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The Combining DAG: A Technique 
for Parallel Data Flow Analysis 

Robert Kramer, Rajiv Gupta, and Mary Lou Soffa 

Absrruct- As the number of available multiprocessors in- 
creases, so does the importance of providing software support for 
these systems, including parallel compilers. Data flow analysis, 
an important component of software tools, may be computed 
many times during the compilation of a program, especially when 
compiling for a multiprocessor. Although converting a sequential 
data flow algorithm to a parallel algorithm can present some op- 
portunities for computing data flow in parallel, more parallelism 
can be exposed by the development of new parallel data flow 
algorithms. In this paper, we present a technique that computes 
rapid data flow problems in parallel and thus is applicable for 
commonly used classical data flow problems, including reaching 
definitions, reachable uses, available expressions, and very busy 
expressions. Unlike previous techniques, our technique exploits 
the inherent parallelism in the data flow computation that occurs 
across independent paths, within linear paths, and in paths 
through loops of a control flow graph. The technique first changes 
cyclic structures in a control flow graph to acyclic structures 
and then builds a combining directed acyclic graph (DAG) that 
represents the paths through the control flow graph needed to 
compute data flow. Data flow is then computed using two passes 
over the DAG by computing the data flow for the nodes on each 
level of the DAG in parallel. We also present experimental results 
comparing the performance of our algorithm with a sequential 
algorithm and a parallelized sequential algorithm. 

Index Terms-Data flow analysis, control flow graph, iterative 
method, structured analysis, node listings 

1. INTRODUCTION 
LTHOUGH parallelizing compilers continue to receive A much research attention, the increased availability of 

parallel processors has recently generated an increased interest 
in the design and implementation of parallel compilers [6], 
[ 171. With the availability of multiprocessor environments, we 
no longer need to use a uniprocessor to compile programs that 
are targeted for a multiprocessor system, but rather can use 
the multiprocessor itself. A very important component of any 
compiler is data flow analysis. Data flow information is used 
in various phases of compilation, including code generation, 
code scheduling, traditional optimizing transformations, and 
parallelizing transformations. Consequently, a single program 
compilation may involve the computation of the solution to 
several data flow problems at different points in the language 
translation process. For large programs, the data flow analysis 
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performed during compilation can be time-consuming. Also, 
a number of important code transformations, such as loop 
unrolling, loop splitting, and in-line code substitution, increase 
the code size. This larger code size further adds to the cost of 
data flow analysis. Finally, data flow analysis is also used in 
other program tools, such as editors, testers, and debuggers, 
in both sequential and parallel programming environments 
[2]-[5], [8], [14], [ 151. The computation of data flow in parallel 
is beneficial for a number of tools running in a multiprocessor 
environment. 

In developing parallel algorithms, there are two approaches 
that can be taken. In one approach, a sequential algorithm 
is adapted to a parallel version of the algorithm. Using this 
approach, moderate amounts of parallelism can typically be 
detected. The other approach is to develop novel techniques 
and algorithms to solve a problem that more fully exploit 
the inherent parallelism of the problem. In this way, more 
parallelism is exposed. Both approaches have been used in 
recent algorithms for parallelizing data flow analysis [7], [ 131, 
[181. 

To compute data flow information in parallel, the data 
flow problem is decomposed into subproblems, which are 
solved in parallel. The results from the subproblems are then 
combined to obtain a data flow solution for the entire program. 
The decomposition is achieved by partitioning the control 
flow graph and decomposing the data flow problem into 
subproblems associated with these partitions. When adapting 
a sequential algorithm to a parallel algorithm, the partitioning 
of the data flow problem is based upon the natural partitioning 
imposed by thc data flow analysis algorithm, such as intervals 
or maximal strongly connected components. Parallel versions 
of the sequential Allen-Cocke interval analysis algorithm 
[I], [71, [181 and a parallel version of a hybrid method for 
computing data flow [ 121, [I31 have been developed using the 
natural partitioning of the sequential algorithms. 

In the parallel interval analysis algorithm, computation for 
each interval in a given graph of a derived sequence is per- 
formed in parallel [7],  [18]. A similar approach uses a hybrid 
algorithm [ 131 that combines an iterative technique with a 
structured technique to compute data flow 1121. In this parallel 
algorithm, the maximal strongly connected components of 
a program are detected, and local data flow problems are 
solved, for each component in parallel. A propagation phase 
distributes the data flow information to the components. Global 
data flow is then computed for the blocks in each compo- 
nent in parallel. The major problem with these algorithms 
is that there is no control over the decomposition of the 
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flow graph. It could happen that the sizes of the intervals or 
strongly connected components (i.e., loops) vary considerably. 
It could also happen that the flow graph decomposes into 
very few partitions. For example, if a program had one 
major loop, then there would be only one partition, and 
no parallelism would be exploited. Both the size and the 
number of partitions are determined purely by the structure 
of the program and the natural partitioning of the algorithm. 
Thus, some components could be very large, whereas others 
are not large at all, causing problems in mapping to the 
processors. The dependence on the program structure restricts 
the exploitation of the parallelism in the computation of data 
flow. 

The second approach of developing parallel algorithms has 
been used in the development of techniques that partitions a 
control flow graph without consideration of the flow graph 
structure [7].  In this paper, we present a new technique for 
computing parallel data flow that is applicable to structured 
control flow graphs and solves rapid data flow problems [9], 
[lo]. Thus, it is oriented toward the four classic (and com- 
monly used) data flow problems, namely, reaching definitions, 
live uses of variables, available expressions, and very busy 
expressions. The technique detects the inherent parallelism in 
data flow analysis using three sources. 

1) The parallelism in the data flow computation across 
independent paths (traces) in a control flow graph is 
detected. 

2) Within each independent path, the parallelism in com- 
puting data flow for a linear path is detected by path 
partitioning. 

3) The parallelism in data flow paths through loops in 
the control flow graph is detected by transforming the 
cyclic structures to acyclic structures. The resulting 
acyclic structure enables the computation of data flow 
information within the loop to be carried out in parallel 
with the computation of data flow information for code 
preceding the loop and with code following the loop 
(overlapped execution). 

In our approach, all three possible parallel opportunities are 
detected. Using the control flow graph, the technique first 
converts the cyclic structures of a control flow graph into 
acyclic structures, and then constructs a directed acyclic graph 
(DAG) from the acyclic control flow graph, in which each 
node represents subpaths in the control flow graph. The data 
flow for subpaths is computed and combined with other 
subpaths. The data flow for nodes at each level in the DAG is 
computed in parallel. The decision about the extent to which 
this parallelism can be exploited will be made based upon 
the communication costs on a specific parallel architecture. 
Depending on the architecture, the nodes of the DAG can 
either be scheduled to execute in parallel or be merged 
with other nodes and scheduled using standard scheduling 
techniques, such as proposed by Sarkar [ 161. It should be noted 
that such scheduling techniques do not uncover additional 
parallelism. Instead, they determine only how much of the 
detected parallelism will actually be exploited during parallel 
execution. 

In this paper, we first present an overview of our technique, 
together with examples demonstrating the subpath partitioning 
and data flow computation. The rest of the sections then 
provides more details about our algorithms. We present data 
flow equations and a parallel algorithm for computing data 
flow along a linear path. We also present a technique for 
integrating the data flow computation of independent paths 
that interact by the merging and branching of paths in the 
control flow graph. Transformation techniques, which are 
applied to cyclic structures, are presented that further enhance 
the detection of parallelism. Experimental results comparing 
our technique to the parallel hybrid technique [13] that uses 
only the structure of the program for its parallelism are also 
presented. 

11. OVERVIEW 

Data flow analysis involves the computation of information 
about the flow of data along execution paths using a control 
flow graph. The goals of the parallel data flow analysis 
algorithm are to propagate the information along a path as 
quickly as possible and also to propagate information along 
different paths in parallel. We first give a general overview 
of a parallel algorithm that achieves the above goals. To 
simplify the discussion, we discuss our technique in the 
context of reaching definitions (i.e., a forward, union data 
flow problem), although our technique can be used to solve 
the other rapid data flow problems, including reachable uses, 
available expressions, and very busy expressions (i.e., forward, 
backward, union, and intersection). 

Consider a linear chain of basic blocks. Although it appears 
that computing data flow for a linear path must take linear 
time, that is, O ( n )  time for a path containing n basic blocks, 
we present a faster algorithm. From this chain, a tree can be 
built whose leaves represent the basic blocks, whose internal 
nodes represent subpaths, and whose root represents the entire 
data flow path. Using this tree, the computation of data flow 
information is carried out in two passes. In the first pass, 
the tree is traversed in a bottom-up fashion, and the set of 
definitions preserved and the set of definitions generated by 
each node in the tree are computed. In the second pass, starting 
at the root of the tree and traversing down the tree, the set 
of data flow items entering a node (the IN set) and the set 
of definitions exiting the node (the OUT set) are computed. 
The above process is completed in O(1ogn) time, because the 
nodes at a given level are processed in parallel (assuming that 
the number of processors is at least equal to the maximum 
number of nodes at any level and a constant time operation 
at each node). Fig. l(a) shows a chain of basic blocks, and 
Fig. l(b) shows the corresponding combination tree. The node 
labeled “1.2” represents the subpath consisting of blocks 1 
and 2. 

An acyclic flow graph can be viewed as consisting of 
several linear paths. The flow graph in Fig. 2(a) contains three 
paths, 1.2.3.4.5.6, 1.2.7.8.5.6, and 1.2.3.8.5.6. To compute 
data flow for an acyclic graph, a tree corresponding to each 
of these linear paths is built by combining two nodes from 
lower levels. Portions of paths may overlap. For example, 
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Fig. 1. Propagating data flow information along a linear path. 

Fig. 2. Propagating data flow information in an acyclic graph. 

subpath 1.2 appears in all three paths of Fig. 2(a). The nodes 
corresponding to the shared portions of the paths are shared 
among the trees constructed for different paths. This results 
in a combination DAG, as shown in Fig. 2(b). It should be 
noticed that the sharing of nodes occurs at all levels in the 
tree. The computation of data flow is carried out as before, 
with a bottom-up pass of the combination DAG followed by 
a top-down pass. In this process, the computation of data 
flow for independent paths, or independent portions of the 
paths, is being carried out in parallel. If a node has multiple 
parents, it will receive information from each of its parents. 
This information is combined using union and intersection 
operators, depending upon the data flow problem being solved. 
The maximum speedup that can be achieved is bounded by the 
length of the longest path in the program. Note that the height 
of the acyclic graph in Fig. 2(b) is the same as the graph in 
Fig. 1 ,  because the length of the longest path is the same. 

Loops introduce cycles in the flow graph. We transform 
the flow graph into an acyclic graph by removing the back 
edge of a loop and introducing additional copies of the nodes 
belonging to the loop (i.e., loop unwinding). The copies are 
introduced to ensure that the paths in the cyclic graph along 
which data flow information is propagated are also present 
in the transformed acyclic graph. Fig. 3 demonstrates the 
transformation of a single loop into an acyclic graph. The 
loop unwinding transformations are described in detail in the 
next section. The length of the longest path in the code will 
not necessarily double as a result of replication of the loop, 
because the computation of data flow for the replicated nodes 
can be carried out in parallel with the nodes following the loop. 
Once an acyclic graph is obtained, the combination DAG is 
constructed. 

During the transformation of a cyclic graph into an acyclic 
graph, certain nodes are replicated. The data flow set of a node 
in the original control flow graph is the union of the data flow 
sets of replicated copies in the transformed graph. 

Fig. 3. Transforming a cyclic graph into an acyclic graph 

Given: A reducible control Row graph G = WE). where V IS the se1 of basic blocks and E 1s L k  se1 of 
e d g e s  m the Row graph 
Outpul: In and Our for each B E V. 

Algorithm: 
For each pnredure in G Loop 

Elimime Loops: The lwps in G are unwound and the replicaled copies of the loop 

Creme Combinbrwn DAG: Considering all data Row paths in C creak a DAG showing 

Compure Darapow: Perform computations ai each node in the DAG, firs1 Sponrmcou 

bodies are connecled ln the Row graph. This resulls in an acyclic graph. 

the evaluation and combination order. 

and Presewed in bollom-up order, then IN and OUT in topdown order. 
End For 

Fig. 4. The parallel data flow analysis algorithm. 

The major steps of the parallel data flow analysis algorithm 
are summarized in the algorithm shown in Fig. 4. First, the 
control flow graph is transformed into an acyclic graph through 
the unwinding of loops. Next the combination DAG for the 
acyclic graph is built, which is then used to compute the 
data flow information in parallel. Once a combination DAG 
has been built, it can be used repeatedly to solve the same 
or different data flow problems. The overall algorithm for 
computing data flow in parallel is summarized in Fig. 4. 

111. LOOP UNWINDING TRANSFORMATIONS 

In this section, we discuss the transformation of a flow 
graph containing loops into an acyclic graph. The acyclic graph 
should provide the same data flow information as the original 
flow graph. In order to guarantee correct data flow information, 
we rely on the following properties. 

Condition-]: All acyclic paths in the original flow graph 
must also be present in the transformed flow graph. 
Condition-2: The transformed flow graph should not 
contain any path that was not present in the original flow 
graph. 

The above observations were used by Kennedy [ I l l  in 
developing node listings for carrying out data flow analysis of 
structured programs. Next we describe the transformations for 
handling a single loop as well as nested loops. We also prove 
that our transformations are in accordance with the properties 
described above. In the discussion of these transformations, 
we assume that the goal of any forward data flow analysis 
algorithm is to compute the data flow information immediately 
following each node (i.e., the OUT set for the node). The OUT 
set of a node is the function of the OUT sets of the node’s 
predecessors. 

Consider the flow graph in Fig. 5(a), which contains a single 
repeat loop. In the flow graph representation, the node labeled 
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Fig. 5.  Unwinding transformations for non-nested loop. 

“head” represents the entry to the loop, and “tail” represents 
a dummy node that marks the exit of the loop. The data flow 
information can be propagated to all the nodes by iterating 
through the loop twice for a rapid data flow problem, because 
one pass around the loop summarizes the loop’s data flow 
contributions. Hence, duplicating the loop once, as shown 
in Fig. 5(a), is sufficient to ensure the propagation of data 
flow information from any node in the loop to every node 
in the loop. As we can see, this process creates all acyclic 
paths present in the original control flow graph. The entire 
loop, except the tail of the loop, is duplicated; the tail is 
not duplicated, because the information arriving at the exit 
of the tail does not change as a result of propagating data flow 
information along the loop back edge. A while loop is handled 
similarly, as shown in Fig. 5(b). 

Claim I :  The transformation for unwinding a single loop 
will lead to the computation of correct data flow information. 

Proof: In order to prove this claim, we must show 
that the unwinding transformations in Fig. 5 satisfy the two 
conditions stated at the beginning of this section. Consider a 
pair of nodes ni and n j  belonging to the loop. There is an 
acyclic path from n i  to 71,~ in the original control flow graph. 
This acyclic path is also present in the transformed graph. If 
this path does not go through the back edge, then the path is 
present in the first copy of the loop in the transformed graph. 
If the path goes through the back edge, then it is present 
from the first copy of n,i and the second copy of n,. Thus, 
the acyclic path is present in the transformed graph; hence, 
condition-1 is satisfied. In the transformed graph, there is no 
direct edge between a pair of nodes that are not connected in 
the original control flow graph. Thus, no new paths are added 

0 
The transformation of nested loops is carried out as follows. 

Consider the nested loops shown in Fig. 6(a), where the head 
and tail of each loop are directly connected by an edge. First, 
we handle the outermost loop by replicating the loop body and 
connecting the tail of one copy with the head of the newly 
created copy. This process creates the acyclic paths solely due 
to the outermost loop. Next we must create the acyclic paths 
for the inner loop. This process does not require replication 
of the inner loop, because the replication has already been 
carried out. The acyclic paths solely due to the inner loop are 
created by connecting the tail of the first copy to the head 
of the second copy. The resulting acyclic graph is shown in 
Fig. 6(b). 

by the transformation, and condition-2 is satisfied. 

@ acycli 

t 

1 
(a) (b) 

Unwinding C shell loops: Head and tail connected directly Fig. 6.  

Claim 2: The transformation for unwinding a multiply 
nested loop with head and tail directly connected will lead 
to the computation of correct data flow information. 

Proof In order to show that condition-1 is satisfied, we 
proceed as follows. Let us first consider the acyclic paths in the 
outer loop that do not traverse the back edge corresponding to 
the inner loop. The edge connecting tl to hl in the transformed 
acyclic graph creates all such paths. This directly follows from 
claim 1. Similarly, it also follows from claim 1 that all acyclic 
paths that traverse the back edge of the inner loop are created 
by connecting t 2  to h 2  in the transformed graph. We can 
also see that condition-2 is satisfied by this transformation 
because no two nodes are directly connected in the transformed 
graph, unless they are not directly connected by an edge in the 
original control flow graph. Thus, the transformation leads to 

0 
In the previous case, the exit of the loop is directly con- 

nected by the back edge to the loop entry. In some situations, 
the loop may contain a sequence of back edges that connects 
the exits of loops to the entries of loops (see Fig. 7(a)). In this 
situation Fig. 7(b) gives the final acyclic graph. In order to 
create the acyclic paths in the loop (hl ,  acg,, t l ) ,  we replicate 
(hl ,  acgl); to create the acyclic paths in the loop ( t l ,  acg2, 
t z ) ,  we replicate (tl,  acg2). 

the computation of correct data flow information. 
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Fig. 7. Unwinding climbing loops: Head and tail connected indirectly. 

Claim 3: The transformation for unwinding a multiply 
nested loop with head and tail indirectly connected will lead 
to the computation of correct data flow information. 

Proof: In order to show that condition-1 is satisfied, we 
consider the following cases. 

Acyclic Paths Among the Nodes Without Going Through 
Any Back Edge: These paths are present in the trans- 
formed graph since the entire loop body is included in 
the transformed graph. 
Acyclic Paths From acg, to acg, via Back Edge tz ---f tl: 

These paths are included by making a copy of t l  and 
acg, and connecting t 2  to t l  in the transformed graph. 
Acyclic Paths From acg, to acgl via Both Back Edges: 
These paths are also present, because there is a path 
starting at the first copy of acg, that goes through t2 
and the second copies of t l  and hl leading to the second 
copy of acgl in the transformed graph. 
Acyclic Paths From acgl to acg, via Back Edge tl ---f hl: 
Although loop unwinding produces multiple copies of a 
node, a common data set is associated with all copies. 
For example, the OUT set of a node in the original 
control flow graph is the union of the OUT sets of all 
of its copies in the transformed graph. Because of the 
unioning of the data flow sets for the replicated copies of 
tl, there is an implicit path from t l  to hl, as indicated by 
the dotted edge in Fig. 7(b). Thus, the acyclic paths from 
acgl to acg, via back edge t l  ---t h,l are represented in 
the transformed graph. 

Thus, condition-1 is satisfied by this transformation. For the 
same reasons as those given for claims 1 and 2, condition-2 is 
also satisfied. 0 

An overall algorithm that converts a structured cyclic flow 
graph into an acyclic flow graph is given in Fig. 8. This 
algorithm essentially selects the order in which the four 
transformations discussed in this section are applied. The 
application of unwinding transformations is preceded by the 
detection of loops. We identify the largest outermost loop, and, 
depending upon its structure, use an appropriate transformation 
to unwind it. The unwinding is carried out by the function 
Unwind. If an unwinding transformation can eliminate all back 
edges among the nodes in the current loop, then we apply 
the transformation. However, if this is not the case. it means 
that there are other loops nested within this loop that must 

Given: A suuctured control flow graph G = ( V E )  
Oulput: An acyclic graph G' =(V'.E'). 

Algorithm: 
Procedure Unwind ( L  loop) 

Let B denote h e  set of all backedges among the nodes in L; 
Let B denote lhe set of backedges lhat will be removed by applying 
one of the following uansformauons appropriate for L 

TI: Transformation of Single Loop. Repeat Structure; 
TI: Transformauon of Single Loop. While Structure; 
TJ: Transformation of Multiple L w p ,  Direct edges between Head and wl: or 
Tq: Transformation of Multiple Lwp,  Indirect edges between Head and lail. 

apply the appropnale unwinding Vansformalion T, 
I f B = B  Then 

Else 
B" = B . B' 
Repeat 

find h e  largest nested loop L' in L which only contains backedges from B": 
UnwindfL?; -- h i s  eliminates the backedges from L' 
remove the eliminated backedges from B 

Unlil B" = 0 
remove backedges in B by applying lhe appropriate unwinding uansrormauon T, U) L 
-- note lhat only the original nodes in L are replicaled at h i s  point. 
-- h e  copies created during he removal of h e  backedges in B" are no1 replicated again. 

Endif 
End Unwind 

Identify all loops in the program 
While 3 a backedge that has not been removed Do 

Select an outermost Imp L = (VLEL) in G 
Unwind (L) 

Endwhile 

Fig. 8. The loop unwinding algorithm. 

(;ken: An J<!CIK cc~11UuI IIUH g q h  G = (V.E). 
Oulpul: The n d r . ,  111 h c  ~cnihinJuon DAG. 
.Alporit hni: 

Rocedurr i r d b ~ ' r w  I ntkic,. lillll' ) 
Fur c x h  ~ .hi ld  of nckJc in thi' conuol flow gnph Do 

l h i i r i r  = a i d  Then 
If  Ihc whpalh node '"nodc <-Iiild" has M I  bcen crcated w l i c r  Then 

Creaa thr. node '"ic 6-hiid" 
uJ\crv' ( c-iuid. Evcn 

Endif 

l rakcw (diifd, Odd) 
Elu /* siaic = Even */ 

Endif 
Endfur 

End uawrse 

While p l h s  conmning multiple nodes exist Loop 
For each rax node n Do uaverse ( n, odd ): 
Construct the modified conuol flow graph - which conlains the new nodes. 

Endwhile 

Fig. 9. Construction of the combination DAG. 

be unwound first. This is achieved by recursively calling the 
function Unwind and removing the back edges for these loops. 

Iv. CONSTRUCTION OF THE DAG FROM 
THE CONTROL FLOW GRAPH 

After the control flow graph has been transformed into an 
acyclic structure, the combination DAG is constructed. The 
algorithm for constructing this DAG is described in Fig. 9. 
In the algorithm, Procedure Traverse travels along all data 
paths in the acyclic control flow graph and generates nodes 
resulting from the combining of two successive nodes in the 
graph. An even-odd marking of nodes determines the pairs 
of nodes that are to be combined. The first node in a pair 
is marked odd, and the second is marked even. After the 
first application of Traverse to the control flow graph, all 
combinations containing two nodes that must be included in 
the combination tree are detected. The control flow graph 
is then transformed by replacing the original nodes with the 
combined nodes. Thus, the nodes in a transformed flow graph 
represent subpaths created by earlier node combinations. The 
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1.3.5/1.2.3.5/1.3.4.5/1.2.3.4. 

Fig. IO. Reducing the number of nodes in the combining DAG. 

resulting control flow graph is then traversed again to generate 
the nodes at the next level of the combination DAG.' The 
process is repeated until all the nodes in the combination 
DAG have been generated, which occurs when the control 
flow graph has been reduced to single unattached nodes. 

In the algorithm in Fig. 9, when merging with a path already 
processed, the merge point may require combining the same 
nodes, in which case the nodes are reused. If this is not the 
case, then new nodes with proper combining must be gener- 
ated. However, there are at most two different combinations 
of shared paths. In this algorithm, two representations of a 
shared subpath can be created. For example, in Fig. 10(b), 
the two paths [1.2.3.5] and [1.3.5], which share the subpath 
[3.51, are derived by different combinations of nodes. Instead, 
we could have created a node representing the shared subpath 
and reused it in the derivation of other paths. We developed 
a modified Traverse procedure that enables the sharing of 
paths. This sharing is achieved by introducing combining 
nodes that represent multiple subpaths shared by other paths. 
For example, in Fig. 1O(c), the combining node [3.5/3.4.5] 
represents two subpaths [3.5] and [3.4.5] that are shared by 
several paths (e.g., [ 1.3.5 J and [ 1.3.4.5 1). The introduction of 
combining nodes reduces the total number of nodes in the 
combination DAG. The cost is a taller DAG, bound by the 
number of merges found along a path. Thus, in the worst 
case, the height of the DAG can double if all merges occur 
along the same path. However, in the experiments performed, 
the sizes of the DAG'S were significantly reduced, with the 
penalty being a slight change in execution time. 

v. COMPUTATION OF DATA FLOW 

Given the DAG that is created from the subpaths in the 
control flow graph, we compute the data flow for each of 
the nodes. An interior DAG node can have at most two 
children, but multiple parents. The computed data flow at each 
node represents the data flowing into and out of the subpath 
represented by the node. 

Data flow information is computed in two traversals of the 
DAG. The first traversal is a bottom-up traversal, and, during 
this traversal, a Preserved set, P ,  and a Spontaneous set, S, 
are computed for each node. The set P represents the data 
items that are preserved through the node; that is, if a value 
reaches the start of the subpath represented by the node, it 

'In the algorithm in Fig. 9, we assume that the transformed control flow 
graph is constructed by the main program. However, the algorithm can be 
changed to build the modified control flow graph as the graph is being 
traversed. 

reaches the end of the path. The set S at a node represents the 
set of data flow items that are generated within, and not killed 
by, the subpath represented by the node. 

We assume that the set U is the universal set, and Gen and 
Kill have the usual data flow definitions for a basic block. 
Thus, for the leaf nodes, the S set is the Gen set, and the 
P set is the set of items that are not Killed. In the data flow 
equations, we represent a left child of a node, say, g, by 41, 
and represent the right child of q by q,. By the construction 
of the DAG nodes, the subpath of a left child node flows into 
the subpath of a right child node. The data flow equations for 
P and S follow: 

p[ql = U P[c]! where q is a combining node, 
U - Kill[q], where q is a leaf node, 

c is a child of q 

P[ql] 0 P[q,]: where q is an interior node. 

{ (S[ql] n P[q,]) U S[q,], where q is an interior node. 

For example, for a value to be in the P set of the node [ 1.21 
in Fig. 1, representing the subpath 1.2, it must be preserved 
through node 1 and node 2, and thus must be in the intersection 
of the P sets of the two nodes. In order for an item to be in 
the S set of node [1.2], it must be generated in the left child 
of the node and preserved through the right child, or it must 
be generated in the right child. Thus, at the end of the first 
pass, the items for each node that are preserved and generated 
are computed. 

In the second pass, which is a top-down pass, we compute 
the IN and OUT sets for each node, finally culminating in the 
computation of the IN and OUT sets for each leaf node (a 
basic block). IN and OUT sets of child nodes are computed 
from their parents. Given a node q ,  IN[q] is also contained 
in IN[ql], OUT[q] is contained in OUT[q,], and OUT[qlI is 
contained in IN[q,l. The OUT[ql] is computed from its IN, S ,  
and P sets. In computing the IN of the right child, we have to 
consider information flowing from all left siblings, where a left 
sibling is any left child of parents of the right child (see Fig. 
11). The computation of the IN and OUT sets follow. Initially, 
for each root node in the combination DAG, IN[root] = null 
and OUT[root] = S[root]. In the equations, ns represents a 
left sibling of ri. In the following equations, we assume that 
71 is not a child of a combining node. 

Gen[q], where q is a leaf node, 

U S[c] ,  where q is a combining node, 

{ 
s[q' = 

c is a child of q 

IN[n] := U INb] + U OUT[l] 
P I  =n ns=6 
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Fig. 

Fig. 

Fig. 

(a) (b) 

11. The top-down pass for computing data flow. 

Given: The Combining DAG for a conml flow graph. 
Output: The Preserved and Generated Set for each node in the DAG. 
Algorithm: 

Begin 
Parallel Do for nodes n at LealLevel 

P[nl := U-Kill[q] ; 
S[nl := Gen[q] ; 

EndDo 
For i := Lesnevel-l down to RootLevel 

Parallel do for all nodes n at level i 
If n is a combining node Then 

Plnl := Plcl: where c is a child ofn 
Slnl := Slcl: wherecisachildofn 

P[nl:= PInd n PIn,l ; 
S[nl:= ( S h l  n PlnJ ) U S[nJ 

Else 

Endif 
EndDo 

EndFor 
End 

12. Computing preserved and spontaneous sets in parallel. 

Given: The P a d  S sels lor e x h  nodc in the combining DAG. 
Output: The IN and OUT sels for cach basic block. 
Algorithm: 

Begin 
For all m nodes in Ihe c o m b i ~ u o n  DAG 

In(rooc) :=null; 
Oul(m0c) := S(root); 

EndFor; 
For i := R&vel+I U) LealLevel-l 

poralkl Do for each node n at level i 
If n is a child of  a combining node p Then 

N[nl  := lN[pl 
O w n 1  := ( I N l n l ~ P l n 1 ) ~ I ~ l  

N[nl  := U IN[pl; where n is the left child of p. 
O W n I  := (INlnl n Plnl) U Slnl; 

EIsrif n is b e  left child of a node at level i-1 

Eadlf 
EdDo 
Rnlkl Do for each node n at level i 

If n is the right child of a non-combining node at level i-1 Then 
O w n ]  := OUT[nl + U OUT[pl: where n is the right child of p. 
N[nl := INInl + U OUT[Il; where I is a left sibling of n. 

Endlf 
Eadh 

EndFor 
E d  

13. Computing IN and OUT sets in parallel. 

OUT[n] := U OUT[p] or 
p,=n 

OUT[n] := (IN[n] n P[n]) U S[n] 

In the modified version of the algorithm that constructs 
combining nodes, the IN and OUT sets of the children of 
the combining nodes are computed by using the following 
equations. 

IN[n] := INb],  where the combining node p 
is the parent of n 

OUT[n] := (IN[n] P[n]) U S[n] 
These data flow equations can be computed in parallel for 

each level of the DAG. The algorithms for computing S,  P ,  

2: = x + l  

3: z = x + y  

4: -5 8: y'y + 1 e 5 q=p+y 

(a) 

(b) 

Fig. 14. Computing reaching definitions in parallel. 

TABLE I 
COMPUTING SETS S AND P 

IN, and OUT for reaching definitions are given in Figs. 12 
and 13. 

Next we illustrate the algorithm given in Figs. 12 and 13 
by computing reaching definitions for the control flow graph 
shown in Fig. 14(a). The combining DAG for the control flow 
graph is shown in Fig. 14(b). In the first phase, we carry out the 
computation of sets P and S for the nodes in the DAG starting 
at the leaves and finishing at the root nodes. The results of this 
phase are given in Table I.  In the next phase, we compute the 
IN and OUT sets for the nodes, starting at the root nodes 
and ending at the leaves. The results of the second phase are 
shown in Table 11. 

In the above discussion, we consider a forward union data 
flow problem. The other rapid data flow problems can also 
be computed by using the combining DAG approach. For a 
forward intersection problem, the union operator in the IN and 
OUT equations just needs to be changed to an intersection 
operator. For a backward flow problem, the values will flow 
from right to left, rather than from left to right, in combining 
values. 
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VI. COMPLEXITY ANALYSIS 

Here we briefly describe the worst case space and run- 
time complexity of the combining DAG method. The space 
complexity of the algorithm is bounded by the size of the 
combining DAG. If there are n nodes in the control flow graph, 
there will be n leaves in the DAG. The maximum number of 
nodes at each level in the DAG is limited to O(n) .  The height 
of the DAG is limited to O(n) ,  because the longest path in 
the control flow graph can have at most n nodes. The number 
of combining nodes cannot exceed o(n), because it is limited 
by the number of merges in the control flow graph along a 
path. Thus, the worst case space complexity of the combining 
DAG is O ( n 2 ) .  

The time for using this algorithm consists of the time 
required to build the combining DAG and the time required 
to perform the data flow computation in parallel. The time 
spent on constructing the combining DAG is amortized across 
the different data flow problems being solved, because it is to 
be built once and reused repeatedly. Let us consider the time 
required to compute the data flow information. Since the data 
flow computation at each level is performed in parallel, the 
execution time is limited by the height of the combining DAG. 
Thus, assuming that the amount of computation performed 
at each node is constant, the time complexity of the parallel 
algorithm is O(n) .  The worst case sequential execution time 
of performing data flow analysis is O(7t2), even though in 
practice it is found to be O ( k n ) ,  where IC is the depth of 
the graph. The worst case parallel execution time using O(n) 
processors is O(n). Thus, we have achieved linear speedup in 
the worst case execution time using our approach. 

VII. IMPLEMENTATION AND EXPERIMENTATION 
In order to determine the amount of parallelism detected 

by our algorithm for real programs, we computed the ideal 
execution times of our parallel algorithm and the parallel ver- 
sion of the hybrid algorithm, and compared their performances 
with the sequential hybrid algorithm. The ideal execution times 
were obtained by measuring the sequential execution times of 
each component and factoring in the parallelism detected. 

In the implementation of our combining DAG technique, 
an adjacency matrix is used to represent the DAG for fast 

TABLE 111 
COMPARISON OF PARALLEL HYBRID AND COMBINING DAG METHODS 

access to the nodes. The matrix is initialized as the control 
flow graph. When unwinding the loops, the control flow graph 
is traversed, and the matrix is updated to represent the acyclic 
graph representation. To share existing DAG nodes, a hash 
table is built to quickly search for nodes; the children of a 
node are used as the hash key. This dramatically speeds up 
the construction process. 

We then used the ideal parallel execution times of the data 
flow to determine the maximum parallelism detected by each 
algorithm. In the experimental results, we report the ideal 
speedup over the sequential hybrid data flow algorithm. We 
have run four programs obtained from various test suites and 
computed the ideal speedup for the parallel hybrid algorithm 
(PH) and our algorithm with combining nodes (CN). Table I11 
presents the results of CN as compared with the parallel hybrid 
method. In the table, we give the number of strongly connected 
components (#scc) and the number of nodes (#nodes) and 
height (height) of the combining DAG. We also give the 
speedup, or ratio of the parallel time to the sequential time, for 
both algorithms. The results of our experiments indicate that 
our algorithm clearly detects more parallelism than the parallel 
hybrid algorithm, achieving ideal speedups ranging from 2.7 
to 5.4. 

We also implemented a version of our algorithm that did not 
use combining nodes (NCN). For the programs considered, the 
reduction in the number of nodes, using CN rather than NCN, 
ranged from a factor of 1.7 to as high as 10. The increase in the 
height of the DAG was a factor of 2. The speedup changed 
very marginally. 

As is the case with most parallel algorithms, a setup 
time is required for both the hybrid and our algorithm. For 
example, the hybrid method needs to detect strongly con- 
nected components, whereas our algorithm must construct 
the combining DAG. The setup time for the above programs 
was less than 20% of the parallel execution time, and this 
time is amortized over the number of data flow computations 
performed. Any subsequent data flow computations would use 
the same combining DAG. 

As mentioned previously, the times presented represent 
the ideal speedup and do not reflect any architectural con- 
siderations, such as communication costs. Depending on the 
architecture, all of the parallelism detected may or may not be 
exploitable. For example, in a message-passing architecture, 
the communication costs are significant and would require 
larger task sizes. These larger task sizes can be acquired by 
using an existing merging and scheduling technique [16]. On 
the other hand, fine-grained, shared memory architectures can 
exploit the greater amounts of the parallelism that are detected 
by our algorithm. Similarly, the parallel hybrid algorithm 
can be implemented by using the same type of scheduling 
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techniques. However, the smallest task sizes correspond to the 
strongly connected components of a control flow graph and can 
be increased in size only by these methods. The advantage of 
our approach is the flexibility provided in terms of constructing 
tasks of various grain sizes. 
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