

Else
B" = B . B'
Repeat

find h e largest nested loop L' in L which only contains backedges from B":
UnwindfL?; -- h i s eliminates the backedges from L'
remove the eliminated backedges from B

Unlil B" = 0
remove backedges in B by applying lhe appropriate unwinding uansrormauon T, U) L
-- note lhat only the original nodes in L are replicaled at h i s point.
-- h e copies created during he removal of h e backedges in B" are no1 replicated again.

Endif
End Unwind

Identify all loops in the program
While 3 a backedge that has not been removed Do

Select an outermost Imp L = (VLEL) in G
Unwind (L)

Endwhile

Fig. 8. The loop unwinding algorithm.

(;ken: An J<!CIK cc~11UuI IIUH g q h G = (V.E).
Oulpul: The n d r . , 111 h c ~cnihinJuon DAG.
.Alporit hni:

Rocedurr i r d b ~ ' r w I ntkic,. lillll')
Fur c x h ~ .hi ld of nckJc in thi' conuol flow gnph Do

l h i i r i r = a i d Then
If Ihc whpalh node '"nodc <-Iiild" has M I bcen crcated w l i c r Then

Creaa thr. node '"ic 6-hiid"
uJ\crv' (c-iuid. Evcn

Endif

l rakcw (diifd, Odd)
Elu /* siaic = Even */

Endif
Endfur

End uawrse

While p l h s conmning multiple nodes exist Loop
For each rax node n Do uaverse (n, odd):
Construct the modified conuol flow graph - which conlains the new nodes.

Endwhile

Fig. 9. Construction of the combination DAG.

be unwound first. This is achieved by recursively calling the
function Unwind and removing the back edges for these loops.

Iv. CONSTRUCTION OF THE DAG FROM
THE CONTROL FLOW GRAPH

After the control flow graph has been transformed into an
acyclic structure, the combination DAG is constructed. The
algorithm for constructing this DAG is described in Fig. 9.
In the algorithm, Procedure Traverse travels along all data
paths in the acyclic control flow graph and generates nodes
resulting from the combining of two successive nodes in the
graph. An even-odd marking of nodes determines the pairs
of nodes that are to be combined. The first node in a pair
is marked odd, and the second is marked even. After the
first application of Traverse to the control flow graph, all
combinations containing two nodes that must be included in
the combination tree are detected. The control flow graph
is then transformed by replacing the original nodes with the
combined nodes. Thus, the nodes in a transformed flow graph
represent subpaths created by earlier node combinations. The

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 11, 2009 at 17:08 from IEEE Xplore. Restrictions apply.

810 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 8, AUGUST 1994

1.3.5/1.2.3.5/1.3.4.5/1.2.3.4.

Fig. IO. Reducing the number of nodes in the combining DAG.

resulting control flow graph is then traversed again to generate
the nodes at the next level of the combination DAG.' The
process is repeated until all the nodes in the combination
DAG have been generated, which occurs when the control
flow graph has been reduced to single unattached nodes.

In the algorithm in Fig. 9, when merging with a path already
processed, the merge point may require combining the same
nodes, in which case the nodes are reused. If this is not the
case, then new nodes with proper combining must be gener-
ated. However, there are at most two different combinations
of shared paths. In this algorithm, two representations of a
shared subpath can be created. For example, in Fig. 10(b),
the two paths [1.2.3.5] and [1.3.5], which share the subpath
[3.51, are derived by different combinations of nodes. Instead,
we could have created a node representing the shared subpath
and reused it in the derivation of other paths. We developed
a modified Traverse procedure that enables the sharing of
paths. This sharing is achieved by introducing combining
nodes that represent multiple subpaths shared by other paths.
For example, in Fig. 1O(c), the combining node [3.5/3.4.5]
represents two subpaths [3.5] and [3.4.5] that are shared by
several paths (e.g., [1.3.5 J and [1.3.4.5 1). The introduction of
combining nodes reduces the total number of nodes in the
combination DAG. The cost is a taller DAG, bound by the
number of merges found along a path. Thus, in the worst
case, the height of the DAG can double if all merges occur
along the same path. However, in the experiments performed,
the sizes of the DAG'S were significantly reduced, with the
penalty being a slight change in execution time.

v. COMPUTATION OF DATA FLOW

Given the DAG that is created from the subpaths in the
control flow graph, we compute the data flow for each of
the nodes. An interior DAG node can have at most two
children, but multiple parents. The computed data flow at each
node represents the data flowing into and out of the subpath
represented by the node.

Data flow information is computed in two traversals of the
DAG. The first traversal is a bottom-up traversal, and, during
this traversal, a Preserved set, P , and a Spontaneous set, S,
are computed for each node. The set P represents the data
items that are preserved through the node; that is, if a value
reaches the start of the subpath represented by the node, it

'In the algorithm in Fig. 9, we assume that the transformed control flow
graph is constructed by the main program. However, the algorithm can be
changed to build the modified control flow graph as the graph is being
traversed.

reaches the end of the path. The set S at a node represents the
set of data flow items that are generated within, and not killed
by, the subpath represented by the node.

We assume that the set U is the universal set, and Gen and
Kill have the usual data flow definitions for a basic block.
Thus, for the leaf nodes, the S set is the Gen set, and the
P set is the set of items that are not Killed. In the data flow
equations, we represent a left child of a node, say, g, by 41,
and represent the right child of q by q,. By the construction
of the DAG nodes, the subpath of a left child node flows into
the subpath of a right child node. The data flow equations for
P and S follow:

p[ql = U P[c]! where q is a combining node,
U - Kill[q], where q is a leaf node,

c is a child of q

P[ql] 0 P[q,]: where q is an interior node.

{ (S[ql] n P[q,]) U S[q,], where q is an interior node.

For example, for a value to be in the P set of the node [1.21
in Fig. 1, representing the subpath 1.2, it must be preserved
through node 1 and node 2, and thus must be in the intersection
of the P sets of the two nodes. In order for an item to be in
the S set of node [1.2], it must be generated in the left child
of the node and preserved through the right child, or it must
be generated in the right child. Thus, at the end of the first
pass, the items for each node that are preserved and generated
are computed.

In the second pass, which is a top-down pass, we compute
the IN and OUT sets for each node, finally culminating in the
computation of the IN and OUT sets for each leaf node (a
basic block). IN and OUT sets of child nodes are computed
from their parents. Given a node q , IN[q] is also contained
in IN[ql], OUT[q] is contained in OUT[q,], and OUT[qlI is
contained in IN[q,l. The OUT[ql] is computed from its IN, S ,
and P sets. In computing the IN of the right child, we have to
consider information flowing from all left siblings, where a left
sibling is any left child of parents of the right child (see Fig.
11). The computation of the IN and OUT sets follow. Initially,
for each root node in the combination DAG, IN[root] = null
and OUT[root] = S[root]. In the equations, ns represents a
left sibling of ri. In the following equations, we assume that
71 is not a child of a combining node.

Gen[q], where q is a leaf node,

U S[c] , where q is a combining node,

{
s[q' =

c is a child of q

IN[n] := U INb] + U OUT[l]
P I =n ns=6

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 11, 2009 at 17:08 from IEEE Xplore. Restrictions apply.

KRAMER er al.: COMBINING DAG 81 1

Fig.

Fig.

Fig.

(a) (b)

11. The top-down pass for computing data flow.

Given: The Combining DAG for a conml flow graph.
Output: The Preserved and Generated Set for each node in the DAG.
Algorithm:

Begin
Parallel Do for nodes n at LealLevel

P[nl := U-Kill[q] ;
S[nl := Gen[q] ;

EndDo
For i := Lesnevel-l down to RootLevel

Parallel do for all nodes n at level i
If n is a combining node Then

Plnl := Plcl: where c is a child ofn
Slnl := Slcl: wherecisachildofn

P[nl:= PInd n PIn,l ;
S[nl:= (S h l n PlnJ) U S[nJ

Else

Endif
EndDo

EndFor
End

12. Computing preserved and spontaneous sets in parallel.

Given: The P a d S sels lor e x h nodc in the combining DAG.
Output: The IN and OUT sels for cach basic block.
Algorithm:

Begin
For all m nodes in Ihe c o m b i ~ u o n DAG

In(rooc) :=null;
Oul(m0c) := S(root);

EndFor;
For i := R&vel+I U) LealLevel-l

poralkl Do for each node n at level i
If n is a child of a combining node p Then

N[nl := lN[pl
O w n 1 := (I N l n l ~ P l n 1) ~ I ~ l

N[nl := U IN[pl; where n is the left child of p.
O W n I := (INlnl n Plnl) U Slnl;

EIsrif n is b e left child of a node at level i-1

Eadlf
EdDo
Rnlkl Do for each node n at level i

If n is the right child of a non-combining node at level i-1 Then
O w n] := OUT[nl + U OUT[pl: where n is the right child of p.
N[nl := INInl + U OUT[Il; where I is a left sibling of n.

Endlf
Eadh

EndFor
E d

13. Computing IN and OUT sets in parallel.

OUT[n] := U OUT[p] or
p,=n

OUT[n] := (IN[n] n P[n]) U S[n]

In the modified version of the algorithm that constructs
combining nodes, the IN and OUT sets of the children of
the combining nodes are computed by using the following
equations.

IN[n] := INb], where the combining node p
is the parent of n

OUT[n] := (IN[n] P[n]) U S[n]
These data flow equations can be computed in parallel for

each level of the DAG. The algorithms for computing S, P ,

2: = x + l

3: z = x + y

4: -5 8: y'y + 1 e 5 q=p+y

(a)

(b)

Fig. 14. Computing reaching definitions in parallel.

TABLE I
COMPUTING SETS S AND P

IN, and OUT for reaching definitions are given in Figs. 12
and 13.

Next we illustrate the algorithm given in Figs. 12 and 13
by computing reaching definitions for the control flow graph
shown in Fig. 14(a). The combining DAG for the control flow
graph is shown in Fig. 14(b). In the first phase, we carry out the
computation of sets P and S for the nodes in the DAG starting
at the leaves and finishing at the root nodes. The results of this
phase are given in Table I. In the next phase, we compute the
IN and OUT sets for the nodes, starting at the root nodes
and ending at the leaves. The results of the second phase are
shown in Table 11.

In the above discussion, we consider a forward union data
flow problem. The other rapid data flow problems can also
be computed by using the combining DAG approach. For a
forward intersection problem, the union operator in the IN and
OUT equations just needs to be changed to an intersection
operator. For a backward flow problem, the values will flow
from right to left, rather than from left to right, in combining
values.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 11, 2009 at 17:08 from IEEE Xplore. Restrictions apply.

812 IEEE TRANSACTIO1

Node IN
1.2.3.4.5.6 [I
1.2.3.8.5.6 []
1.2.7.8.5.6 [)

1.2.3.4 I 1
1.2.3.8 (I
1.2.7.8 { I

1.2 (1
3 4 (1.21
3 8 11.21
7.x { I 2 1
5.6 (12.3,4,7,8)

1 [I
2 111

1121
{ 1.2,31

5 112.3,4,7.8)
6 11,2.3;2,5,7.81

VS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 8, AUGUST 1994

OUT
(1.2.3.4.51
l1.3.8.51
1.7.8.51
1.2.3.41
(1.3.81
(1.7.81
11.21

(1.2.3.41
(1.3.81
1,731

(1.2.3,4.5,7.8)
(11
1121

(1.2.31
[1.2.3.41

(1,2,3.4.5.7.8)
(1.2,3.4.5,7.81

7
R

w . 7 1
11.7.81

VI. COMPLEXITY ANALYSIS

Here we briefly describe the worst case space and run-
time complexity of the combining DAG method. The space
complexity of the algorithm is bounded by the size of the
combining DAG. If there are n nodes in the control flow graph,
there will be n leaves in the DAG. The maximum number of
nodes at each level in the DAG is limited to O(n) . The height
of the DAG is limited to O(n) , because the longest path in
the control flow graph can have at most n nodes. The number
of combining nodes cannot exceed o(n), because it is limited
by the number of merges in the control flow graph along a
path. Thus, the worst case space complexity of the combining
DAG is O (n 2) .

The time for using this algorithm consists of the time
required to build the combining DAG and the time required
to perform the data flow computation in parallel. The time
spent on constructing the combining DAG is amortized across
the different data flow problems being solved, because it is to
be built once and reused repeatedly. Let us consider the time
required to compute the data flow information. Since the data
flow computation at each level is performed in parallel, the
execution time is limited by the height of the combining DAG.
Thus, assuming that the amount of computation performed
at each node is constant, the time complexity of the parallel
algorithm is O(n) . The worst case sequential execution time
of performing data flow analysis is O(7t2), even though in
practice it is found to be O (k n) , where IC is the depth of
the graph. The worst case parallel execution time using O(n)
processors is O(n). Thus, we have achieved linear speedup in
the worst case execution time using our approach.

VII. IMPLEMENTATION AND EXPERIMENTATION
In order to determine the amount of parallelism detected

by our algorithm for real programs, we computed the ideal
execution times of our parallel algorithm and the parallel ver-
sion of the hybrid algorithm, and compared their performances
with the sequential hybrid algorithm. The ideal execution times
were obtained by measuring the sequential execution times of
each component and factoring in the parallelism detected.

In the implementation of our combining DAG technique,
an adjacency matrix is used to represent the DAG for fast

TABLE 111
COMPARISON OF PARALLEL HYBRID AND COMBINING DAG METHODS

access to the nodes. The matrix is initialized as the control
flow graph. When unwinding the loops, the control flow graph
is traversed, and the matrix is updated to represent the acyclic
graph representation. To share existing DAG nodes, a hash
table is built to quickly search for nodes; the children of a
node are used as the hash key. This dramatically speeds up
the construction process.

We then used the ideal parallel execution times of the data
flow to determine the maximum parallelism detected by each
algorithm. In the experimental results, we report the ideal
speedup over the sequential hybrid data flow algorithm. We
have run four programs obtained from various test suites and
computed the ideal speedup for the parallel hybrid algorithm
(PH) and our algorithm with combining nodes (CN). Table I11
presents the results of CN as compared with the parallel hybrid
method. In the table, we give the number of strongly connected
components (#scc) and the number of nodes (#nodes) and
height (height) of the combining DAG. We also give the
speedup, or ratio of the parallel time to the sequential time, for
both algorithms. The results of our experiments indicate that
our algorithm clearly detects more parallelism than the parallel
hybrid algorithm, achieving ideal speedups ranging from 2.7
to 5.4.

We also implemented a version of our algorithm that did not
use combining nodes (NCN). For the programs considered, the
reduction in the number of nodes, using CN rather than NCN,
ranged from a factor of 1.7 to as high as 10. The increase in the
height of the DAG was a factor of 2. The speedup changed
very marginally.

As is the case with most parallel algorithms, a setup
time is required for both the hybrid and our algorithm. For
example, the hybrid method needs to detect strongly con-
nected components, whereas our algorithm must construct
the combining DAG. The setup time for the above programs
was less than 20% of the parallel execution time, and this
time is amortized over the number of data flow computations
performed. Any subsequent data flow computations would use
the same combining DAG.

As mentioned previously, the times presented represent
the ideal speedup and do not reflect any architectural con-
siderations, such as communication costs. Depending on the
architecture, all of the parallelism detected may or may not be
exploitable. For example, in a message-passing architecture,
the communication costs are significant and would require
larger task sizes. These larger task sizes can be acquired by
using an existing merging and scheduling technique [16]. On
the other hand, fine-grained, shared memory architectures can
exploit the greater amounts of the parallelism that are detected
by our algorithm. Similarly, the parallel hybrid algorithm
can be implemented by using the same type of scheduling

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 11, 2009 at 17:08 from IEEE Xplore. Restrictions apply.

KRAMER et al.: COMBINING DAG 813

techniques. However, the smallest task sizes correspond to the
strongly connected components of a control flow graph and can
be increased in size only by these methods. The advantage of
our approach is the flexibility provided in terms of constructing
tasks of various grain sizes.

REFERENCES

[I] F. Allen and J . Cocke, “A program data flow analysis procedure,”
Commun. ACM. vol. 19, no. 3, pp. 137-147, Mar. 1977.

[2] T. R. Allen and D. A. Padua, “Debugging Fortran on a shared memory
machine,” Proc. Int. Con$ Parallel Processing, 1987, pp. 721-727.

(31 D. Callahan, K. Kennedy, and J. Subhlok. “Analysis of event synchro-
nization in a parallel programming tool,” Proc. 2nd ACM SIGPLAN
Symp. Principles and Practice of Parallel Programming, 1990, pp.

[41

r51

171

R.W. Kramer received the B.S. degree in math-
ematics and computer science from Youngstown
State University, Youngstown, OH, USA, in 1987,
and the M.S. degree in computer science from the
University of Pittsburgh, PA, USA, in 199 1.

He is a doctoral student in the Department of
Computer Science, University of Pittsburgh. His
research focuses on parallel and incremental tech-
niques for performing rapid genetic linkage analysis.

R. Gupta received the B.Tech. degree in electrical
engineering from the Indian Institute of Technology,
New Delhi, India, in 1982, and the Ph.D. degree in
computer science from the University of Pittsburgh,
PA, USA, in 1987.

Currently, he is an Associate Professor in the
Department of Computer Science, University of
Pittsburgh. He was a Senior Member of Research
Staff in the Computer Architecture and Program-
ming Systems Group at Philips Laboratories from

~~

21-30,
P. Emrath and D. A. Padua, “Automatic detection of nondeterminacy
in parallel programs,” Proc. ACM SIGPLAN and SIGOPS Workshop on
Parallel and Distributed Debugging, 1988, pp. 89-99.
P. G . Frank1 and E. J. Weyuker, “An applicable family of data flow
testing criteria,” IEEE Trans. Software Eng., vol. 14, pp. 1483-1498,
Oct. 1988.
T. Gross, A. Zobel, and M. Zolg, “Parallel compilation for a parallel
machine,” Proc. SIGPLAN’R9 Con$ Programming Lclnguage Design and
Implementation, 1989, pp. 91-100.
R. Gupta, L. L. Pollock, and M. L. Soffa, “Parallelizing data flow
analysis,” Workshop on Parallel Compilation, Kingston, ON, Canada,
1990.
M. J. Harold and M. L. Soffa, “Interprocedural data flow testing,” Proc.

~ , o ~ ~ ~ n i “ ~ ~ ~ g ; , A ~ ~ ~ ~ ~ ~ d , ~ ~ ~ ~ ~ ~ a s ~ ~ ~ a l ~ ~ i , P ~ n b 5 ~ ~ ~ ~ v e
algorithms,” J . ACM, vol. 23, no. I , pp. 158-171, Jan. 1976.
J, B. Kam and J, D. ‘.Monotone data flow analysis frameworks,”
Acta Informatica, vol. 7, pp. 305-317, 1977.
K. W. Kennedy, “Node listings applied to data flow analysis,” Con$
Record 2nd ACM Symp. Principles of Programming Languages, 1975,

Y.-F. Lee, T. J. Marlowe, and B. G. Ryder, “Experiences with a
parallel algorithm for data flow analysis,” J . Supercompufing, vol. 5 ,

T. J. Marlowe and B. G. Ryder, “An efficient hybrid algorithm for
incremental data flow analysis,” Con5 Record ACM Symp. Principles of
Programming Languages, 1990, pp. 184-196.
B. Miller and J . D. Choi, “A mechanism for efficient debugging of
parallel programs,” Proc. SIGPLAN’88 Conj Programming Language
Design and Implementation, 1988, pp. 135-144.
B. Ryder, “ISMM: Incremental software maintenance manager,” Proc.
Con$ Software Maintenance, 1989, pp. 142-164.
V. Sarkar, “Compile time partitioning and scheduling of parallel pro-
grams,” Proc. SIGPLAN Symp. Compiler Construction, 1986, pp. 17-26.
V. Seshadri, D. B. Wortman, M. D. Junkin, S. Weber, C. P. Yu, and I.
Samll, “Semantic analysis in a concurrent compiler,” Proc. SIGPUN’XR
Con$ Programming Language Design and Implementation, 1988, pp.
298-312.
A. Zobel, “Parallel compiler optimization,” Workshop on Purullel Com-
pilation, Kingston, ON, Canada, 1990.

1987 to 1990. His primary areas of research inter-
est include parallelizing compilers, parallel architectures, implementation of
programming languages, and software tools.

D ~ . cupta received the ~ ~ ~ i ~ ~ ~ l science ~ ~ ~ ~ d ~ ~ i ~ ~ presidential young
Investigator Award in I99 I . He serves as an Associate Editor of the Journal
of Parallel Computing, and is a program committee member of the ACM SIG-
PLAN’94 Programming Language Design and Implementation Conference.
He is a member of the Association for Computing Machinery, SIGPLAN,

and the IEEE Computer Society.

pp. 10-21.

pp. 163-188, Oct. 1991.

Dr. Soffa currently
on Prugrumming Lang
ENGINEERING, and the
Computer Languages.

M. L. Soffa received the Ph.D. degree in computer
science from the University of Pittsburgh, PA, USA,
in 1977.

Since 1977, she has been a faculty member at
the University of Pittsburgh, and is currently a
Professor in the Department of Computer Science
there. Since 1991, she has also served as the Dean of
Graduate Studies in Arts and Sciences. Her research
interests include language implementation, paral-
lelizing compilers, program analysis, and software
tools.

serves on the editorial boards of ACM Transactions
uages und Systems, IEEE TRANSACTIONS ON SOFTWARE
’ International Journal of Parallel Programming and

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 11, 2009 at 17:08 from IEEE Xplore. Restrictions apply.

