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Partial redundancy elimination (PRE), the most important 
component of global optimizers, generalizes the removal of 
common subexpressions and loop-invariant computations. 
Because existing PRE implementations are based on code 
motion, they fail to completely remove the redundancies. 
In fact, we observed that 73% of loop-invariant statements 
cannot be eliminated from loops by code motion alone. In 
dynamic terms, traditional PRE eliminates only half of re- 
dundancies that are strictly partial. To achieve a complete 
PRE, control flow restructuring must be applied. However, 
the resulting code duplication may cause code size explosion. 

This paper focuses on achieving a complete PRE while 
incurring an acceptable code growth. First, we present an al- 
gorithm for complete removal of partial redundancies, based 
on the integration of code motion and control flow restruc- 
turing. In contrast to existing complete techniques, we re- 
sort to restructuring merely to remove obstacles to code mo- 
tion, rather than to carry out the actual optimization. 

Guiding the optimization with a profile enables addi- 
tional code growth reduction through selecting those dupli- 
cations whose cost is justified by sufficient execution-time 
gains. The paper develops two methods for determining the 
optimization benefit of restructuring a program region, one 
based on path-profiles and the other on data-flow frequency 
analysis. Furthermore, the abstraction underlying the new 
PRE algorithm enables a simple formulation of speculative 
code motion guaranteed to have positive dynamic improve- 
ments. Finally, we show how to balance the three trans- 
formations (code motion, restructuring, and speculation) to 
achieve a near-complete PRE with very little code growth. 

We also present algorithms for efficiently computing dy- 
namic benefits. In particular, using an elimination-style 
data-flow framework, we derive a demand-driven frequency 
analyzer whose cost can be controlled by permitting a 
bounded degree of conservative imprecision in the solution. 

Keywords: partial redundancy elimination, control flow 
restructuring, speculative execution, demand-driven fre- 
quency data-flow analysis, profile-guided optimization. 
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1 Introduction 

Partial redundancy elimination (PRE) is a widely used and 
effective optimization aimed at removing program state- 
ments that are redundant due to recomputing previously 
produced values [26]. PRE is attractive because by tar- 
geting statements that are redundant only along some ex- 
ecution paths, it subsumes and generalizes two important 
value-reuse techniques: global common subexpression elimi- 
nation and loop-invariant code motion. Consequently, PRE 
serves as a unified value-reuse optimizer. 

Most PRE algorithms employ code motion [ll, 12, 14, 
15, 16, 17, 24, 261, a program transformation that reorders 
instructions without changing the shape of the control flow 
graph. Unfortunately, code-motion alone fails to remove 
routine redundancies. In practice, one half of computa- 
tions that are strictly partially redundant (not redundant 
along some paths) are left unoptimized due to code-motion 
obstacles. In theory, even the optimal code-motion algo- 
rithm [24] breaks down on loop invariants in while-loops, 
unless supported by explicit do-until conversion. Recently, 
Steffen demonstrated that control flow restructuring can re- 
move from the program all redundant computations: includ- 
ing conditional branches [30]. While his property-oriented 
expansion algorithm (Poe) is complete, it causes unneces- 
sary code duplication. 

As the first step towards a complete PRE with afford- 
able code growth, this paper presents a new PRE algorithm 
based on the integration of code motion and control flow 
restructuring, which allows a complete removal of redun- 
dant expressions while minimizing code duplication. No 
prior work systematically treated combining the two trans- 
formations. We control code duplication by restricting its 
scope to a code-motion preventing (CMP) region, which lo- 
calizes adverse effects of control flow on the desired value 
reuse. Whereas the Poe algorithm applied to expression 
elimination (denoted PoePRE) uses restructuring to carry 
out the entire transformation, we apply the more economi- 
cal code-motion transformation to its full extent, resorting 
to restructuring merely to enable the necessary code motion. 
The resulting code growth is provably not greater than that 
of PoePRE; on spec95, we found it to be three times smaller. 

Second, to answer the overriding question of how com- 
plete a feasible PRE algorithm is allowed to be, we move 
from theory to practice by considering profile information. 
Using the dynamic amount of eliminated computations as 
the measure of optimization benefit, we develop a profile- 
guided PRE algorithm that limits the code growth cost 
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Figure 1: Complete PRE through integration of code motion and control flow restructuring. 

by sacrificing those value-reuse opportunities that are infre- 
quent but require significant duplication. Third, we describe 
how and when speculative code motion can be used instead 
of restructuring, and how to guarantee that speculative PRE 
is profitable. Finally, we demonstrate that a near-complete 
PRE with very little code growth can be achieved by inte- 
grating the three PRE transformations: pure code motion, 
restructuring, and speculative code motion. 

All algorithms in this paper rely in a specific way on 
the notion of the CMP region which is used to reduce both 
code duplication and the program analysis cost. Thus, we 
make the PRE optimization more usable not only by increas- 
ing its effectiveness (power) through cost-sensitive restruc- 
turing, but also by improving its efficiency (implementa- 
tion). We develop compile-time techniques for determining 
the impact of restructuring a program region on the dy- 
namic amount of eliminated computations. The run-time 
benefit corresponds to the cumulative execution frequency 
of control flow paths that will permit value reuse after the 
restructuring. We describe how this benefit can be obtained 
either using edge profiles, path-profiles [7], or through data- 
flow frequency analysis [27]. 

As another contribution, we reduce the cost of frequency 
analysis by presenting a frequency analyzer derived from a 
new demand-driven data-flow analysis framework. Based on 
interval analysis, the framework enables formulation of an- 
alyzers whose time complexity is independent of the lattice 
size. This is a requirement of frequency analysis whose lat- 
tice is of infinite-height. Due to this requirement, existing 
demand frameworks are unable to produce a frequency an- 
alyzer [18, 22, 291. Furthermore, we introduce the notion 
of approximate data-flow frequency information, which con- 
servatively underestimates the meet-over-all-paths solution, 
keeping the imprecision within a given degree. Approxima- 
tion permits the analyzer to avoid exploring program paths 

guaranteed to provide insignificant contribution (frequency- 
wise) to the overall solution. Besides PRE, the demand- 
driven approximate frequency analysis is applicable in in- 
terprocedural branch correlation analysis [lo] and dynamic 
optimizations [5]. 

Let us illustrate our PRE algorithms on the loop in Fig- 
ure l(a). Assume no statement in the loop defines variables 
a, b, c, or d. Although the computations [a+b] and [c+d] are 
loop-invariant, removing them from the loop with code mo- 
tion is not possible. Consider first the optimization of [a+b]. 
This computation cannot be moved out of the loop because 
it would be executed on the path En, 0, P, Ex, which does 
not execute [a + b] in the original program. Because this 
could slow down the program and create spurious excep- 
tions, PRE disallows such unsafe code motion [24]. 

The desired optimization is only possible if the CFG is 
restructured. The PoePRE algorithm [30] would produce 
the program in Figure l(b), which was created by duplicat- 
ing each node on which the value of [a+ b] was available only 
on a subset of incoming paths. While [a + b] is fully opti- 
mized, the scope of restructuring is unnecessarily large. Our 
complete optimization (ComPRE) produces the program in 
Figure l(c), where code duplication is applied merely to en- 
able the necessary code motion. In this example, to move 
[a + b] out of the loop, it is sufficient to separate out the 
offending path En, 0, P, Ez which is encapsulated in the 
CMP region highlighted in the figure. As no opportunities 
for value reuse remain, the resulting optimization of [a + b] 
is complete. Because restructuring may generate irreducible 
programs, as in Figure l(c), we also present a restructuring 
transformation that maintains reducibility. 

Hoisting the loop invariant [a + b] out of the loop was 
prevented by the shape of control flow. Our experiments 
show that the problem of removing loop invariant code (LI) 
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has not been sufficiently solved: a complete LI is prevented 
for 73% of loop-invariant expressions. In some cases, a sim- 
ple transformation may help. For example, [a + b] (but not 
[c + d]) can be optimized by peeling off one loop iteration 
and performing the traditional LI [l], producing the pro- 
gram Figure l(b). In while-loops, LI can often be enabled 
with more economical do-until conversion. The example pre- 
sented does not allow this transformation because the loop 
exit does not post-dominate the loop entry. In effect, our 
restructuring PRE is always able to perform the smallest 
necessary do-until conversion for an arbitrary loop. 

Next, we optimize the computation [c+d] in Figure I(c). 
Our optimization performs a complete PRE of [c + 6] by du- 
plicating the shaded CMP region and subsequently perform- 
ing the code motion (Figure l(d)). The resulting program 
may cause too much code growth, depending on the sizes 
of duplicated basic blocks. Assume the size of block S out- 
weighs the run-time gains of eliminating the upper [c + 4. 
In such a case, we select a smaller set of nodes to duplicate, 
as shown in Figure l(e). When only block Q is duplicated, 
the optimization is no longer complete; however, the op- 
timization cost measured as code growth is justified with 
the corresponding run-time gain. In Section 3.2, speculative 
code motion is used to further reduce code duplication. 

In summary, this paper makes the following contributions: 

We present an approach for integrating two widely used 
code transformation techniques, code motion and code 
restructuring. The result is an algorithm for PRE that 
is complete (i.e., it exploits all opportunities for value 
reuse) and minimizes the code growth necessary to 
achieve the code motion. 

We show that restricting the algorithm to code motion 
produces the traditional code-motion PRE [17, 241. 

Profile-guided techniques for limiting the code growth 
through integration of selective duplication and specu- 
lative code motion are developed. 

We develop a demand-driven frequency analyzer based 
on a new elimination data-flow analysis framework. 

The notion of approximate data-flow information is de- 
lined and used to improve analyzer efficiency. 

Our experiments compare the power of code-motion 
PRE, speculative PRE, and complete PRE. 

Section 2 presents the complete PRE algorithm. Section 3 
describes profile-guided versions of the algorithm and Sec- 
tion 4 presents the experiments. Section 5 develops the 
demand-driven frequency analyzer. The paper concludes 
with a discussion of related work. 

2 Complete PRE 

In this section, we develop an algorithm for complete re- 
moval of partial redundancies (ComPRE) based on the inte- 
gration of code motion and control flow restructuring. Code 
motion is the primary transformation behind ComPRE. To 
reduce code growth, restructuring is used only to enable 
hoisting through regions that prevent the necessary code 
motion. The smallest set of motion-blocking nodes is iden- 
tified by solving the problems of availability and anticipabil- 
ity on an expressive lattice. We also show that when control 

flow restructuring is disabled, ComPRE becomes equivalent 
to the optimal code-motion PRE algorithm [24]. 

An expression is partially redundant if its value is com- 
puted on some incoming control flow path by a previous 
expression. Code-motion PRE eliminates the redundancy 
by hoisting the redundant computation along all paths until 
it reaches an edge where the reused value is available along 
either all paths or no paths. In the former case, the com- 
putation is removed; in the latter, it is inserted to make the 
original computation fully redundant. Unfortunately, code 
motion may be blocked before such edges are reached. Nodes 
that prevent the desired code motion are characterized by 
the following set of conditions: 

1. hoisting of expression e across node n is necessary when 
. . . a) an optimization candidate follows n: there is a compu- 

tation of e downstream from n on some path, and 

b) there is a value-reuse opportunity for e at node n: a 
computation of e precedes n on some path. 

2. hoisting of e across n is disabled when 

c) any path going through n does not compute e in the 
source program: such path would be impaired by the 
computation of e. 

All three conditions are characterizable via solutions to the 
data-flow problems of anticipability and availability, which 
are defmed as follows. 

Definition 1 Let p be any path from the start node to 
a node n. The expression e is available at n along p iff 
e is computed on p without subsequent redefinition of its 
operands. Let r be any path from n to the end node. The 
expression e is anticipated at n along r iff e is computed on 
r before any of its operands are defined. The availability of 
e at the entry of n w.r.t. the incoming paths is defined as: 

1 

Must all 
AVAL[n, e] = No if e is available along no paths. 

May some 

Anticipability (ANTIC) is defined analogously. 

Given this refined value-reuse definition, code motion is nec- 
essary when a) and b) defined above hold mutually. Hence, 

Necessary[n, e] = ANZ’ICi”[n, e] # NO A 
AVAILi”[n, e] # NO. 

Code motion is disabled when the condition c) holds: 

Disabled[n, e] = ANTICi,[n, e] # Must A 

AVAZLi,[n,e] # Most. 

A node n prevents the necessary code motion for e when the 
motion is necessary but disabled at the same time. By way 
of conjunction, we get the code motion-preventing condition: 

Preuented[n, e] = Necessary[n, e] A Disabled[n, e] 
= ANZ’ICi,[n, e] = May A 

AVAILi,[n, e] = May 

The predicate Prevented characterizes the smallest set of 
nodes that must be removed for code motion to be enabled. 
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Figure 2: Removing obstacles to code motion via restructuring. 

Definition 2 Code Motion Preventing region, denoted 
CMP[e], is the set of nodes that prevent hoisting of a 
computation e: CMP[e] = {n ) ANTICin[n,e] = May A 
AVAIL,,[n,e] = May}. 

To enable code motion, ComPRE removes obstacles pre- 
sented by the CMP region by duplicating the entire region, 
as illustrated in Figure 2. The central idea is to factor the 
May-availability that holds in the entire region into Must- 
and No-availability, to hold respectively in each region copy. 
An alternative view is that we separate within the region the 
paths with Must- and No-availability. To achieve this, we 
can observe that a) no region entry edge is May-available, 
and b) the solution of availability within the region depends 
solely on solutions at entry edges (the expression is neither 
computed nor killed within the region). Hence, the desired 
factoring can be carried out by attaching to each region 
copy the subset of either Must or No entry edges, as shown 
in Figure 2(c). 

After the CMP is duplicated, the condition Prevented is 
false on each node, enabling code motion. The ComPRE 
algorithm, shown in Figure 3, has the following three steps: 

1. Compute anticipability and availability. The problems 
use the lattice L = ({T, Must, No, May}, A). Note that 
the flow functions are distributive under the least com- 
mon element operator A, which is defined using the 
partial order C shown below. Distributivity property 
implies that data-flow facts are not approximated at 
control flow merge points. Intuitively, this is because 
L is the powerset lattice of {No, Must}, which are the 
only facts that may hold along an individual path. 

kT\ 

The partial order E: No Must 

\Ma; 

2. Remove CMP regions via control flow restructuring. 
Given an expression e, the CMP region is identified by 
examining the data-flow solutions locally at each node. 
Line 2 in Figure 3 duplicates each CMP node and line 3 
adjusts the control flow edges, so that the new copy of 
the region hosts the Must solution. Restructuring ne- 

3. 

cessitates updating data-flow solutions within the CMP 
region (lines 4-12). While the ANTZC solution is not 
altered, the previously computed AVAIL solution is in- 
validated because some paths flowing into the region 
were eliminated when region entry edges were discon- 
nected. For the expression e, AVAIL becomes either 
Must or No in the entire region. For other expressions, 
the solution may become (conservatively) imprecise. In 
other words, splitting a May path into Must/No paths 
for e might have also split a May path for some other 
expression. Therefore, line 6 resets the initial guess and 
lines lo-12 recompute the solution within the CMP. 

Optimize the program. The code motion transforma- 
tion is carried out by replacing each original compu- 
tation e with a temporary variable t,. The tempo- 
rary is initialized with a computation inserted into each 
No-available edge that sinks either into a May/Must- 
availability path or into an original computation. The 
insertion edge must also be Must-anticipated, to verify 
hoisting of the original computation to the edge. 

Theorem 1 (Completeness). ComPRE is optimal in 
that it minimizes the number of computations on each path. 

Proof. First, each original computation is replaced with 
a temporary. Second, no computation is inserted where its 
value is available along any incoming path. Hence, no addi- 
tional computations can be removed. Cl 

Within the domain of the Morel and Renviose code- 
motion transformation, where PRE is accomplished by 
hoisting optimization candidates (but not other statements) 
[26], ComPRE achieves minimum code growth.’ This fol- 
lows from the fact that after CMP restructuring, no program 
node can be removed or merged with some other node with- 
out destroying any value reuse, as shown by the following 
observations. Prior to Step 2, each node n may belong to 
CMP regions of multiple offending expressions. Duplication 
of n during restructuring can be viewed as partitioning of 
control flow paths going through n: each resulting copy of 
n is a path partition that does not contain both a Must- 
and a No-available path, for any offending expression. The 

‘Outside this domain, further code growth reduction is possible 
by moving instructions out of the CMP before its duplication. 
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Step 1: Data-flow analysis: anticipability, availability. 

s Input: control flow graph G = (N,E,start,end), 
each node contains a single assignment z := e, 

s Comp(n, e): node n computes an expression e, 

s Transp(n,e): node n does not assign any variable in e, 

. boundary conditions: for each expression e 
ANT/C,,t[end, e] := AVA/L;,[start, e] := No, 

s initial guess: set all vectors to TS, where S is 
the number of candidate expressions. Solve iteratively. 

if Comp(n, e), 

ANT/C;,[n,e] := 
if -Comp(n, e)A 
7 Transp(n, e), 

ANT/C,,t[n, e] otherwise. 

ANTK.,,t[n,e] := A ANT/C;,[m, e] 
mr+wx(n) 

AVA/L;Jn,e] := /j AVAbt[m, e] 

mCpred(n) 

AVA/LOUt[n, e] := fz(AVAU;,[n, e]) 

if Comp(n, e) A Transp(n, e), 
if 7 Transp(n, e). 
otherwise. 

Step 2: Remove CMP regions: control flow restructuring. 

s modify G so that no CMP nodes exists, 
for any expression e. 

1 for each expression e do 
duplicate all CMP[e] nodes to create a copy of the CMP. 
n~“$, is a copy of node n hosting AVAIL = Must. 

2 N := N u {rz~“~* ] n E CMP[e]} 
attach new nodes to perform the restructuring 

3 E =((E u {(wurt, u) I (n,u) E E A u Z CMf’[el) U 
u, n,~“$~) 1 (u, n) 6 E A AVA/L,,t[u, e] = Must} U 

~[u”~~k’!?i’! ~?~!$z]?!l~AlL..~[u, e] = Must} 
update data-flow solutions within CMP and its copy 

4 for each node n E CMP[e] do 
5 ANT/C;,[nM,,J := ANTIC;&] 

ANT/C,,&,,& := ANT/C,,&] 
6 AVA/L;,[nM,,J := AVA/L;,[n] := TS 

AVA/L,,t[nM,,t] := AVAIL,,&] := TS 
7 AVA/L;J~M~~~, e] := AVAIL,,~[~M,,~,~] := Must 
8 AVAIL;&, e] := AVAIL,,t[n, e] := No 
9 end for 

reanalyze availability inside both CMP copies 
10 for each expression e’ not yet processed do 
11 re-compute AVA/L(n, e’], AVA/L.[~M~~~, e’], n E CMP[e] 
12 end for 
13 end for 

Step 3: Optimize: code motion. 

Insert[(n, m), e] e ANTIC;,[m, e] = Must A 

AVA/L,,t[n, e] = No A 

(AVA/L;,[m, e] = May V Comp(m, e)) 

Replace[n, e] ts Comp(n, e) 

Figure 3: ComPRE: the algorithm for complete PRE. 

following properties of Step 2 can be verified: 1) the number 
of path partitions (node copies) created at a given node is 
independent of the order in which expressions are considered 
(in line l), 2) each node copy is reachable from the start 
node, and 3) for any two copies of n there is an expression e 
such that remerging the two copies and their incoming paths 
will prevent code motion of e across the resulting node. 

To compare ComPRE with a restructuring-only PRE, 
we consider PoePRE, a version of Steffen’s complete algo- 
rithm [30] that includes minimization of duplicated nodes 
but is restricted in that only expressions are eliminated (as 
is the case in ComPRE). Elimination is carried out using a 
temporary, as in Step 3. 

Theorem 2 ComPRE does not create more new nodes 
than PoePRE. 

Proof outline. The proof is based on showing that the 
PoePRE-optimized program after minimization has no less 
nodes than the same program after CMP restructuring. It 
can be shown that, given an original node n, for any two 
copies of n created by CMP restructuring, there are two 
distinct copies of n created by PoePRE such that the mini- 
mization cannot merge them without destroying some value 
reuse opportunity. 

In fact, PoePRE can be expressed as a form of Com- 
PRE on a (non-strictly) larger region: for each computation 
e, PoePRE duplicates {nlAiVTICin[n, e] E {Must, May} A 
AVAZLi,[n, e] = May}, which is a superset of CMP[e]. 
Algorithm complexity. Data-flow analysis in Step 1 and 
in lines lo-12 requires O(NS) steps, where N is the flow 
graph size and S the number of expressions. The restructur- 
ing in Step 2, however, may cause N to grow exponentially, 
as each node may need to be split for multiple expressions. 
Because in practice a constant-factor code-growth budget is 
likely to be defined, the asymptotic program size will not 
change. Therefore, the running time of Step 2, which dom- 
inates the entire algorithm, is O(NS’). 

2.1 Optimal Code-Motion PRE 

Besides supporting a complete PRE, the notion of the CMP 
region also facilitates an efficient formulation of code-motion 
PRE, called CM-PRE. In this section, we show that our com- 
plete algorithm can be naturally constrained by prohibiting 
the restructuring, and that such modification results in the 
Same optimization as the optimal motion-only PRE [17, 241. 

In comparison to ComPRE, the constrained CM-PRE 
algorithm bypasses the CMP removal; the last step (trans- 
formation) is unchanged (Figure 3). The first step (data- 
flow analysis) is modified with the goal to prevent hoisting 
across a node n when such motion would subsequently be 
blocked by a CMP region on each path flowing into node 
n. First, anticipability is computed as in ComPRE. Second, 
availability is modified to include detection of CMP nodes. 
When a CMP node is found, instead of propagating forward 
May-availability, the solution is adjusted to No. Such ad- 
justment masks those value reuse opportunities that cannot 
be exploited without restructuring. The result of masking is 
that code motion is prevented from entering paths that cross 
a CMP region (see predicate Insert in Step 3 of Figure 3). 

The modified flow function for the AVAIL problem fol- 
lows. The third line detects a CMP node. No-availability 
is now extended to mean that the value might be available 
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along some path but value reuse is blocked by a CMP region 
along that path. 

l 

Must if Comp(n, e) A 7hrwp(n, e), 

fit(x) = ;; 
if -Transp(n, e), 
if z = May A ANTZCi”[n, e] = May, 

X otherwise. 

Given a maximal fixed point solution to redefined AVAIL, 
CM-PRE performs the unchanged transformation phase 
(Figure 3, Step 3). It is easy to show that the resulting 
optimization is complete under the immutable shape of the 
control flow graph. The proof is analogous to that of Theo- 
rem 1: alI original computations are removed and no compu- 
tation has been inserted where an optimization opportunity 
not blocked by a CMP exists. 

Besides exploiting all opportunities, a PRE algorithm 
should guarantee that the live ranges of inserted temporary 
variables are minimal, in order to moderate the register pres- 
sure. The live range is minimal when the insertion point 
specified by the predicate Insert cannot be delayed, that is, 
moved further in the direction of control flow. 

Theorem 3 (Shortest live ranges). Given the CMP- 
restructured (or original) control flow graph, ComPRE 
(CM-PRE) is optimal in that it minimizes the live range 
lengths of inserted temporary variables. 

Proof. An initialization point Insert cannot be delayed ei- 
ther because it would become partially redundant, destroy- 
ing completeness, or because its temporary variable is used 
in the immediate successor. Cl 

Existing PRE algorithms find the live-range optimal 
placement in two stages. First, computations are hoisted as 
high as possible, maximizing the removal of redundancies. 
Later, the placement is corrected through the computation 
of delayability [24]. Our formulation specifies the optimal 
placement directly, as we never hoist into paths where a 
blocking CMP will be subsequently encountered. 

However, note that after the above redefinition, fz is no 
longer monotone: given ANTIC,,[n,e] = May, $1 = May, 
xz = Must, we have x1 C 22 but fG(xi) = No e fi(xs) = 
Must. Although a direct approach to solving such system 
of equations may produce conservatively imprecise solution, 
the desired maximal fixed point is easily obtained using bit- 
vector GEN/KILL operations as follows. 

First, compute ANTIC as in Figure 3. Second, solve the 
well-known availability property, denoted AVOll, which holds 
when the expression is computed along all incoming paths: 
AV.11 ($ A VA IL = Must. Finally, we compute AV,,,, which 
characterizes some-paths availability and also encapsulates 
CMP detection: AV,,,, H AVAIL # No. The pair of solu- 
tions (AVOWS, AXome) can be directly mapped to the desired 
solution of AVAIL. The GEN and KILL sets [l] for the 
AV,,,, problem are given below. The value of the initial 
guess is false, the meet operator is the bit-wise or. 

GEN = CompA Transp 
KILL = -Transp V (AVAIL # Must A ANTIC # Must) 

-Transp v (-AVolt A ANTIC # Most) 

The condition (AVAIL # Must A ANTIC # Must) detects 
the CMP node. While it is less strict than that in Defini- 
tion 2, it is equivalent for our purpose, as it is safe to kill 

:~.~~~.~~ CMP[atb] 
co@d /or mdudbilily .” 

0 
s/rig/e loop 
entry node 

,_,....I H-” 

I? 9 cd 

s 

c!- 1 
a) source program b) reducible ComPFUl of [a+b] 

Figure 4: Reducible restructuring. (See Figure l(c)) 

when there is no reuse (AVAIL = No) or when there is no 
hoisting (ANTIC = No). The less strict condition is bene- 
ficial because computing and testing Must requires one bit 
per expression, while two bits are required for May. Con- 
sequently, we can substitute ANTIC # Must with TAN,,,,, 
where AN,!1 is defined analogously to AVOl,. As a result, 
we obtain the same implementation complexity as the algo- 
rithms in [17, 241: three data-flow problems must be solved, 
each requiring one bit of solution per expression. 

In conclusion, the CMP region is a convenient abstrac- 
tion for terminating hoisting when it would unnecessarily 
extend the live ranges. It also provides an intuitive way of 
explaining the shortest-live-range solution without applying 
the corrective step based on delayability [24]. Furthermore, 
the CMP-based, motion-only solution can be implemented 
as efficiently as existing shortest-live-range algorithms. 

2.2 Reducible Restructuring 

Duplicating a CMP region may destroy reducibility of the 
control flow graph. In Figure l(c), for example, ComPRE 
resulted in a loop with two distinct entry nodes. Even 
though PoePRE preserves reducibility on the same loop 
(Figure l(b)), like other restructuring-based optimizations 
[4, 10, 301, it is also plagued by introducing irreducibility. 
One way to deal with the problem is to perform all opti- 
mizations that presuppose single-entry loops prior to PRE. 
However, many algorithms for scheduling (which should fol- 
low PRE) rely on reducibility. 

After ComPRE, a reducible graph can be obtained with 
additional code duplication. An effective algorithm for nor- 
malizing irreducible programs is given in [23]. To suppress 
an unnecessary invocation of the algorithm, we can employ 
a simple test of whether irreducibility may be created af- 
ter a region duplication. The test is based upon examining 
only the CMP entry and exit edges, rather than the entire 
program. Assuming we start from a reducible graph, re- 
structuring will make a loop L irreducible only if multiple 
CMP exit edges sink into L, and at least one region entry 
is outside L (i.e., is not dominated by L’s header node). If 
such a region is duplicated, target nodes of region exit edges 
may become the (multiple) loop entry nodes. Consider the 
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loop in Figure 4(a). Two of the three exits of CMp[a + b] 
fall into the loop. After restructuring, they will become loop 
entries, as shown in Figure l(c). 

Rather than applying a global algorithm like [23], a 
straightforward approach to make the affected loop re- 
ducible is to peel off a part of its body. The goal is to extend 
the replication scope so that the region exits sink onto a sin- 
gle loop node, which will then become the new loop entry. 
Such a node is the closest common postdominator (within 
the loop) of all the offending region exits and the original 
loop entry. Figure 4(a) highlights node c+d whose duplica- 
tion after CMP restructuring will restore reducibility of the 
loop. The postdominator of the offending exits is node Q, 
which becomes the new loop header. 

3 Profile-Guided PRE 

While the CMP region is the smallest set of nodes whose 
duplication enables the desired code motion, its size is often 
prohibitive in practice. In this section, relying on the pro- 
file to estimate optimization benefit, complete PRE is made 
more practical by avoiding unprofitable code replication. 

First, we extend ComPRE by inhibiting restructuring in 
response to code duplication cost and the expected dynamic 
benefit. The resulting profile-guided algorithm duplicates a 
CMP region only when the incurred code growth is justi- 
fied by a corresponding run-time gain from eliminating the 
redundancies. Second, the notion of the CMP region is com- 
bined with profiling to formulate a speculative code-motion 
PRE that is guaranteed to have a positive dynamic effect, 
despite impairing certain paths. The third algorithm in- 
tegrates both restructuring and speculation and selects a 
profitable subgraph of the CMP for each. While profitably 
balancing the cost and benefit under a given profile is NP- 
hard, the empirically small number of hot program paths 
promises an efficient algorithm [4, 191. Finally, to support 
profile guiding, we show how an estimate of the run-time 
gain thwarted by a CMP region can be obtained using edge 
profiles, frequency analysis [27], or path profiles [7]. 

3.1 Selective Restructuring 

We model the profitability of duplicating a CMP region R 
with a cost-benefit threshold predicate T(R), which holds 
if the region optimization benefit exceeds a constant mul- 
tiple of the region size. Our metric of benefit is the dy- 
namic amount of computations whose elimination will be 
enabled after R is duplicated, denoted Rem(R). That is, 
T(R) = Rem(R) > c .size(R). When T(R) = true for each 
region R, the algorithm is equivalent to the complete Com- 
PRE. When T(R) = false for each region, the algorithm 
reduces to the code-motion-only CM-PRE. Obviously, pred- 
icate T determines only a sub-optimal tradeoff between ex- 
ploiting PRE opportunities and limiting the code growth. 
In particular, it does not explicitly consider the instruction 
cache size and the increase in register pressure due to intro- 
duced temporary variables. We have chosen this form of T 
in order to avoid modeling complex interactions among com- 
piler stages. In the implementation, T is supplemented with 
a code growth budget (for example, in [6], code is allowed 
to grow by about 20%). 

First, we present an algorithm for computing the opti- 
mization benefit Rem(R). The method is based on the fact 

7 end for 
8 recompute the AVAlL solution, using fi from Section 2.1 
Step 3: Optimize: code motion. (unchanged) 

Step 1: compute anticipability and availability. (unchanged) 
Step 2: Partial restructuring: remove profitable CMP regions. 
1 for each computation e do 
2 for each disconnected subregion Ri of CMP[e] do 

build the largest connected subregion 
3 select a node from R and 

collect all connected CMP nodes 
determine optimization benefit Rem(R;) 

4 carry out frequency analysis of AVAlL on R; 
if profitable, duplicate (lines 2-12 of Fig. 3) 

5 if T(R;) then duplicate Ri 
6 end for 

Figure 5: PgPRE: profile-guided version of ComPRE. 

that the CMP scope localizes the entire benefit thwarted by 
the region: to compute the benefit, it suffices to examine 
only the paths within the region. Consider an expression 
e and its CMP region R = CMP[e]. For each region ezit 
edge a = (n, m) (i.e., n E CMP[e], m e CMP[e]), the value 
of ANTICin[m,e] is either Must or No, otherwise m would 
be in CMP[e]. Let EzitMurt(R) be the set of the Must exit 
edges. The dynamic benefit is derived from the observation 
that each time such an edge is executed, any outgoing path 
contains exactly one computation of e that can be eliminated 
if: i) R is duplicated and ii) the value of e is available at the 
exit edge. Let ex(a) be the execution frequency of edge a 
and p(AVAI&[n, e] = Must) the probability that the value 
e is available when n is executed. After the region is dupli- 
cated, the expected benefit connected with the exit edge a 
is ex(a).p(AVAIL,,t[n, e] = Must), which corresponds to the 
number of computations removed on all paths starting at a. 
The benefit of duplicating the region R is thus the sum of 
all exit edge benefits 0 

Rem(R) = c ex(a).p(AVA&,t[n, e] = Must). 
o=(n,m)EEsitr~,,,(R) 

The probability p is computed from an edge profile using 
frequency analysis [27]. In the frequency domain, the prob- 
ability of each data-flow fact occurring, rather than the 
fact’s mere boolean meet-over-all-paths existence, is com- 
puted by incorporating the execution probabilities of control 
flow edges into the data-flow system. Because the frequency 
analyzer cannot exploit bit-vector parallelism, but instead 
computes data-flow solutions on floating point numbers, it 
is desirable to reduce the cost of calculating the probabili- 
ties. The CMP region lends itself to effectively restricting 
the scope of the program that needs to be analyzed. Because 
all region entry edges are either Must- or A/o-available, the 
probability of e being available on these edges are 1 and 0, 
respectively. Therefore, the probability p at any exit edge 
can only be influenced by the paths within the region. As 
a result, it is sufficient to perform the frequency analysis 
for expression e on CMP[e], using entry edges as a precise 
boundary condition for the CMP data-flow equation system. 
In Section 5 we reduce the cost of frequency analysis through 
a demand-driven approach. 

The algorithm (PgPRE) that duplicates only profitable 
CMP regions is given in Figure 5. It is structured as its 
complete counterpart, ComPRE: after data-flow analysis, 
we proceed to eliminate CMP regions, separately for each 
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expression. While in ComPRE it was sufficient to treat all 
nodes from a single CMP together, selective duplication ben- 
efits from dividing the CMP into disconnected subregions, 
if any exist. Intuitively, hoisting of a particular expression 
may be prevented by multiple groups of nodes, each in a 
different part of the procedure. Therefore, line 3 groups 
nodes from a connected subregion and frequency analysis 
determines the benefit of the group (line 4). After all prof- 
itable regions are eliminated, the motion-blocking effect of 
CMP regions remaining in the program must be captured. 
All that is needed is to apply the CM-PRE algorithm from 
Section 2.1 on the improved control flow graph. Blocked 
hoisting is avoided by recomputing availability (line 8) us- 
ing the re-defined flow function fz from Section 2.1, which 
asserts No-availability whenever a CMP is detected. 

3.2 Speculative Code-Motion PRE 

In code-motion PRE, hoisting of a computation e is blocked 
whenever e would need to be placed on a control flow path p 
that does not compute e in the original program. Such spec- 
ulative code motion is prevented because executing e along 
path p could a) raise spurious exceptions in e (e.g., over- 
flow, wrong address), and b) outweigh the dynamic benefit 
of removing the original computation of e. The former re- 
striction can be relaxed for instruction that cannot except, 
leading to safe speculation. New processor generations will 
support control-speculative instructions which will suppress 
raising the exception until the generated value is eventually 
used, allowing unsafe speculation [25]. The latter problem 
is solved in [20], where an aggressive code-motion PRE nav- 
igated by path profiles is developed. The goal is to allow 
speculative hoisting, but only into such paths on which dy- 
namic impairment would not outweigh the benefit of elimi- 
nating the computation from its original position. 

Next, we utilize the CMP region to determine i) the prof- 
itability of speculative code motion and ii) the positions of 
speculative insertion points that minimize live ranges of tem- 
porary variables. Figure 6 illustrates the principle of specu- 
lative PRE [20]. Instead of duplicating the CMP region, we 
hoist the expression into all No-available entry edges. This 
makes all exits fully available, enabling complete removal of 
original computations along the I\/lust exits. In our example, 
[o + 51 is moved into the No-available region entry edge ez. 
This hoisting is speculative because [a+b] is now executed on 
each path going through ez and es, which previously did not 
contain the expression. The benefit is computed as follows. 
The dynamic amount of computations is decreased by the 
execution frequency eE(eq) of the Must-anticipable exit edge 
(following which a computation was removed), and increased 
by the frequency ex(ez) of the No-available entry edge (into 
which the computation was inserted). Since speculation is 
always associated with a CMP region, we are able to obtain 
a simple (but precise) profitability test: speculative PRE of 
an expression is profitable if the total execution frequency 
of Must-anticipable exit edges exceeds that of No-availaible 
entry edges. Note that the benefit is calculated locally by 
examining only entry/exit edges, and not the paths within 
the region, which was necessary in selective restructuring. 
Hence, the speculative benefit is independent from branch 
correlation and edge profiles are as precise as path profiles 
in the case of speculative-motion PRE. As far as temporary 
live ranges are concerned, insertion into entry edges results 
in a shortest-live-range solution, and Theorem 3 still holds. 

i l AVAlL=Mw 
0 AVAIL=No 

. ANTIc=Mur 
0 ANTlC=No 

Optimization benefit: 

-ex(eZ) - Inssrtion 
iex(e4) - removal 

exh4J-exte2J 
i 

.I ., I 

Figure 6: Speculative code-motion PRE. 

3.3 Partial Restructuring, Partial Speculation 

In Section 3.1, edge profiles and frequency analysis were 
used to estimate the benefit Rem of duplicating a region. 
An alternative is to use path profiles [3, 71, which are con- 
venient for establishing cost-benefit optimization trade-offs 
[4, 19,201. To arrive at the value of the region benefit with a 
path profile, it is sufficient to sum the frequencies of Must- 
Most paths, which are paths that cross any region entry 
edge that is Must-available and any exit edge that is Must- 
anticipated. These are precisely the paths along which value 
reuse exists but is blocked by the region. While there is an 
exponential number of profiled acyclic paths, only 5.4% of 
procedures execute more than 50 distinct paths in spec96 
[19]. This number drops to 1.3% when low-frequency paths 
accounting for 5% of total frequency are removed. Since we 
can afford to approximate by disregarding these infrequent 
paths, summing individual path frequencies constitutes a 
feasible algorithm for many CMP regions. Furthermore, 
because they encapsulate branch correlation, path profiles 
compute the benefit more precisely than frequency analysis 
based on correlation-insensitive edge profiles. 

Moreover, the notion of individual CMP paths leads to a 
better profile-guided PRE algorithm. Considering the CMP 
region as an indivisible duplication unit is overly conserva- 
tive. While it may not be profitable to restructure the entire 
region, the region may contain a few paths Must-Must paths 
that are frequently executed and are inexpensive to dupli- 
cate. Our goal is to hnd the largest subset (frequency-wise) 
of region paths that together pass the threshold test T(R). 
Similarly, speculative hoisting into all entry edges may fail 
the profitability test. Instead, we seek to find a subset of 
entry edges that maximizes the speculative benefit. In this 
section, we show how partial restructuring and speculation 
are carried out and combined. 

Partial speculation selects for speculative insertion only a 
subset Z of the No region entries. The selection of entries in- 
fluences which subset R of region exits will be able to exploit 
value reuse. R consists of all Must exits that will become 
Must-available due to the insertions in I. The rationale be- 
hind treating entries separately is that some entries may en- 
able little value reuse, hence they should not be speculated. 
Note that No entry edges are the only points where specu- 
lative insertion needs to be considered: insertions inside the 
region would be partially redundant; insertions outside the 
region would extend the live-ranges. Partial speculation is 
optimal if the difference of total frequencies of R and Z is 
maximal (but non-negative). Although this problem is NP- 
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Figure 7: Integrating speculation and restructuring. 

hard, the small number of entry edges observed in practice 
(typically less than 10) makes the problem tractable. An 
interesting observation is that to determine optimal partial 
speculation, a) edge profiles are not inferior to path profiles 
and b) frequency analysis is not required. Therefore, to ex- 
ploit the power of path profiles, partial restructuring, rather 
than (speculative) code motion alone, must be used. This 
becomes more intuitive once we realize that without control 
flow restructuring, one is restricted to consider only an in- 
dividual edge (but not a path) for expression insertion and 
removal. To compare the CMP-based partial speculation 
with the speculative PRE in [20], we show how to efficiently 
compute the benefit by defining the CMP region and how to 
apply edge profiles with the same precision as path profiles. 
In acyclic code, we achieve the same precision; in cyclic code, 
we are more precise in the presence of loop-carried reuse. 

The task of partial restructuringis to localize a subgraph 
of the CMP that has a small size but contains many hot 
Must-Must paths. By duplicating only such a subregion, 
we are effectively peeling off only hot paths with few in- 
structions. In Figure l(e), only the (presumably hot) path 
through the node Q was separated. Again, the problem of 
finding an optimal subregion, one whose benefit is maxi- 
mized but passes the T(R) predicate and is smaller than a 
constant budget, is NP-hard. However, the empirically very 
small number of hot paths promises an efficient exhaustive- 
search algorithm. 

Integrating partial speculation and restructuring offers 
additional opportunities for improving the cost-benefit ra- 
tio. We are no longer restricted to peeling off hot Must-Must 
paths and/or selecting No-entries for speculation. When 
the high frequency of a No entry prevents speculation, we 
can peel off a hot No-available path emanating from the 
entry, thereby reducing entry edge frequency and allowing 
the speculation, at the cost of some code duplication. Fig- 
ure 7(a) shows an example program annotated with an edge 
profile. Because peeling hot Must-Must paths from the high- 
lighted CMP([c+d) would duplicate all blocks except S, we 
try speculation. To eliminate the redundancy at the CMP 
exit edge Y with frequency ex(Y) = 100, a computation 

must be inserted into No-entries B and C. While B is low- 
frequency (lo), C is not (loo), hence the speculation is dis- 
advantageous, as ez(Y) = 100 < ez(B) + ez(C) = 10 + 100. 
Now assume that the exit branch in Q is strongly biased and 
the path C, Q, X has a frequency of 100. That is, after edge 
C is executed, the execution will always follow to X. We 
can peel off this No-available path, as shown in (b), effec- 
tively moving the speculation point C off this path. After 
peeling, the frequency of C becomes 0 and the speculation 
is profitable, ez(Y) = 100 > ez(B) + G(C) = 10 + 0. 

4 Experiments 

We performed the experiments using the HP Labs VLIW 
back-end compiler elcor, which was fed specs5 benchmarks 
that were previously compiled, edge-profiled, and inlined 
(only specssint) by the Impact compiler. Table 1 shows 
program sizes in the total number of nodes and expres- 
sions. Each node corresponds to one intermediate state- 
ment. Memory requirements are indicated by the column 
max space, which gives the largest nodes-expressions product 
among all procedures. The running time of our rather inef- 
ficient implementation behaved quadratically in the number 
of procedure nodes; for a procedure with 1,000 nodes, the 
PRE time was about 5 seconds on PA-8000. Typically, the 
complete PRE ran faster than the subsequent dead code 
elimination. 
Experiment 1: Disabling effects of CMP regions. 
The column labeled optimizable gives the percentage of ex- 
pressions that reuse value along some path; 13.9% of (static) 
expressions have partially redundant computations. The 
next column prevented-CMP reports the percentage of op- 
timizable expressions whose complete optimization by code 
motion is prevented by a CMP region. Code-motion PRE 
will fail to fully optimize 30.5% of optimizable expressions. 
For comparison, column prevented-POE reports expressions 
that will require restructuring in PoePRE. 
Experiment 2: Loop invariant expressions. Next, we 
determined what percentage of loop invariant (LI) expres- 
sions can be removed from their invariant loops with code 
motion. The column loop invar shows the percentage of op- 
timizable expressions that pass our test of loop-invariance. 
The following column gives the percentage of LI expressions 
that have a CMP region; an average of 72.5% of LI compu- 
tations cannot be hoisted from all enclosing invariant loops 
without restructuring. 
Experiment 3: Eliminated computations. The col- 
umn global CSE reports the dynamic amount of computa- 
tions removed by global common subexpression elimination; 
this corresponds to all full redundancies. The column com- 
plete PRE gives the dynamic amount of all partially redun- 
dant statements. The fact that strictly partial redundancies 
contribute only 1.7% (the difference between complete PRE 
and global CSE) may be due to the style of Impact’s inter- 
mediate code (e.g., multiple virtual registers for the same 
variable). We expect a more powerful redundancy analysis 
to perform better. Figure 8 plots the dynamic amount of 
strictly partial redundancies removed by various PRE tech- 
niques. Code-motion PRE yields only about half the benefit 
of a complete PRE. Furthermore, speculation results in near- 
complete PRE for most benchmarks, even without special 
hardware support (i.e., safe speculation). Speculation was 
carried out on the CMP as whole. Note that the graph ac- 
counts for the dynamic impairment caused by speculation. 
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Table 1: Experience with PRE based on control flow restructuring. 

Figure 8: Benefit of various PRE algorithms: dynamic op- 
count decrease due to strictly partial redundancies. Each 
algorithm also completely removes full redundancies. 

The measurements indicate that an ideal PRE algorithm 
should integrate both speculation and restructuring. Using 
restructuring when speculation would waste a large portion 
of benefit will provide an almost complete PRE with small 
code growth. 
Experiment 4: Code growth. Finally, we compare the 
code growth incurred by ComPRE and PoePRE. To make 
the experiment feasible, we limited procedure size by 3,000 
nodes and made the comparison only on procedures that did 
not exceed the limit in either algorithm. Overall, ComPRE 
created about three times less code growth than PoePRE. 

5 Demand-Driven Frequency Analysis 

Not amenable to bit-vector representation, frequency anal- 
ysis [27] is an expensive component of profile-guided opti- 
mizers. We have shown that ComPRE allows restricting the 
scope of frequency analysis within the CMP region without 
a loss of accuracy. However, in large CMP regions the cost 
may remain high, and path profiles cannot be used as an 
efficient substitute when numerous hot paths fall into the 
region. One method to reduce the cost of frequency anal- 
ysis is computing on demand only the subset of data flow 
solution that is needed by the optimization. 

In this section, we develop a demand-driven frequency 
analyzer which reduces data-flow analysis time by a) exam- 
ining only nodes that contribute to the solution and, option- 
ally, b) terminating the analysis prematurely, when the solu- 
tion is determined with desired precision. Besides PRE, the 
analyzer is suitable for optimizations where acceptable run- 
ning time must be maintained by restricting analysis scope, 
as in run-time optimizations [5] or interprocedural branch 
removal [lo]. 

Frequency analysis computes the probability that a data- 
flow fact will occur during execution. Therefore, the proba- 
bility Yattice” is an infinite chain of real numbers. Because 
existing demand-driven analysis frameworks are built on it- 
erative approaches, they only permit lattices of finite size 
[18] or finite height [22, 291 and hence cannot derive a fre- 
quency analyzer. We overcome this limitation by designing 
the demand-driven analyzer based upon elimination data- 
flow methods [28] whose time complexity is independent of 
the lattice shape. We have developed a demand-driven anal- 
ysis framework motivated by the Allen-Cocke interval elim- 
ination solver [2]. Next, using the framework, a demand- 
driven algorithm for general frequency data-flow analysis 
was derived [8]. We present here the frequency solver spe- 
cialized for the problem of availability. 
Definitions. Assume a forward data-flow problem specified 
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with an equation system 

(X:,...,X; 

= jn(n7%EpPed(n)xm) 
= (fm m~pred(n)sn)r.. . 1 fns(n,xd) 

Vector xn = (Xi,. . . , xi) is the solution for a node n, vari- 
able x”, denotes the fact associated with expression e. The 
equation system induces a dependence graph EG whose 
nodes are variables xc 

an edge (z&, 
and edges represent flow functions 

f i: zz) exists if the value of zz is computed 
from 2;, m E pred(n). The graph EG is called an exploded 
graph [22]. The data flow problems underlying ComPRE 
are separable, hence zz only depends on x&,. In value-based 
PRE [9], constant propagation [29], and branch correlation 
analysis [lo], edges (z$, xz), d # e, may exist, complicat- 
ing the analysis. The analyzer presented here handles such 
general exploded graphs. 
Requirements. The demand-driven analyzer grew out of 
four specific design requirements: 

1. Demand-driven. Rather than computing x, for each 
node n, we determine only the desired xk, i.e. the so- 
lution for expression e at a node n. Analysis speed- 
up is obtained by further requiring that only nodes 
transitively contributing to the value of xf, are vis- 
ited and examined. To guarantee worst-case behavior, 
when solutions for all EG nodes are desired, the solver’s 
time complexity does not exceed that of the exhaustive 
Allen-Cocke method, O(N’), where N is the number 
of EG nodes. 

2. Lattice-independent. The amount of work per node 
does not depend on lattice size, only on the EG shape. 

3. On-line. The analysis is possible even when EG is not 
completely known prior to the analysis. To save time 
and memory, our algorithm constructs EG as analysis 
progresses. The central idea of on-demand construc- 
tion is to determine a flow function fi only when its 
target variable xz is known to contribute to the desired 
solution. Furthermore, the solver must produce the so- 
lution even when EG is irreducible, which can happen 
even when the underlying CFG is reducible. 

4. Informed. In the course of frequency analysis, the con- 
tribution weight of each examined node to the desired 
solution must be known. This information is used to 
develop a version of the analyzer that approximates 
frequency by disregarding low-contribution nodes with 
the goal of further restricting analysis scope. 

The ezhahaustiue interval data-flow analysis [2] computes 
xn for all n as follows. First, loop headers are identified to 
partition the graph into hierarchic acyclic subregions, called 
intervals. Second, forward substitution of equations is per- 
formed within each interval to express each node solution in 
terms of its loop header. The substitution proceeds in the 
interval order (reverse postorder), so that each node is vis- 
ited only once. Third, mutual equation dependences across 
loop back-edges are reduced with a loop breaking rule I,: 
xn = S(Xn,Xk) + xn = L(g(x*)). The second and third 
step remove cyclic dependences from all innermost loops in 
EG; they are repeated until all nesting levels are processed 
and all solutions are expressed in terms of the start node, 
which is then propagated to all previously reduced equations 
in the final propagation phase [2]. 

The demand-driven interval analysis substitutes only 
those equations and reduces only those intervals on which 
the desired 2: is transitively dependent. To find the relevant 
equations, we back-substitute equations (flow functions) into 
the right-hand side of x: along the EG edges. The edges 
are added to the exploded graph on-line, whenever a new 
EG node is visited, by first computing the flow function of 
the node and then inserting its predecessors into the graph. 

As in [2], we define an EG interval to be a set of nodes 
dominated by the sink of any back-edge. In an irreducible 
EG, a back-edge is each loop edge sinking onto a loop entry 
node. Because the EG shape is not known prior to analysis, 
on-line identification of EG intervals relies only on the struc- 
ture of the underlying control flow graph. When the CFG 
node of an EG node z is a CFG loop entry, then x may 
be an EG loop entry, and we conservatively assume it is an 
interval head. Within each interval, back-substitutions are 
performed in reversed interval order. Such order provides 
lattice-independence, as each equation needs to be substi- 
tuted only once per interval reduction, and there are at most 
N reductions. To find interval order on an incomplete EG, 
we observe that within each EG interval, the order is con- 
sistent with the reverse postorder CFG node numbering. 

To loop-break cyclic dependencies along an interval back- 
edge, the loop is reduced before we continue into the preced- 
ing interval, recursively invoking reductions of nested loops. 
This process achieves demand analysis of relevant intervals. 
The desired solution is obtained when z”, is expressed exclu- 
sively using constant terms. At this point, we have also iden- 
tified an EG subgraph that contributes to zi, and removed 
from it all cyclic dependences. A forward substitution on the 
subgraph will yield solutions for all subgraph nodes which 
can be cached in case they are later desired (worst-case run- 
ning time). This step corresponds to the propagation phase 
in [2], and to caching in [18, 291. 

The framework instance calculates the probability of ex- 
pression e being available at the exit of node n during the 
execution: xc - ,, - p(AVAIL,,t[n,e] = Must) E R. Let p(a) 
denote the probability of edge a being taken, given its sink 
node is executed. We relate the edge probability to the sink 
(rather than the source, as in exhaustive analysis [27]) be- 
cause the demand solver proceeds in the backward direction. 
The frequency flow function returns probability 1 when the 
node computes the expression e and 0 when it kills the ex- 
pression. Otherwise, the sum of probabilities on predeces- 
sors weighted by edge execution probabilities is returned. 
Predicates Camp and Transp are defined in Figure 3. 

I 

1.0 if Comp(n, e) A Transp(n, e), 
0.0 if TTransp(n, e), 

a 
x, = 

I 

c p((m, n)).xk otherwise. 
nEpred(n) 

The demand frequency analyzer is shown in Figure 9. 
Two data structures are used : sol accumulates the con- 
stant terms of the desired probability r:; rhs is the current 
right-hand side of xz after all back-substitutions. The vari- 
ables sol and rhs are organized as a stack, the top being used 
in the currently analyzed interval. The algorithm treats rhs 
both as a symbolic expression and as a working set of pend- 
ing nodes (or yet unsubstituted variables, to be precise). For 
example, the value of rhs may be 0.25*m+0.4*k, where the 
weights are contributions of nodes m and k to the desired 
probability z”,. If e is never available at m, and is available 
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at k with probability 0.5, then it is available at node n with 
probability 0.25 * 0 + 0.4 * 0.5 = 0.2. More formally, the con- 
tribution weight of a node represents the probability that a 
path from that node to n without a computation or a kill of 
the expression e will be executed. 

First, the rhs is set to 1.0 * n in line 1. Then, flow func- 
tions are back-substituted into rhs in post-order (line 3). 
Substitutions are repeated until all variables have been re- 
placed with constants (line 2), which are accumulated in 
sol. If a substituted node z computes the expression e, 
its weight rhs[x] is added to the solution and z is removed 
from the rhs by the assignment rhs[z] := 0.0 (line 6). In the 
simple case when x is not a loop entry node (line 12), its 
contribution c is added to each predecessor’s contribution, 
weighted by the edge probability p. If z is a loop entry node 
(line 8), then before continuing to the loop predecessor, all 
self-dependences of x are found in a call to reduceloop. 
The procedure reduceloop mimics the main loop (lines I- 
5) but it pushes new entries on the stacks to initiate a reduc- 
tion of a new interval and also marks the loop entry node 
to stop when back-substitution collected cyclic dependences 
along all cyclic paths on the back-edge edge (y,x). The 
result of reduceloop is returned in a sol-&s pair (s,r), 
where s is the constant and r the set of unresolved vari- 
ables, e.g. x = r + s = 0.32 + 0.1. If EG is reducible, the 
set r contains only x. The value r[x] = 0.3 is the weight 
of the z’s self-dependence, which is removed by the loop 
breaking rule derived for frequency analysis from the sum 
of infinite geometric sequence (lines 10-11). After the al- 
gorithm terminates, the stack visited (line 14) specifies the 
order in which forward substitution is performed to cache 
the results. Also shown in Figure 9 is an execution trace 
of the demand-driven analysis. It computes the probability 
that the expression computed in nodes F, H, and killed in 
A, D, is available at node C. All paths where availability 
holds are highlighted. 
Approximate Data-Flow Analysis. Often, it is neces- 
sary to sacrifice precision of the analysis for its speed. We 
define here a notion of approximate data flow information, 
which allows the analyzer a predetermined degree of con- 
servative imprecision. For example, given a 5% imprecision 
level (e = 0.05), the analyzer may output “available: 0.7,” 
when the maximal fixed point solution is “available: 0.75.” 
The intention of permitting underestimation is to reduce the 
analysis cost. When the analyzer is certain that the contri- 
bution of a node (and all its incoming paths) to the overall 
solution is less than the imprecision level, it can avoid an- 
alyzing the paths and assume at the node the most conser- 
vative data-flow fact. 

Because the algorithm in Figure 9 was designed to be 
informed, it naturally extends to approximate analysis. By 
knowing the precise contribution weight of each node as the 
analysis progresses, whenever the sum of weights in rhs at 
the highest interval level falls below e (the while-condition 
in line 2), we can terminate and guarantee the desired pre- 
cision. An alternative scenario is more attractive, however. 
When a low-weight node is selected in line 3, we throw it 
away. We can keep disregarding such nodes until their total 
weights exceed e. In essence, this approach performs analy- 
sis along hot paths [4], and on-line region formation [21]. 

The idea of terminating the analysis before it could find 
the precise solution was first applied in the implementa- 
tion of inter-procedural branch elimination [lo]. Stopping 
after visiting a thousand nodes resulted in two magnitudes 

of analysis speedup, while most optimization opportunities 
were still discovered. However, without the approsimate fre- 
quency analyzer developed in this paper, we were unable to 
a) determine the benefit of restructuring, b) select a prof- 
itable subset of nodes to duplicate, and c) get a bound on 
the amount of opportunities lost due to early termination. 
Algorithm complexity. In an arbitrary exploded graph, 
reduce_loop may be (recursively) invoked on each node. 
Hence, each node may be visited at most NE times, where 
NE = NS is the number of EG nodes, N the number of 
CFG nodes, and S the number of optimized expressions. 
With caching of results, then each node is processed in at 
most one invocation of the algorithm in Figure 9, yielding 
worst-case time complexity of 0( Ni) = O(N2Sa). Since 
real programs have loop nesting level bound by a small con- 
stant, the expected complexity is (NS), as in [2]. 

Although most existing demand-driven data-flow algo- 
rithms ([18, 221, [29] in particular) can be viewed (like ours) 
to operate on the principle of back-substituting flow func- 
tions into the right-hand side of the target variable, they do 
not focus on specifying a profitable order of substitutions 
(unlike ours) but rely instead on finding the fixed point it- 
eratively. Such an approach fails on infmite-height lattices 
where CFG loops keep always iterating towards a better ap- 
proximation of the solution. Note that breaking each con- 
trol flow cycle by inserting a widening operator [13] does not 
appear to resolve the problem because widening is a local 
adjustment primarily intended to approximate the solution. 
Therefore, in frequency analysis, too many iterations would 
be required to achieve an acceptable approximation. Instead 
of fixing the equation system locally, a global approach of 
structurally identifying intervals and reducing their cyclic 
dependences seems necessary. We have shown how to iden- 
tify intervals and perform substitutions in interval order on 
demand, even when the exploded graph is not known prior 
to the analysis. We believe that existing demand methods 
can be extended to operate in a structural manner, enabling 
the application of loop-breaking rules. This would make the 
methods reminiscent of the elimination algorithms [28]. 

6 Conclusion and Related Work 

The focus of this paper is to improve program tmns- 
formations that constitute value-reuse optimizations com- 
monly known as Partial Redundancy Elimination (PRE). 
In the long history of PRE research and implementation, 
three distinct transformations can be identified. The sem- 
inal paper by Morel and Renviose [26] and its derivations 
[ll, 14, 15, 16, 17, 241 employ pure, non-speculative code 
motion. Second, the complete PRE by Steffen [30] is based 
on control flow restructuring. Third, navigated by path pro- 
file information, Gupta et al apply speculative code motion 
in order to avoid code-motion obstacles by controlled im- 
pairment of some paths [ZO]. 

In this work, we defined the code-motion-preventing 
(CMP) region, which is a CFG subgraph localizing adverse 
effects’of control flow on the desired value reuse. The notion 
of the CMP is applied to enhance and integrate the three 
existing PRE transformations in the following ways, 1. Code 
motion and restructuring are integrated to remove all redun- 
dancies at minimal code growth cost (ComPRE). 2. Morel 
and Renviose’s original method is expressed as a restricted 
(motion-only) case of the complete algorithm (CM-PRE). 
3. We develop an algorithm whose power adjusts contin- 
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Input: node n, expression e. 
Output: in sol, the probability of e being available at the exit of n. 

so1 : stack of reals (names sol, rhs refer always to top of stack) 
rhs : stack of sets of unsubstituted nodes n with weights rha[n] 
oost-dfs : post-order numbering of CFG nodes 

t sol := 0; rhs := {}; rhs[n] := 1.0 
2 while rhs not empty do 
3 select from rhs a node z with smallest post-dfs(z) 
I substitute(z) 
5 end while 

procedure substitute(node z) 
if z has not been visited, determine its flow function 
if I computes or kills e, adjust sol and remove z from rhs 
if Comp(z,e) A Transp(z, e) then 

5 SO/ := sol + rhs[z]; rhs[z] := 0.0; return 
7 else if ~Transp(n,e) then rhs[z] := 0.0; return 

back-edge is each edge that meets a loop-entry edge 
3 if back-edge (y, Z) exists then assume one back-edge per node 

substitute for y until z occurs on the r.h.s. 
9 (s, v) := reduceJoop(y, z) 

apply loop breaking rule: sum of infinite geom. sequence 
10 c := rhs[z]/(l - r[~]) 
11 rhs := rhs + c x r; sol := sol + c x a 
12 else c := rhs[z] 

substitute “acyclic” predecessors 
for each non-backedge node z C pred(z) do 

13 rhs[z] := rhs[r] + c x p((z, z)) 
end for 
z is now fully substituted 

14 rhs[z] := 0.0; viaited.push(z) 
end substitute 

function reduceJoop(node u, node u) 
15 mark v; so/.push(O); rha.posh({}); rhs[u] := p((u,v)) 
16 while rhs contains unmarked nodes do 
17 select from rha an unmarked node z with lowest post-dfs(z) 
18 substitute(z) 
19 end while 
20 unmark V; return (aol.pop(), rhs.pop()) 

end reduceJoop 

post-dfs: H, G, F, . . 

Input: n = C 
Output: p = 0.2818 
1 sol := 0; rhs = 1.0 * 
4 substitute(C) 
12 c := 1.0 
13 rha := 0.2 * H + 0.3 

:C 

* G + 0.5 *B 
4 substitute(H) 
6 sol := sol + rhs[H] := 0 + 0.2 
6 rhs = 0.3 * G + 0.5 * B 
4 substitute(G) 
12 c := 0.3 
13 rhs := 0.5 * B + 0.3 *A 
4 substitute(B) 
9 reduceJoop(E, B) 
15 mark B; sol1 := 0; rhsl := 0.9 *E 
18 substitute(E) 
12 c := 0.9; 
13 rhsl := 0.36 *D + 0.45 + B + 0.09 * F 
18 substitute(F) 
6 sol1 := so/l + rhsl[fl := 0 + 0.09 
6 rhsl = 0.36 * D + 0.45 * B 
18 substitute(D) 
7 That := 0.45 + B 
20 unmark B; return (0.09,0.45 *B) 
10 c := 0.5/(1 - 0.45) = 0.91 
11 rhs := 0.5 * B + 0.3 *A + 0.91 * 0.45 * B 
11 sol := 0.2 + 0.91*0.09 := 0.2818 
13 rhs := 0.91 * B + 0.3 * A + 0.91 * 0.1 * A 
14 rhs := 0.391~ A 
4 substitute(A) 
7 sol := 0.2818 unchanged t Final probability 
7 rha := 0.0 

Figure 9: Demand-driven frequency analysis for availability of computations, and a trace of its execution. 

ually between the motion-only and the complete PRE in 
response to the program profile (PgPRE). 4. We demon- 
strate that speculation can be navigated precisely by edge 
profiles alone. 5. Path profiles are used to integrate the 
three transformations and balance their power at the level 
of CMP paths. 

While PRE is significantly improved through effective 
program transformations presented in this paper, a large 
orthogonal potential lies in detecting more redundancies. 
Some techniques have used powerful analysis to uncover 
more value reuse than the traditional PRE analysis [9, 111. 
However, using only code motion, they fail to completely 
exploit the additional reuse opportunities. Thus, the trans- 
formations presented here are applicable in other styles of 
PRE as well, for example in elimination of loads. 

Ammons and Larus [4] developed a constant propagation 
optimization based on restructuring, namely on peeling of 
hot paths. In their analysis/transformation framework, re- 
structuring is used not only to exploit optimization opportu- 
nities previously detected by the analysis, as is our case, but 
also to improve the analysis precision by eliminating control 
flow merges from the hot paths. Even though our PRE can- 
not benefit from hot path separation (our distributive data- 

flow analysis preserves reuse opportunities across merges), a 
more complicated analysis (e.g., redundancy of array bound 
checks) would be improved by their approach. After the 
analysis, their algorithm recombines separated paths that 
present no useful opportunities. It is likely that path recom- 
bination can be integrated with code motion, as presented 
in this paper, to further reduce the code growth. 

In a global view, we have identified four main issues 
with path-sensitive program optimizations [8]: a) solving 
non-distributive problems without conservative approxima- 
tion (e.g. non-linear constant propagation), b) collecting 
distinct opportunities (e.g., variable has different constant 
along each path), c) exploiting distinct opportunities (e.g., 
enabling folding of path-dependent constants through re- 
structuring), and d) directing the analysis effort towards hot 
paths. In the approach of Ammons and Larus, all four is- 
sues are attacked uniformly by separation of hot paths, their 
subsequent individual analysis, and recombination. Our ap- 
proach is to reserve restructuring for the actual transforma- 
tion. This implies a different overall strategy: a) we solve 
non-distributive problems precisely along all paths by cus- 
tomizing the data-flow name space [9], b) we collect distinct 
opportunities through demand-driven analysis as in branch 
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elimination [lo], which is itself a form of constant propa- 
gation, c) we exploit all profitable opportunities with eco- 
nomical transformations, and d) avoid infrequent program 
regions using the approximation frequency analysis (the last 
three presented in this paper). 
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