
Complete Removal of Redundant Expressions

Abstract

Rastislav Bodik Rajiv Gupta Mary Lou Soffa

Dept. of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260
{bodik,gupta,soffa}Pcs.pitt.edu

Partial redundancy elimination (PRE), the most important
component of global optimizers, generalizes the removal of
common subexpressions and loop-invariant computations.
Because existing PRE implementations are based on code
motion, they fail to completely remove the redundancies.
In fact, we observed that 73% of loop-invariant statements
cannot be eliminated from loops by code motion alone. In
dynamic terms, traditional PRE eliminates only half of re-
dundancies that are strictly partial. To achieve a complete
PRE, control flow restructuring must be applied. However,
the resulting code duplication may cause code size explosion.

This paper focuses on achieving a complete PRE while
incurring an acceptable code growth. First, we present an al-
gorithm for complete removal of partial redundancies, based
on the integration of code motion and control flow restruc-
turing. In contrast to existing complete techniques, we re-
sort to restructuring merely to remove obstacles to code mo-
tion, rather than to carry out the actual optimization.

Guiding the optimization with a profile enables addi-
tional code growth reduction through selecting those dupli-
cations whose cost is justified by sufficient execution-time
gains. The paper develops two methods for determining the
optimization benefit of restructuring a program region, one
based on path-profiles and the other on data-flow frequency
analysis. Furthermore, the abstraction underlying the new
PRE algorithm enables a simple formulation of speculative
code motion guaranteed to have positive dynamic improve-
ments. Finally, we show how to balance the three trans-
formations (code motion, restructuring, and speculation) to
achieve a near-complete PRE with very little code growth.

We also present algorithms for efficiently computing dy-
namic benefits. In particular, using an elimination-style
data-flow framework, we derive a demand-driven frequency
analyzer whose cost can be controlled by permitting a
bounded degree of conservative imprecision in the solution.

Keywords: partial redundancy elimination, control flow
restructuring, speculative execution, demand-driven fre-
quency data-flow analysis, profile-guided optimization.

Psrmiwion to make digital or hard copier of all or part 01 this work for
psrronal or dassroom use is granted without 1.0 provided that
copies am not made or distributed for profit or commwcial advan-
tage and that copies bear thii notice and the full citation on 6~ first paw.
To oopy othwivise, to republish. to post on Seders or to
redistribute to lists, requires prior spedtic permi8don and/or a 190.
BIGPLAN ‘96 Montreal, Canada
8 ,966 ACM 0-89791-9674/96/0006...96.00

1 Introduction

Partial redundancy elimination (PRE) is a widely used and
effective optimization aimed at removing program state-
ments that are redundant due to recomputing previously
produced values [26]. PRE is attractive because by tar-
geting statements that are redundant only along some ex-
ecution paths, it subsumes and generalizes two important
value-reuse techniques: global common subexpression elimi-
nation and loop-invariant code motion. Consequently, PRE
serves as a unified value-reuse optimizer.

Most PRE algorithms employ code motion [ll, 12, 14,
15, 16, 17, 24, 261, a program transformation that reorders
instructions without changing the shape of the control flow
graph. Unfortunately, code-motion alone fails to remove
routine redundancies. In practice, one half of computa-
tions that are strictly partially redundant (not redundant
along some paths) are left unoptimized due to code-motion
obstacles. In theory, even the optimal code-motion algo-
rithm [24] breaks down on loop invariants in while-loops,
unless supported by explicit do-until conversion. Recently,
Steffen demonstrated that control flow restructuring can re-
move from the program all redundant computations: includ-
ing conditional branches [30]. While his property-oriented
expansion algorithm (Poe) is complete, it causes unneces-
sary code duplication.

As the first step towards a complete PRE with afford-
able code growth, this paper presents a new PRE algorithm
based on the integration of code motion and control flow
restructuring, which allows a complete removal of redun-
dant expressions while minimizing code duplication. No
prior work systematically treated combining the two trans-
formations. We control code duplication by restricting its
scope to a code-motion preventing (CMP) region, which lo-
calizes adverse effects of control flow on the desired value
reuse. Whereas the Poe algorithm applied to expression
elimination (denoted PoePRE) uses restructuring to carry
out the entire transformation, we apply the more economi-
cal code-motion transformation to its full extent, resorting
to restructuring merely to enable the necessary code motion.
The resulting code growth is provably not greater than that
of PoePRE; on spec95, we found it to be three times smaller.

Second, to answer the overriding question of how com-
plete a feasible PRE algorithm is allowed to be, we move
from theory to practice by considering profile information.
Using the dynamic amount of eliminated computations as
the measure of optimization benefit, we develop a profile-
guided PRE algorithm that limits the code growth cost

for (1,) (
it (0) . . = o+di
01s. it (P) break;
if (Q) . . - a+di
01s. R;
91
. . I a+bi

1

-I

a) source program b) PoePRE of [a+b]

duplicated lo make [atb] fu//yredun&nl :” duplicaled for complele optimization of [ctdj

,... duplicated lo allow code motion of[atb] duplicated for partial optimization of[ctQ .:

c) our optimization of [a +b] d) our optimization of [c+d]

c!- 1
e) tradeoff variant of d)

Figure 1: Complete PRE through integration of code motion and control flow restructuring.

by sacrificing those value-reuse opportunities that are infre-
quent but require significant duplication. Third, we describe
how and when speculative code motion can be used instead
of restructuring, and how to guarantee that speculative PRE
is profitable. Finally, we demonstrate that a near-complete
PRE with very little code growth can be achieved by inte-
grating the three PRE transformations: pure code motion,
restructuring, and speculative code motion.

All algorithms in this paper rely in a specific way on
the notion of the CMP region which is used to reduce both
code duplication and the program analysis cost. Thus, we
make the PRE optimization more usable not only by increas-
ing its effectiveness (power) through cost-sensitive restruc-
turing, but also by improving its efficiency (implementa-
tion). We develop compile-time techniques for determining
the impact of restructuring a program region on the dy-
namic amount of eliminated computations. The run-time
benefit corresponds to the cumulative execution frequency
of control flow paths that will permit value reuse after the
restructuring. We describe how this benefit can be obtained
either using edge profiles, path-profiles [7], or through data-
flow frequency analysis [27].

As another contribution, we reduce the cost of frequency
analysis by presenting a frequency analyzer derived from a
new demand-driven data-flow analysis framework. Based on
interval analysis, the framework enables formulation of an-
alyzers whose time complexity is independent of the lattice
size. This is a requirement of frequency analysis whose lat-
tice is of infinite-height. Due to this requirement, existing
demand frameworks are unable to produce a frequency an-
alyzer [18, 22, 291. Furthermore, we introduce the notion
of approximate data-flow frequency information, which con-
servatively underestimates the meet-over-all-paths solution,
keeping the imprecision within a given degree. Approxima-
tion permits the analyzer to avoid exploring program paths

guaranteed to provide insignificant contribution (frequency-
wise) to the overall solution. Besides PRE, the demand-
driven approximate frequency analysis is applicable in in-
terprocedural branch correlation analysis [lo] and dynamic
optimizations [5].

Let us illustrate our PRE algorithms on the loop in Fig-
ure l(a). Assume no statement in the loop defines variables
a, b, c, or d. Although the computations [a+b] and [c+d] are
loop-invariant, removing them from the loop with code mo-
tion is not possible. Consider first the optimization of [a+b].
This computation cannot be moved out of the loop because
it would be executed on the path En, 0, P, Ex, which does
not execute [a + b] in the original program. Because this
could slow down the program and create spurious excep-
tions, PRE disallows such unsafe code motion [24].

The desired optimization is only possible if the CFG is
restructured. The PoePRE algorithm [30] would produce
the program in Figure l(b), which was created by duplicat-
ing each node on which the value of [a+ b] was available only
on a subset of incoming paths. While [a + b] is fully opti-
mized, the scope of restructuring is unnecessarily large. Our
complete optimization (ComPRE) produces the program in
Figure l(c), where code duplication is applied merely to en-
able the necessary code motion. In this example, to move
[a + b] out of the loop, it is sufficient to separate out the
offending path En, 0, P, Ez which is encapsulated in the
CMP region highlighted in the figure. As no opportunities
for value reuse remain, the resulting optimization of [a + b]
is complete. Because restructuring may generate irreducible
programs, as in Figure l(c), we also present a restructuring
transformation that maintains reducibility.

Hoisting the loop invariant [a + b] out of the loop was
prevented by the shape of control flow. Our experiments
show that the problem of removing loop invariant code (LI)

2

has not been sufficiently solved: a complete LI is prevented
for 73% of loop-invariant expressions. In some cases, a sim-
ple transformation may help. For example, [a + b] (but not
[c + d]) can be optimized by peeling off one loop iteration
and performing the traditional LI [l], producing the pro-
gram Figure l(b). In while-loops, LI can often be enabled
with more economical do-until conversion. The example pre-
sented does not allow this transformation because the loop
exit does not post-dominate the loop entry. In effect, our
restructuring PRE is always able to perform the smallest
necessary do-until conversion for an arbitrary loop.

Next, we optimize the computation [c+d] in Figure I(c).
Our optimization performs a complete PRE of [c + 6] by du-
plicating the shaded CMP region and subsequently perform-
ing the code motion (Figure l(d)). The resulting program
may cause too much code growth, depending on the sizes
of duplicated basic blocks. Assume the size of block S out-
weighs the run-time gains of eliminating the upper [c + 4.
In such a case, we select a smaller set of nodes to duplicate,
as shown in Figure l(e). When only block Q is duplicated,
the optimization is no longer complete; however, the op-
timization cost measured as code growth is justified with
the corresponding run-time gain. In Section 3.2, speculative
code motion is used to further reduce code duplication.

In summary, this paper makes the following contributions:

We present an approach for integrating two widely used
code transformation techniques, code motion and code
restructuring. The result is an algorithm for PRE that
is complete (i.e., it exploits all opportunities for value
reuse) and minimizes the code growth necessary to
achieve the code motion.

We show that restricting the algorithm to code motion
produces the traditional code-motion PRE [17, 241.

Profile-guided techniques for limiting the code growth
through integration of selective duplication and specu-
lative code motion are developed.

We develop a demand-driven frequency analyzer based
on a new elimination data-flow analysis framework.

The notion of approximate data-flow information is de-
lined and used to improve analyzer efficiency.

Our experiments compare the power of code-motion
PRE, speculative PRE, and complete PRE.

Section 2 presents the complete PRE algorithm. Section 3
describes profile-guided versions of the algorithm and Sec-
tion 4 presents the experiments. Section 5 develops the
demand-driven frequency analyzer. The paper concludes
with a discussion of related work.

2 Complete PRE

In this section, we develop an algorithm for complete re-
moval of partial redundancies (ComPRE) based on the inte-
gration of code motion and control flow restructuring. Code
motion is the primary transformation behind ComPRE. To
reduce code growth, restructuring is used only to enable
hoisting through regions that prevent the necessary code
motion. The smallest set of motion-blocking nodes is iden-
tified by solving the problems of availability and anticipabil-
ity on an expressive lattice. We also show that when control

flow restructuring is disabled, ComPRE becomes equivalent
to the optimal code-motion PRE algorithm [24].

An expression is partially redundant if its value is com-
puted on some incoming control flow path by a previous
expression. Code-motion PRE eliminates the redundancy
by hoisting the redundant computation along all paths until
it reaches an edge where the reused value is available along
either all paths or no paths. In the former case, the com-
putation is removed; in the latter, it is inserted to make the
original computation fully redundant. Unfortunately, code
motion may be blocked before such edges are reached. Nodes
that prevent the desired code motion are characterized by
the following set of conditions:

1. hoisting of expression e across node n is necessary when
. . . a) an optimization candidate follows n: there is a compu-

tation of e downstream from n on some path, and

b) there is a value-reuse opportunity for e at node n: a
computation of e precedes n on some path.

2. hoisting of e across n is disabled when

c) any path going through n does not compute e in the
source program: such path would be impaired by the
computation of e.

All three conditions are characterizable via solutions to the
data-flow problems of anticipability and availability, which
are defmed as follows.

Definition 1 Let p be any path from the start node to
a node n. The expression e is available at n along p iff
e is computed on p without subsequent redefinition of its
operands. Let r be any path from n to the end node. The
expression e is anticipated at n along r iff e is computed on
r before any of its operands are defined. The availability of
e at the entry of n w.r.t. the incoming paths is defined as:

1

Must all
AVAL[n, e] = No if e is available along no paths.

May some

Anticipability (ANTIC) is defined analogously.

Given this refined value-reuse definition, code motion is nec-
essary when a) and b) defined above hold mutually. Hence,

Necessary[n, e] = ANZ’ICi”[n, e] # NO A
AVAILi”[n, e] # NO.

Code motion is disabled when the condition c) holds:

Disabled[n, e] = ANTICi,[n, e] # Must A

AVAZLi,[n,e] # Most.

A node n prevents the necessary code motion for e when the
motion is necessary but disabled at the same time. By way
of conjunction, we get the code motion-preventing condition:

Preuented[n, e] = Necessary[n, e] A Disabled[n, e]
= ANZ’ICi,[n, e] = May A

AVAILi,[n, e] = May

The predicate Prevented characterizes the smallest set of
nodes that must be removed for code motion to be enabled.

3

i

. AVAILPMWI
o AVAIL=No

. ANrlc44ur
o ANTlC=No

motion becomes possible

i L-J
R ;

j code molion

III *. t ,...
a) code motion prevented by CMP region b) CMP region diluted via code duplication c) complete PRE of [a+b]

Figure 2: Removing obstacles to code motion via restructuring.

Definition 2 Code Motion Preventing region, denoted
CMP[e], is the set of nodes that prevent hoisting of a
computation e: CMP[e] = {n) ANTICin[n,e] = May A
AVAIL,,[n,e] = May}.

To enable code motion, ComPRE removes obstacles pre-
sented by the CMP region by duplicating the entire region,
as illustrated in Figure 2. The central idea is to factor the
May-availability that holds in the entire region into Must-
and No-availability, to hold respectively in each region copy.
An alternative view is that we separate within the region the
paths with Must- and No-availability. To achieve this, we
can observe that a) no region entry edge is May-available,
and b) the solution of availability within the region depends
solely on solutions at entry edges (the expression is neither
computed nor killed within the region). Hence, the desired
factoring can be carried out by attaching to each region
copy the subset of either Must or No entry edges, as shown
in Figure 2(c).

After the CMP is duplicated, the condition Prevented is
false on each node, enabling code motion. The ComPRE
algorithm, shown in Figure 3, has the following three steps:

1. Compute anticipability and availability. The problems
use the lattice L = ({T, Must, No, May}, A). Note that
the flow functions are distributive under the least com-
mon element operator A, which is defined using the
partial order C shown below. Distributivity property
implies that data-flow facts are not approximated at
control flow merge points. Intuitively, this is because
L is the powerset lattice of {No, Must}, which are the
only facts that may hold along an individual path.

kT\

The partial order E: No Must

\Ma;

2. Remove CMP regions via control flow restructuring.
Given an expression e, the CMP region is identified by
examining the data-flow solutions locally at each node.
Line 2 in Figure 3 duplicates each CMP node and line 3
adjusts the control flow edges, so that the new copy of
the region hosts the Must solution. Restructuring ne-

3.

cessitates updating data-flow solutions within the CMP
region (lines 4-12). While the ANTZC solution is not
altered, the previously computed AVAIL solution is in-
validated because some paths flowing into the region
were eliminated when region entry edges were discon-
nected. For the expression e, AVAIL becomes either
Must or No in the entire region. For other expressions,
the solution may become (conservatively) imprecise. In
other words, splitting a May path into Must/No paths
for e might have also split a May path for some other
expression. Therefore, line 6 resets the initial guess and
lines lo-12 recompute the solution within the CMP.

Optimize the program. The code motion transforma-
tion is carried out by replacing each original compu-
tation e with a temporary variable t,. The tempo-
rary is initialized with a computation inserted into each
No-available edge that sinks either into a May/Must-
availability path or into an original computation. The
insertion edge must also be Must-anticipated, to verify
hoisting of the original computation to the edge.

Theorem 1 (Completeness). ComPRE is optimal in
that it minimizes the number of computations on each path.

Proof. First, each original computation is replaced with
a temporary. Second, no computation is inserted where its
value is available along any incoming path. Hence, no addi-
tional computations can be removed. Cl

Within the domain of the Morel and Renviose code-
motion transformation, where PRE is accomplished by
hoisting optimization candidates (but not other statements)
[26], ComPRE achieves minimum code growth.’ This fol-
lows from the fact that after CMP restructuring, no program
node can be removed or merged with some other node with-
out destroying any value reuse, as shown by the following
observations. Prior to Step 2, each node n may belong to
CMP regions of multiple offending expressions. Duplication
of n during restructuring can be viewed as partitioning of
control flow paths going through n: each resulting copy of
n is a path partition that does not contain both a Must-
and a No-available path, for any offending expression. The

‘Outside this domain, further code growth reduction is possible
by moving instructions out of the CMP before its duplication.

4

Step 1: Data-flow analysis: anticipability, availability.

s Input: control flow graph G = (N,E,start,end),
each node contains a single assignment z := e,

s Comp(n, e): node n computes an expression e,

s Transp(n,e): node n does not assign any variable in e,

. boundary conditions: for each expression e
ANT/C,,t[end, e] := AVA/L;,[start, e] := No,

s initial guess: set all vectors to TS, where S is
the number of candidate expressions. Solve iteratively.

if Comp(n, e),

ANT/C;,[n,e] :=
if -Comp(n, e)A
7 Transp(n, e),

ANT/C,,t[n, e] otherwise.

ANTK.,,t[n,e] := A ANT/C;,[m, e]
mr+wx(n)

AVA/L;Jn,e] := /j AVAbt[m, e]

mCpred(n)

AVA/LOUt[n, e] := fz(AVAU;,[n, e])

if Comp(n, e) A Transp(n, e),
if 7 Transp(n, e).
otherwise.

Step 2: Remove CMP regions: control flow restructuring.

s modify G so that no CMP nodes exists,
for any expression e.

1 for each expression e do
duplicate all CMP[e] nodes to create a copy of the CMP.
n~“$, is a copy of node n hosting AVAIL = Must.

2 N := N u {rz~“~*] n E CMP[e]}
attach new nodes to perform the restructuring

3 E =((E u {(wurt, u) I (n,u) E E A u Z CMf’[el) U
u, n,~“$~) 1 (u, n) 6 E A AVA/L,,t[u, e] = Must} U

~[u”~~k’!?i’! ~?~!$z]?!l~AlL..~[u, e] = Must}
update data-flow solutions within CMP and its copy

4 for each node n E CMP[e] do
5 ANT/C;,[nM,,J := ANTIC;&]

ANT/C,,&,,& := ANT/C,,&]
6 AVA/L;,[nM,,J := AVA/L;,[n] := TS

AVA/L,,t[nM,,t] := AVAIL,,&] := TS
7 AVA/L;J~M~~~, e] := AVAIL,,~[~M,,~,~] := Must
8 AVAIL;&, e] := AVAIL,,t[n, e] := No
9 end for

reanalyze availability inside both CMP copies
10 for each expression e’ not yet processed do
11 re-compute AVA/L(n, e’], AVA/L.[~M~~~, e’], n E CMP[e]
12 end for
13 end for

Step 3: Optimize: code motion.

Insert[(n, m), e] e ANTIC;,[m, e] = Must A

AVA/L,,t[n, e] = No A

(AVA/L;,[m, e] = May V Comp(m, e))

Replace[n, e] ts Comp(n, e)

Figure 3: ComPRE: the algorithm for complete PRE.

following properties of Step 2 can be verified: 1) the number
of path partitions (node copies) created at a given node is
independent of the order in which expressions are considered
(in line l), 2) each node copy is reachable from the start
node, and 3) for any two copies of n there is an expression e
such that remerging the two copies and their incoming paths
will prevent code motion of e across the resulting node.

To compare ComPRE with a restructuring-only PRE,
we consider PoePRE, a version of Steffen’s complete algo-
rithm [30] that includes minimization of duplicated nodes
but is restricted in that only expressions are eliminated (as
is the case in ComPRE). Elimination is carried out using a
temporary, as in Step 3.

Theorem 2 ComPRE does not create more new nodes
than PoePRE.

Proof outline. The proof is based on showing that the
PoePRE-optimized program after minimization has no less
nodes than the same program after CMP restructuring. It
can be shown that, given an original node n, for any two
copies of n created by CMP restructuring, there are two
distinct copies of n created by PoePRE such that the mini-
mization cannot merge them without destroying some value
reuse opportunity.

In fact, PoePRE can be expressed as a form of Com-
PRE on a (non-strictly) larger region: for each computation
e, PoePRE duplicates {nlAiVTICin[n, e] E {Must, May} A
AVAZLi,[n, e] = May}, which is a superset of CMP[e].
Algorithm complexity. Data-flow analysis in Step 1 and
in lines lo-12 requires O(NS) steps, where N is the flow
graph size and S the number of expressions. The restructur-
ing in Step 2, however, may cause N to grow exponentially,
as each node may need to be split for multiple expressions.
Because in practice a constant-factor code-growth budget is
likely to be defined, the asymptotic program size will not
change. Therefore, the running time of Step 2, which dom-
inates the entire algorithm, is O(NS’).

2.1 Optimal Code-Motion PRE

Besides supporting a complete PRE, the notion of the CMP
region also facilitates an efficient formulation of code-motion
PRE, called CM-PRE. In this section, we show that our com-
plete algorithm can be naturally constrained by prohibiting
the restructuring, and that such modification results in the
Same optimization as the optimal motion-only PRE [17, 241.

In comparison to ComPRE, the constrained CM-PRE
algorithm bypasses the CMP removal; the last step (trans-
formation) is unchanged (Figure 3). The first step (data-
flow analysis) is modified with the goal to prevent hoisting
across a node n when such motion would subsequently be
blocked by a CMP region on each path flowing into node
n. First, anticipability is computed as in ComPRE. Second,
availability is modified to include detection of CMP nodes.
When a CMP node is found, instead of propagating forward
May-availability, the solution is adjusted to No. Such ad-
justment masks those value reuse opportunities that cannot
be exploited without restructuring. The result of masking is
that code motion is prevented from entering paths that cross
a CMP region (see predicate Insert in Step 3 of Figure 3).

The modified flow function for the AVAIL problem fol-
lows. The third line detects a CMP node. No-availability
is now extended to mean that the value might be available

5

along some path but value reuse is blocked by a CMP region
along that path.

l

Must if Comp(n, e) A 7hrwp(n, e),

fit(x) = ;;
if -Transp(n, e),
if z = May A ANTZCi”[n, e] = May,

X otherwise.

Given a maximal fixed point solution to redefined AVAIL,
CM-PRE performs the unchanged transformation phase
(Figure 3, Step 3). It is easy to show that the resulting
optimization is complete under the immutable shape of the
control flow graph. The proof is analogous to that of Theo-
rem 1: alI original computations are removed and no compu-
tation has been inserted where an optimization opportunity
not blocked by a CMP exists.

Besides exploiting all opportunities, a PRE algorithm
should guarantee that the live ranges of inserted temporary
variables are minimal, in order to moderate the register pres-
sure. The live range is minimal when the insertion point
specified by the predicate Insert cannot be delayed, that is,
moved further in the direction of control flow.

Theorem 3 (Shortest live ranges). Given the CMP-
restructured (or original) control flow graph, ComPRE
(CM-PRE) is optimal in that it minimizes the live range
lengths of inserted temporary variables.

Proof. An initialization point Insert cannot be delayed ei-
ther because it would become partially redundant, destroy-
ing completeness, or because its temporary variable is used
in the immediate successor. Cl

Existing PRE algorithms find the live-range optimal
placement in two stages. First, computations are hoisted as
high as possible, maximizing the removal of redundancies.
Later, the placement is corrected through the computation
of delayability [24]. Our formulation specifies the optimal
placement directly, as we never hoist into paths where a
blocking CMP will be subsequently encountered.

However, note that after the above redefinition, fz is no
longer monotone: given ANTIC,,[n,e] = May, $1 = May,
xz = Must, we have x1 C 22 but fG(xi) = No e fi(xs) =
Must. Although a direct approach to solving such system
of equations may produce conservatively imprecise solution,
the desired maximal fixed point is easily obtained using bit-
vector GEN/KILL operations as follows.

First, compute ANTIC as in Figure 3. Second, solve the
well-known availability property, denoted AVOll, which holds
when the expression is computed along all incoming paths:
AV.11 ($ A VA IL = Must. Finally, we compute AV,,,, which
characterizes some-paths availability and also encapsulates
CMP detection: AV,,,, H AVAIL # No. The pair of solu-
tions (AVOWS, AXome) can be directly mapped to the desired
solution of AVAIL. The GEN and KILL sets [l] for the
AV,,,, problem are given below. The value of the initial
guess is false, the meet operator is the bit-wise or.

GEN = CompA Transp
KILL = -Transp V (AVAIL # Must A ANTIC # Must)

-Transp v (-AVolt A ANTIC # Most)

The condition (AVAIL # Must A ANTIC # Must) detects
the CMP node. While it is less strict than that in Defini-
tion 2, it is equivalent for our purpose, as it is safe to kill

:~.~~~.~~ CMP[atb]
co@d /or mdudbilily .”

0
s/rig/e loop
entry node

,_,....I H-”

I? 9 cd

s

c!- 1
a) source program b) reducible ComPFUl of [a+b]

Figure 4: Reducible restructuring. (See Figure l(c))

when there is no reuse (AVAIL = No) or when there is no
hoisting (ANTIC = No). The less strict condition is bene-
ficial because computing and testing Must requires one bit
per expression, while two bits are required for May. Con-
sequently, we can substitute ANTIC # Must with TAN,,,,,
where AN,!1 is defined analogously to AVOl,. As a result,
we obtain the same implementation complexity as the algo-
rithms in [17, 241: three data-flow problems must be solved,
each requiring one bit of solution per expression.

In conclusion, the CMP region is a convenient abstrac-
tion for terminating hoisting when it would unnecessarily
extend the live ranges. It also provides an intuitive way of
explaining the shortest-live-range solution without applying
the corrective step based on delayability [24]. Furthermore,
the CMP-based, motion-only solution can be implemented
as efficiently as existing shortest-live-range algorithms.

2.2 Reducible Restructuring

Duplicating a CMP region may destroy reducibility of the
control flow graph. In Figure l(c), for example, ComPRE
resulted in a loop with two distinct entry nodes. Even
though PoePRE preserves reducibility on the same loop
(Figure l(b)), like other restructuring-based optimizations
[4, 10, 301, it is also plagued by introducing irreducibility.
One way to deal with the problem is to perform all opti-
mizations that presuppose single-entry loops prior to PRE.
However, many algorithms for scheduling (which should fol-
low PRE) rely on reducibility.

After ComPRE, a reducible graph can be obtained with
additional code duplication. An effective algorithm for nor-
malizing irreducible programs is given in [23]. To suppress
an unnecessary invocation of the algorithm, we can employ
a simple test of whether irreducibility may be created af-
ter a region duplication. The test is based upon examining
only the CMP entry and exit edges, rather than the entire
program. Assuming we start from a reducible graph, re-
structuring will make a loop L irreducible only if multiple
CMP exit edges sink into L, and at least one region entry
is outside L (i.e., is not dominated by L’s header node). If
such a region is duplicated, target nodes of region exit edges
may become the (multiple) loop entry nodes. Consider the

6

loop in Figure 4(a). Two of the three exits of CMp[a + b]
fall into the loop. After restructuring, they will become loop
entries, as shown in Figure l(c).

Rather than applying a global algorithm like [23], a
straightforward approach to make the affected loop re-
ducible is to peel off a part of its body. The goal is to extend
the replication scope so that the region exits sink onto a sin-
gle loop node, which will then become the new loop entry.
Such a node is the closest common postdominator (within
the loop) of all the offending region exits and the original
loop entry. Figure 4(a) highlights node c+d whose duplica-
tion after CMP restructuring will restore reducibility of the
loop. The postdominator of the offending exits is node Q,
which becomes the new loop header.

3 Profile-Guided PRE

While the CMP region is the smallest set of nodes whose
duplication enables the desired code motion, its size is often
prohibitive in practice. In this section, relying on the pro-
file to estimate optimization benefit, complete PRE is made
more practical by avoiding unprofitable code replication.

First, we extend ComPRE by inhibiting restructuring in
response to code duplication cost and the expected dynamic
benefit. The resulting profile-guided algorithm duplicates a
CMP region only when the incurred code growth is justi-
fied by a corresponding run-time gain from eliminating the
redundancies. Second, the notion of the CMP region is com-
bined with profiling to formulate a speculative code-motion
PRE that is guaranteed to have a positive dynamic effect,
despite impairing certain paths. The third algorithm in-
tegrates both restructuring and speculation and selects a
profitable subgraph of the CMP for each. While profitably
balancing the cost and benefit under a given profile is NP-
hard, the empirically small number of hot program paths
promises an efficient algorithm [4, 191. Finally, to support
profile guiding, we show how an estimate of the run-time
gain thwarted by a CMP region can be obtained using edge
profiles, frequency analysis [27], or path profiles [7].

3.1 Selective Restructuring

We model the profitability of duplicating a CMP region R
with a cost-benefit threshold predicate T(R), which holds
if the region optimization benefit exceeds a constant mul-
tiple of the region size. Our metric of benefit is the dy-
namic amount of computations whose elimination will be
enabled after R is duplicated, denoted Rem(R). That is,
T(R) = Rem(R) > c .size(R). When T(R) = true for each
region R, the algorithm is equivalent to the complete Com-
PRE. When T(R) = false for each region, the algorithm
reduces to the code-motion-only CM-PRE. Obviously, pred-
icate T determines only a sub-optimal tradeoff between ex-
ploiting PRE opportunities and limiting the code growth.
In particular, it does not explicitly consider the instruction
cache size and the increase in register pressure due to intro-
duced temporary variables. We have chosen this form of T
in order to avoid modeling complex interactions among com-
piler stages. In the implementation, T is supplemented with
a code growth budget (for example, in [6], code is allowed
to grow by about 20%).

First, we present an algorithm for computing the opti-
mization benefit Rem(R). The method is based on the fact

7 end for
8 recompute the AVAlL solution, using fi from Section 2.1
Step 3: Optimize: code motion. (unchanged)

Step 1: compute anticipability and availability. (unchanged)
Step 2: Partial restructuring: remove profitable CMP regions.
1 for each computation e do
2 for each disconnected subregion Ri of CMP[e] do

build the largest connected subregion
3 select a node from R and

collect all connected CMP nodes
determine optimization benefit Rem(R;)

4 carry out frequency analysis of AVAlL on R;
if profitable, duplicate (lines 2-12 of Fig. 3)

5 if T(R;) then duplicate Ri
6 end for

Figure 5: PgPRE: profile-guided version of ComPRE.

that the CMP scope localizes the entire benefit thwarted by
the region: to compute the benefit, it suffices to examine
only the paths within the region. Consider an expression
e and its CMP region R = CMP[e]. For each region ezit
edge a = (n, m) (i.e., n E CMP[e], m e CMP[e]), the value
of ANTICin[m,e] is either Must or No, otherwise m would
be in CMP[e]. Let EzitMurt(R) be the set of the Must exit
edges. The dynamic benefit is derived from the observation
that each time such an edge is executed, any outgoing path
contains exactly one computation of e that can be eliminated
if: i) R is duplicated and ii) the value of e is available at the
exit edge. Let ex(a) be the execution frequency of edge a
and p(AVAI&[n, e] = Must) the probability that the value
e is available when n is executed. After the region is dupli-
cated, the expected benefit connected with the exit edge a
is ex(a).p(AVAIL,,t[n, e] = Must), which corresponds to the
number of computations removed on all paths starting at a.
The benefit of duplicating the region R is thus the sum of
all exit edge benefits 0

Rem(R) = c ex(a).p(AVA&,t[n, e] = Must).
o=(n,m)EEsitr~,,,(R)

The probability p is computed from an edge profile using
frequency analysis [27]. In the frequency domain, the prob-
ability of each data-flow fact occurring, rather than the
fact’s mere boolean meet-over-all-paths existence, is com-
puted by incorporating the execution probabilities of control
flow edges into the data-flow system. Because the frequency
analyzer cannot exploit bit-vector parallelism, but instead
computes data-flow solutions on floating point numbers, it
is desirable to reduce the cost of calculating the probabili-
ties. The CMP region lends itself to effectively restricting
the scope of the program that needs to be analyzed. Because
all region entry edges are either Must- or A/o-available, the
probability of e being available on these edges are 1 and 0,
respectively. Therefore, the probability p at any exit edge
can only be influenced by the paths within the region. As
a result, it is sufficient to perform the frequency analysis
for expression e on CMP[e], using entry edges as a precise
boundary condition for the CMP data-flow equation system.
In Section 5 we reduce the cost of frequency analysis through
a demand-driven approach.

The algorithm (PgPRE) that duplicates only profitable
CMP regions is given in Figure 5. It is structured as its
complete counterpart, ComPRE: after data-flow analysis,
we proceed to eliminate CMP regions, separately for each

7

expression. While in ComPRE it was sufficient to treat all
nodes from a single CMP together, selective duplication ben-
efits from dividing the CMP into disconnected subregions,
if any exist. Intuitively, hoisting of a particular expression
may be prevented by multiple groups of nodes, each in a
different part of the procedure. Therefore, line 3 groups
nodes from a connected subregion and frequency analysis
determines the benefit of the group (line 4). After all prof-
itable regions are eliminated, the motion-blocking effect of
CMP regions remaining in the program must be captured.
All that is needed is to apply the CM-PRE algorithm from
Section 2.1 on the improved control flow graph. Blocked
hoisting is avoided by recomputing availability (line 8) us-
ing the re-defined flow function fz from Section 2.1, which
asserts No-availability whenever a CMP is detected.

3.2 Speculative Code-Motion PRE

In code-motion PRE, hoisting of a computation e is blocked
whenever e would need to be placed on a control flow path p
that does not compute e in the original program. Such spec-
ulative code motion is prevented because executing e along
path p could a) raise spurious exceptions in e (e.g., over-
flow, wrong address), and b) outweigh the dynamic benefit
of removing the original computation of e. The former re-
striction can be relaxed for instruction that cannot except,
leading to safe speculation. New processor generations will
support control-speculative instructions which will suppress
raising the exception until the generated value is eventually
used, allowing unsafe speculation [25]. The latter problem
is solved in [20], where an aggressive code-motion PRE nav-
igated by path profiles is developed. The goal is to allow
speculative hoisting, but only into such paths on which dy-
namic impairment would not outweigh the benefit of elimi-
nating the computation from its original position.

Next, we utilize the CMP region to determine i) the prof-
itability of speculative code motion and ii) the positions of
speculative insertion points that minimize live ranges of tem-
porary variables. Figure 6 illustrates the principle of specu-
lative PRE [20]. Instead of duplicating the CMP region, we
hoist the expression into all No-available entry edges. This
makes all exits fully available, enabling complete removal of
original computations along the I\/lust exits. In our example,
[o + 51 is moved into the No-available region entry edge ez.
This hoisting is speculative because [a+b] is now executed on
each path going through ez and es, which previously did not
contain the expression. The benefit is computed as follows.
The dynamic amount of computations is decreased by the
execution frequency eE(eq) of the Must-anticipable exit edge
(following which a computation was removed), and increased
by the frequency ex(ez) of the No-available entry edge (into
which the computation was inserted). Since speculation is
always associated with a CMP region, we are able to obtain
a simple (but precise) profitability test: speculative PRE of
an expression is profitable if the total execution frequency
of Must-anticipable exit edges exceeds that of No-availaible
entry edges. Note that the benefit is calculated locally by
examining only entry/exit edges, and not the paths within
the region, which was necessary in selective restructuring.
Hence, the speculative benefit is independent from branch
correlation and edge profiles are as precise as path profiles
in the case of speculative-motion PRE. As far as temporary
live ranges are concerned, insertion into entry edges results
in a shortest-live-range solution, and Theorem 3 still holds.

i l AVAlL=Mw
0 AVAIL=No

. ANTIc=Mur
0 ANTlC=No

Optimization benefit:

-ex(eZ) - Inssrtion
iex(e4) - removal

exh4J-exte2J
i

.I ., I

Figure 6: Speculative code-motion PRE.

3.3 Partial Restructuring, Partial Speculation

In Section 3.1, edge profiles and frequency analysis were
used to estimate the benefit Rem of duplicating a region.
An alternative is to use path profiles [3, 71, which are con-
venient for establishing cost-benefit optimization trade-offs
[4, 19,201. To arrive at the value of the region benefit with a
path profile, it is sufficient to sum the frequencies of Must-
Most paths, which are paths that cross any region entry
edge that is Must-available and any exit edge that is Must-
anticipated. These are precisely the paths along which value
reuse exists but is blocked by the region. While there is an
exponential number of profiled acyclic paths, only 5.4% of
procedures execute more than 50 distinct paths in spec96
[19]. This number drops to 1.3% when low-frequency paths
accounting for 5% of total frequency are removed. Since we
can afford to approximate by disregarding these infrequent
paths, summing individual path frequencies constitutes a
feasible algorithm for many CMP regions. Furthermore,
because they encapsulate branch correlation, path profiles
compute the benefit more precisely than frequency analysis
based on correlation-insensitive edge profiles.

Moreover, the notion of individual CMP paths leads to a
better profile-guided PRE algorithm. Considering the CMP
region as an indivisible duplication unit is overly conserva-
tive. While it may not be profitable to restructure the entire
region, the region may contain a few paths Must-Must paths
that are frequently executed and are inexpensive to dupli-
cate. Our goal is to hnd the largest subset (frequency-wise)
of region paths that together pass the threshold test T(R).
Similarly, speculative hoisting into all entry edges may fail
the profitability test. Instead, we seek to find a subset of
entry edges that maximizes the speculative benefit. In this
section, we show how partial restructuring and speculation
are carried out and combined.

Partial speculation selects for speculative insertion only a
subset Z of the No region entries. The selection of entries in-
fluences which subset R of region exits will be able to exploit
value reuse. R consists of all Must exits that will become
Must-available due to the insertions in I. The rationale be-
hind treating entries separately is that some entries may en-
able little value reuse, hence they should not be speculated.
Note that No entry edges are the only points where specu-
lative insertion needs to be considered: insertions inside the
region would be partially redundant; insertions outside the
region would extend the live-ranges. Partial speculation is
optimal if the difference of total frequencies of R and Z is
maximal (but non-negative). Although this problem is NP-

8

speculation
‘L. pro/&.&
r no/ proli8bL9

‘L CMP([c+d]) No-path peeled oft ...A

a) source progmm b) speculation made profitable

Figure 7: Integrating speculation and restructuring.

hard, the small number of entry edges observed in practice
(typically less than 10) makes the problem tractable. An
interesting observation is that to determine optimal partial
speculation, a) edge profiles are not inferior to path profiles
and b) frequency analysis is not required. Therefore, to ex-
ploit the power of path profiles, partial restructuring, rather
than (speculative) code motion alone, must be used. This
becomes more intuitive once we realize that without control
flow restructuring, one is restricted to consider only an in-
dividual edge (but not a path) for expression insertion and
removal. To compare the CMP-based partial speculation
with the speculative PRE in [20], we show how to efficiently
compute the benefit by defining the CMP region and how to
apply edge profiles with the same precision as path profiles.
In acyclic code, we achieve the same precision; in cyclic code,
we are more precise in the presence of loop-carried reuse.

The task of partial restructuringis to localize a subgraph
of the CMP that has a small size but contains many hot
Must-Must paths. By duplicating only such a subregion,
we are effectively peeling off only hot paths with few in-
structions. In Figure l(e), only the (presumably hot) path
through the node Q was separated. Again, the problem of
finding an optimal subregion, one whose benefit is maxi-
mized but passes the T(R) predicate and is smaller than a
constant budget, is NP-hard. However, the empirically very
small number of hot paths promises an efficient exhaustive-
search algorithm.

Integrating partial speculation and restructuring offers
additional opportunities for improving the cost-benefit ra-
tio. We are no longer restricted to peeling off hot Must-Must
paths and/or selecting No-entries for speculation. When
the high frequency of a No entry prevents speculation, we
can peel off a hot No-available path emanating from the
entry, thereby reducing entry edge frequency and allowing
the speculation, at the cost of some code duplication. Fig-
ure 7(a) shows an example program annotated with an edge
profile. Because peeling hot Must-Must paths from the high-
lighted CMP([c+d) would duplicate all blocks except S, we
try speculation. To eliminate the redundancy at the CMP
exit edge Y with frequency ex(Y) = 100, a computation

must be inserted into No-entries B and C. While B is low-
frequency (lo), C is not (loo), hence the speculation is dis-
advantageous, as ez(Y) = 100 < ez(B) + ez(C) = 10 + 100.
Now assume that the exit branch in Q is strongly biased and
the path C, Q, X has a frequency of 100. That is, after edge
C is executed, the execution will always follow to X. We
can peel off this No-available path, as shown in (b), effec-
tively moving the speculation point C off this path. After
peeling, the frequency of C becomes 0 and the speculation
is profitable, ez(Y) = 100 > ez(B) + G(C) = 10 + 0.

4 Experiments

We performed the experiments using the HP Labs VLIW
back-end compiler elcor, which was fed specs5 benchmarks
that were previously compiled, edge-profiled, and inlined
(only specssint) by the Impact compiler. Table 1 shows
program sizes in the total number of nodes and expres-
sions. Each node corresponds to one intermediate state-
ment. Memory requirements are indicated by the column
max space, which gives the largest nodes-expressions product
among all procedures. The running time of our rather inef-
ficient implementation behaved quadratically in the number
of procedure nodes; for a procedure with 1,000 nodes, the
PRE time was about 5 seconds on PA-8000. Typically, the
complete PRE ran faster than the subsequent dead code
elimination.
Experiment 1: Disabling effects of CMP regions.
The column labeled optimizable gives the percentage of ex-
pressions that reuse value along some path; 13.9% of (static)
expressions have partially redundant computations. The
next column prevented-CMP reports the percentage of op-
timizable expressions whose complete optimization by code
motion is prevented by a CMP region. Code-motion PRE
will fail to fully optimize 30.5% of optimizable expressions.
For comparison, column prevented-POE reports expressions
that will require restructuring in PoePRE.
Experiment 2: Loop invariant expressions. Next, we
determined what percentage of loop invariant (LI) expres-
sions can be removed from their invariant loops with code
motion. The column loop invar shows the percentage of op-
timizable expressions that pass our test of loop-invariance.
The following column gives the percentage of LI expressions
that have a CMP region; an average of 72.5% of LI compu-
tations cannot be hoisted from all enclosing invariant loops
without restructuring.
Experiment 3: Eliminated computations. The col-
umn global CSE reports the dynamic amount of computa-
tions removed by global common subexpression elimination;
this corresponds to all full redundancies. The column com-
plete PRE gives the dynamic amount of all partially redun-
dant statements. The fact that strictly partial redundancies
contribute only 1.7% (the difference between complete PRE
and global CSE) may be due to the style of Impact’s inter-
mediate code (e.g., multiple virtual registers for the same
variable). We expect a more powerful redundancy analysis
to perform better. Figure 8 plots the dynamic amount of
strictly partial redundancies removed by various PRE tech-
niques. Code-motion PRE yields only about half the benefit
of a complete PRE. Furthermore, speculation results in near-
complete PRE for most benchmarks, even without special
hardware support (i.e., safe speculation). Speculation was
carried out on the CMP as whole. Note that the graph ac-
counts for the dynamic impairment caused by speculation.

9

Table 1: Experience with PRE based on control flow restructuring.

Figure 8: Benefit of various PRE algorithms: dynamic op-
count decrease due to strictly partial redundancies. Each
algorithm also completely removes full redundancies.

The measurements indicate that an ideal PRE algorithm
should integrate both speculation and restructuring. Using
restructuring when speculation would waste a large portion
of benefit will provide an almost complete PRE with small
code growth.
Experiment 4: Code growth. Finally, we compare the
code growth incurred by ComPRE and PoePRE. To make
the experiment feasible, we limited procedure size by 3,000
nodes and made the comparison only on procedures that did
not exceed the limit in either algorithm. Overall, ComPRE
created about three times less code growth than PoePRE.

5 Demand-Driven Frequency Analysis

Not amenable to bit-vector representation, frequency anal-
ysis [27] is an expensive component of profile-guided opti-
mizers. We have shown that ComPRE allows restricting the
scope of frequency analysis within the CMP region without
a loss of accuracy. However, in large CMP regions the cost
may remain high, and path profiles cannot be used as an
efficient substitute when numerous hot paths fall into the
region. One method to reduce the cost of frequency anal-
ysis is computing on demand only the subset of data flow
solution that is needed by the optimization.

In this section, we develop a demand-driven frequency
analyzer which reduces data-flow analysis time by a) exam-
ining only nodes that contribute to the solution and, option-
ally, b) terminating the analysis prematurely, when the solu-
tion is determined with desired precision. Besides PRE, the
analyzer is suitable for optimizations where acceptable run-
ning time must be maintained by restricting analysis scope,
as in run-time optimizations [5] or interprocedural branch
removal [lo].

Frequency analysis computes the probability that a data-
flow fact will occur during execution. Therefore, the proba-
bility Yattice” is an infinite chain of real numbers. Because
existing demand-driven analysis frameworks are built on it-
erative approaches, they only permit lattices of finite size
[18] or finite height [22, 291 and hence cannot derive a fre-
quency analyzer. We overcome this limitation by designing
the demand-driven analyzer based upon elimination data-
flow methods [28] whose time complexity is independent of
the lattice shape. We have developed a demand-driven anal-
ysis framework motivated by the Allen-Cocke interval elim-
ination solver [2]. Next, using the framework, a demand-
driven algorithm for general frequency data-flow analysis
was derived [8]. We present here the frequency solver spe-
cialized for the problem of availability.
Definitions. Assume a forward data-flow problem specified

10

with an equation system

(X:,...,X;

= jn(n7%EpPed(n)xm)
= (fm m~pred(n)sn)r.. . 1 fns(n,xd)

Vector xn = (Xi,. . . , xi) is the solution for a node n, vari-
able x”, denotes the fact associated with expression e. The
equation system induces a dependence graph EG whose
nodes are variables xc

an edge (z&,
and edges represent flow functions

f i: zz) exists if the value of zz is computed
from 2;, m E pred(n). The graph EG is called an exploded
graph [22]. The data flow problems underlying ComPRE
are separable, hence zz only depends on x&,. In value-based
PRE [9], constant propagation [29], and branch correlation
analysis [lo], edges (z$, xz), d # e, may exist, complicat-
ing the analysis. The analyzer presented here handles such
general exploded graphs.
Requirements. The demand-driven analyzer grew out of
four specific design requirements:

1. Demand-driven. Rather than computing x, for each
node n, we determine only the desired xk, i.e. the so-
lution for expression e at a node n. Analysis speed-
up is obtained by further requiring that only nodes
transitively contributing to the value of xf, are vis-
ited and examined. To guarantee worst-case behavior,
when solutions for all EG nodes are desired, the solver’s
time complexity does not exceed that of the exhaustive
Allen-Cocke method, O(N’), where N is the number
of EG nodes.

2. Lattice-independent. The amount of work per node
does not depend on lattice size, only on the EG shape.

3. On-line. The analysis is possible even when EG is not
completely known prior to the analysis. To save time
and memory, our algorithm constructs EG as analysis
progresses. The central idea of on-demand construc-
tion is to determine a flow function fi only when its
target variable xz is known to contribute to the desired
solution. Furthermore, the solver must produce the so-
lution even when EG is irreducible, which can happen
even when the underlying CFG is reducible.

4. Informed. In the course of frequency analysis, the con-
tribution weight of each examined node to the desired
solution must be known. This information is used to
develop a version of the analyzer that approximates
frequency by disregarding low-contribution nodes with
the goal of further restricting analysis scope.

The ezhahaustiue interval data-flow analysis [2] computes
xn for all n as follows. First, loop headers are identified to
partition the graph into hierarchic acyclic subregions, called
intervals. Second, forward substitution of equations is per-
formed within each interval to express each node solution in
terms of its loop header. The substitution proceeds in the
interval order (reverse postorder), so that each node is vis-
ited only once. Third, mutual equation dependences across
loop back-edges are reduced with a loop breaking rule I,:
xn = S(Xn,Xk) + xn = L(g(x*)). The second and third
step remove cyclic dependences from all innermost loops in
EG; they are repeated until all nesting levels are processed
and all solutions are expressed in terms of the start node,
which is then propagated to all previously reduced equations
in the final propagation phase [2].

The demand-driven interval analysis substitutes only
those equations and reduces only those intervals on which
the desired 2: is transitively dependent. To find the relevant
equations, we back-substitute equations (flow functions) into
the right-hand side of x: along the EG edges. The edges
are added to the exploded graph on-line, whenever a new
EG node is visited, by first computing the flow function of
the node and then inserting its predecessors into the graph.

As in [2], we define an EG interval to be a set of nodes
dominated by the sink of any back-edge. In an irreducible
EG, a back-edge is each loop edge sinking onto a loop entry
node. Because the EG shape is not known prior to analysis,
on-line identification of EG intervals relies only on the struc-
ture of the underlying control flow graph. When the CFG
node of an EG node z is a CFG loop entry, then x may
be an EG loop entry, and we conservatively assume it is an
interval head. Within each interval, back-substitutions are
performed in reversed interval order. Such order provides
lattice-independence, as each equation needs to be substi-
tuted only once per interval reduction, and there are at most
N reductions. To find interval order on an incomplete EG,
we observe that within each EG interval, the order is con-
sistent with the reverse postorder CFG node numbering.

To loop-break cyclic dependencies along an interval back-
edge, the loop is reduced before we continue into the preced-
ing interval, recursively invoking reductions of nested loops.
This process achieves demand analysis of relevant intervals.
The desired solution is obtained when z”, is expressed exclu-
sively using constant terms. At this point, we have also iden-
tified an EG subgraph that contributes to zi, and removed
from it all cyclic dependences. A forward substitution on the
subgraph will yield solutions for all subgraph nodes which
can be cached in case they are later desired (worst-case run-
ning time). This step corresponds to the propagation phase
in [2], and to caching in [18, 291.

The framework instance calculates the probability of ex-
pression e being available at the exit of node n during the
execution: xc - ,, - p(AVAIL,,t[n,e] = Must) E R. Let p(a)
denote the probability of edge a being taken, given its sink
node is executed. We relate the edge probability to the sink
(rather than the source, as in exhaustive analysis [27]) be-
cause the demand solver proceeds in the backward direction.
The frequency flow function returns probability 1 when the
node computes the expression e and 0 when it kills the ex-
pression. Otherwise, the sum of probabilities on predeces-
sors weighted by edge execution probabilities is returned.
Predicates Camp and Transp are defined in Figure 3.

I

1.0 if Comp(n, e) A Transp(n, e),
0.0 if TTransp(n, e),

a
x, =

I

c p((m, n)).xk otherwise.
nEpred(n)

The demand frequency analyzer is shown in Figure 9.
Two data structures are used : sol accumulates the con-
stant terms of the desired probability r:; rhs is the current
right-hand side of xz after all back-substitutions. The vari-
ables sol and rhs are organized as a stack, the top being used
in the currently analyzed interval. The algorithm treats rhs
both as a symbolic expression and as a working set of pend-
ing nodes (or yet unsubstituted variables, to be precise). For
example, the value of rhs may be 0.25*m+0.4*k, where the
weights are contributions of nodes m and k to the desired
probability z”,. If e is never available at m, and is available

11

at k with probability 0.5, then it is available at node n with
probability 0.25 * 0 + 0.4 * 0.5 = 0.2. More formally, the con-
tribution weight of a node represents the probability that a
path from that node to n without a computation or a kill of
the expression e will be executed.

First, the rhs is set to 1.0 * n in line 1. Then, flow func-
tions are back-substituted into rhs in post-order (line 3).
Substitutions are repeated until all variables have been re-
placed with constants (line 2), which are accumulated in
sol. If a substituted node z computes the expression e,
its weight rhs[x] is added to the solution and z is removed
from the rhs by the assignment rhs[z] := 0.0 (line 6). In the
simple case when x is not a loop entry node (line 12), its
contribution c is added to each predecessor’s contribution,
weighted by the edge probability p. If z is a loop entry node
(line 8), then before continuing to the loop predecessor, all
self-dependences of x are found in a call to reduceloop.
The procedure reduceloop mimics the main loop (lines I-
5) but it pushes new entries on the stacks to initiate a reduc-
tion of a new interval and also marks the loop entry node
to stop when back-substitution collected cyclic dependences
along all cyclic paths on the back-edge edge (y,x). The
result of reduceloop is returned in a sol-&s pair (s,r),
where s is the constant and r the set of unresolved vari-
ables, e.g. x = r + s = 0.32 + 0.1. If EG is reducible, the
set r contains only x. The value r[x] = 0.3 is the weight
of the z’s self-dependence, which is removed by the loop
breaking rule derived for frequency analysis from the sum
of infinite geometric sequence (lines 10-11). After the al-
gorithm terminates, the stack visited (line 14) specifies the
order in which forward substitution is performed to cache
the results. Also shown in Figure 9 is an execution trace
of the demand-driven analysis. It computes the probability
that the expression computed in nodes F, H, and killed in
A, D, is available at node C. All paths where availability
holds are highlighted.
Approximate Data-Flow Analysis. Often, it is neces-
sary to sacrifice precision of the analysis for its speed. We
define here a notion of approximate data flow information,
which allows the analyzer a predetermined degree of con-
servative imprecision. For example, given a 5% imprecision
level (e = 0.05), the analyzer may output “available: 0.7,”
when the maximal fixed point solution is “available: 0.75.”
The intention of permitting underestimation is to reduce the
analysis cost. When the analyzer is certain that the contri-
bution of a node (and all its incoming paths) to the overall
solution is less than the imprecision level, it can avoid an-
alyzing the paths and assume at the node the most conser-
vative data-flow fact.

Because the algorithm in Figure 9 was designed to be
informed, it naturally extends to approximate analysis. By
knowing the precise contribution weight of each node as the
analysis progresses, whenever the sum of weights in rhs at
the highest interval level falls below e (the while-condition
in line 2), we can terminate and guarantee the desired pre-
cision. An alternative scenario is more attractive, however.
When a low-weight node is selected in line 3, we throw it
away. We can keep disregarding such nodes until their total
weights exceed e. In essence, this approach performs analy-
sis along hot paths [4], and on-line region formation [21].

The idea of terminating the analysis before it could find
the precise solution was first applied in the implementa-
tion of inter-procedural branch elimination [lo]. Stopping
after visiting a thousand nodes resulted in two magnitudes

of analysis speedup, while most optimization opportunities
were still discovered. However, without the approsimate fre-
quency analyzer developed in this paper, we were unable to
a) determine the benefit of restructuring, b) select a prof-
itable subset of nodes to duplicate, and c) get a bound on
the amount of opportunities lost due to early termination.
Algorithm complexity. In an arbitrary exploded graph,
reduce_loop may be (recursively) invoked on each node.
Hence, each node may be visited at most NE times, where
NE = NS is the number of EG nodes, N the number of
CFG nodes, and S the number of optimized expressions.
With caching of results, then each node is processed in at
most one invocation of the algorithm in Figure 9, yielding
worst-case time complexity of 0(Ni) = O(N2Sa). Since
real programs have loop nesting level bound by a small con-
stant, the expected complexity is (NS), as in [2].

Although most existing demand-driven data-flow algo-
rithms ([18, 221, [29] in particular) can be viewed (like ours)
to operate on the principle of back-substituting flow func-
tions into the right-hand side of the target variable, they do
not focus on specifying a profitable order of substitutions
(unlike ours) but rely instead on finding the fixed point it-
eratively. Such an approach fails on infmite-height lattices
where CFG loops keep always iterating towards a better ap-
proximation of the solution. Note that breaking each con-
trol flow cycle by inserting a widening operator [13] does not
appear to resolve the problem because widening is a local
adjustment primarily intended to approximate the solution.
Therefore, in frequency analysis, too many iterations would
be required to achieve an acceptable approximation. Instead
of fixing the equation system locally, a global approach of
structurally identifying intervals and reducing their cyclic
dependences seems necessary. We have shown how to iden-
tify intervals and perform substitutions in interval order on
demand, even when the exploded graph is not known prior
to the analysis. We believe that existing demand methods
can be extended to operate in a structural manner, enabling
the application of loop-breaking rules. This would make the
methods reminiscent of the elimination algorithms [28].

6 Conclusion and Related Work

The focus of this paper is to improve program tmns-
formations that constitute value-reuse optimizations com-
monly known as Partial Redundancy Elimination (PRE).
In the long history of PRE research and implementation,
three distinct transformations can be identified. The sem-
inal paper by Morel and Renviose [26] and its derivations
[ll, 14, 15, 16, 17, 241 employ pure, non-speculative code
motion. Second, the complete PRE by Steffen [30] is based
on control flow restructuring. Third, navigated by path pro-
file information, Gupta et al apply speculative code motion
in order to avoid code-motion obstacles by controlled im-
pairment of some paths [ZO].

In this work, we defined the code-motion-preventing
(CMP) region, which is a CFG subgraph localizing adverse
effects’of control flow on the desired value reuse. The notion
of the CMP is applied to enhance and integrate the three
existing PRE transformations in the following ways, 1. Code
motion and restructuring are integrated to remove all redun-
dancies at minimal code growth cost (ComPRE). 2. Morel
and Renviose’s original method is expressed as a restricted
(motion-only) case of the complete algorithm (CM-PRE).
3. We develop an algorithm whose power adjusts contin-

12

Input: node n, expression e.
Output: in sol, the probability of e being available at the exit of n.

so1 : stack of reals (names sol, rhs refer always to top of stack)
rhs : stack of sets of unsubstituted nodes n with weights rha[n]
oost-dfs : post-order numbering of CFG nodes

t sol := 0; rhs := {}; rhs[n] := 1.0
2 while rhs not empty do
3 select from rhs a node z with smallest post-dfs(z)
I substitute(z)
5 end while

procedure substitute(node z)
if z has not been visited, determine its flow function
if I computes or kills e, adjust sol and remove z from rhs
if Comp(z,e) A Transp(z, e) then

5 SO/ := sol + rhs[z]; rhs[z] := 0.0; return
7 else if ~Transp(n,e) then rhs[z] := 0.0; return

back-edge is each edge that meets a loop-entry edge
3 if back-edge (y, Z) exists then assume one back-edge per node

substitute for y until z occurs on the r.h.s.
9 (s, v) := reduceJoop(y, z)

apply loop breaking rule: sum of infinite geom. sequence
10 c := rhs[z]/(l - r[~])
11 rhs := rhs + c x r; sol := sol + c x a
12 else c := rhs[z]

substitute “acyclic” predecessors
for each non-backedge node z C pred(z) do

13 rhs[z] := rhs[r] + c x p((z, z))
end for
z is now fully substituted

14 rhs[z] := 0.0; viaited.push(z)
end substitute

function reduceJoop(node u, node u)
15 mark v; so/.push(O); rha.posh({}); rhs[u] := p((u,v))
16 while rhs contains unmarked nodes do
17 select from rha an unmarked node z with lowest post-dfs(z)
18 substitute(z)
19 end while
20 unmark V; return (aol.pop(), rhs.pop())

end reduceJoop

post-dfs: H, G, F, . .

Input: n = C
Output: p = 0.2818
1 sol := 0; rhs = 1.0 *
4 substitute(C)
12 c := 1.0
13 rha := 0.2 * H + 0.3

:C

* G + 0.5 *B
4 substitute(H)
6 sol := sol + rhs[H] := 0 + 0.2
6 rhs = 0.3 * G + 0.5 * B
4 substitute(G)
12 c := 0.3
13 rhs := 0.5 * B + 0.3 *A
4 substitute(B)
9 reduceJoop(E, B)
15 mark B; sol1 := 0; rhsl := 0.9 *E
18 substitute(E)
12 c := 0.9;
13 rhsl := 0.36 *D + 0.45 + B + 0.09 * F
18 substitute(F)
6 sol1 := so/l + rhsl[fl := 0 + 0.09
6 rhsl = 0.36 * D + 0.45 * B
18 substitute(D)
7 That := 0.45 + B
20 unmark B; return (0.09,0.45 *B)
10 c := 0.5/(1 - 0.45) = 0.91
11 rhs := 0.5 * B + 0.3 *A + 0.91 * 0.45 * B
11 sol := 0.2 + 0.91*0.09 := 0.2818
13 rhs := 0.91 * B + 0.3 * A + 0.91 * 0.1 * A
14 rhs := 0.391~ A
4 substitute(A)
7 sol := 0.2818 unchanged t Final probability
7 rha := 0.0

Figure 9: Demand-driven frequency analysis for availability of computations, and a trace of its execution.

ually between the motion-only and the complete PRE in
response to the program profile (PgPRE). 4. We demon-
strate that speculation can be navigated precisely by edge
profiles alone. 5. Path profiles are used to integrate the
three transformations and balance their power at the level
of CMP paths.

While PRE is significantly improved through effective
program transformations presented in this paper, a large
orthogonal potential lies in detecting more redundancies.
Some techniques have used powerful analysis to uncover
more value reuse than the traditional PRE analysis [9, 111.
However, using only code motion, they fail to completely
exploit the additional reuse opportunities. Thus, the trans-
formations presented here are applicable in other styles of
PRE as well, for example in elimination of loads.

Ammons and Larus [4] developed a constant propagation
optimization based on restructuring, namely on peeling of
hot paths. In their analysis/transformation framework, re-
structuring is used not only to exploit optimization opportu-
nities previously detected by the analysis, as is our case, but
also to improve the analysis precision by eliminating control
flow merges from the hot paths. Even though our PRE can-
not benefit from hot path separation (our distributive data-

flow analysis preserves reuse opportunities across merges), a
more complicated analysis (e.g., redundancy of array bound
checks) would be improved by their approach. After the
analysis, their algorithm recombines separated paths that
present no useful opportunities. It is likely that path recom-
bination can be integrated with code motion, as presented
in this paper, to further reduce the code growth.

In a global view, we have identified four main issues
with path-sensitive program optimizations [8]: a) solving
non-distributive problems without conservative approxima-
tion (e.g. non-linear constant propagation), b) collecting
distinct opportunities (e.g., variable has different constant
along each path), c) exploiting distinct opportunities (e.g.,
enabling folding of path-dependent constants through re-
structuring), and d) directing the analysis effort towards hot
paths. In the approach of Ammons and Larus, all four is-
sues are attacked uniformly by separation of hot paths, their
subsequent individual analysis, and recombination. Our ap-
proach is to reserve restructuring for the actual transforma-
tion. This implies a different overall strategy: a) we solve
non-distributive problems precisely along all paths by cus-
tomizing the data-flow name space [9], b) we collect distinct
opportunities through demand-driven analysis as in branch

13

elimination [lo], which is itself a form of constant propa-
gation, c) we exploit all profitable opportunities with eco-
nomical transformations, and d) avoid infrequent program
regions using the approximation frequency analysis (the last
three presented in this paper).

‘7 Acknowledgments

We are indebted to the elcor and Impact compiler teams for
providing their experimental infrastructure. Sadun Anik,
Ben-Chung Cheng, Brian Dietrich, John Gyllenhaal, and
Scott Mahlke provided invaluable help during the imple-
mentation and experiments. Comments from Glenn Am-
mons, Evelyn Duesterwald, Jim Larus, Mooly Sagiv, Bern-
hard Steffen, and the anonymous reviewers helped to im-
prove the presentation of the paper. This research was par-
tially supported by NSF PYI Award CCR-9157371, NSF
grant CCR-9402226, and a grant from Hewlett-Packard to
the University of Pittsburgh.

References

PI

PI

[31

[41

151

161

[71

P31

PI

WI

Dll

PI

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers
Principles, Techniques, and Tools. Addison Wesley, 1986.

F. E. Allen and J. Cocke. A program data flow analysis
procedure. CA CM, 19(3):137-147, March 1976.

Glenn Ammons, Thomas Ball, and James R. Larus. Exploit-
ing hardware performance counters with flow and context
sensitive profiling. In Proceedings of the ACM SIGPLAN
‘97 Conf. on Prog. Language Design and Impl., pages 85-
96, 1997.

Glenn Ammons and James L. Larus. Improving data-flow
analysis with path profiles. In Proceedings of the ACM SIG-
PLAN ‘98 Conference on Programming Language Design
and Implementation, 1998.

Joel Auslander, Matthai Philipose, Craig Chambers, Su-
san J. Eggers, and Brian N. Bershad. Fast, effective dynamic
compilation. In Proceedings of the A CM SIGPLAN ‘96 Con-
ference on Programming Language Design and Implementa-
tion, pages 14S-159,21- May 1996.

A. Ayers, R. Schooler, and R. Gottlieb. Aggressive inlining.
In Proceedings of the ACM SIGPLAN ‘97 Conf. on Prog.
Language Design and Impl., pages 134-145, June 1997.

Thomas Bali and James R. Larus. Efficient path profiling.
In 29th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 46-57, 1996.

Rastislav Bodik. Path-Sensitive Compilation. PhD thesis,
University of Pittsburgh, in preparation.

Rastislav Bodik and Sadun Anik. Path-sensitive value-flow
analysis. In Conference Record of the 25th A CM SIGPLA N-
SIGACT Symposium on Principles of Programming Lan-
guages, January 1998.

Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Inter-
procedural conditional branch elimination. In Proceedings
of the A CM SIGPLAN ‘97 Conf. on Prog. Language Design
and Impl., pages 146-158, June 1997.

Preston Briggs and Keith D. Cooper. Effective partial re-
dundancy elimination. In Proceedings of the Conference on
Programming Language Design and Implementation, pages
159-170, June 1994.

F. Chow, S. Ghan, R. Kennedy, S.-M. Liu, R. Lo, and P. Tu.
A new algorithm for partial redundancy elimination based
on SSA form. In Proceedings of Ihe ACM SIGPLAN ‘97
Conf. on Prog. Language Design and Impl., pages 273-286,
June 1997.

P31

[I41

1151

I161

P 71

[I81

[191

PO1

WI

WI

[231

[241

[251

WI

1271

[=I

WI

[301

P. Cousot and R. Cousot. Abstract intrepretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Conference Record of the
4th ACM Symposium on Principles of Programming Lan-
guages, pages 238-252, January 1977.

Dhanajay M. Dhamdhere, Barry K. Rosen, and Kenneth F.
Zadeck. How to analyze large programs eWciently and infor-
matively. In Proceedings of the ACM SIGPLAN ‘92 Con-
ference on Programming Language Design and Implementa-
tion, pages 212-223, July 1992.

Dhananjay M. Dhamdhere. Practical adaptation of the
global optimization algorithm of Morel and Renvoise. ACM
Transactions on Programming Languages and Systems,
13(2):291-294, April 1991.

K. Drechsler and M. Stadel. A solution to a problem with
Morel and Renvoise’s “global optimization by suppression of
partial redundancies”. A CM Transactions on Programming
Languages and Systems, 10(4):635-640, October 1988.

K. Drechsler and M. Stadel. A variation of Knoop, Riithing,
and Steffen’s lazy code motion. ACM SIGPLAN Notices,
28(5):635-640, May 1993.

Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. A
practical framework for demand-driven interprocedural data
flow analysis. ACM Transactions on Programming Lan-
guages and Systems, 19(6):992-1030, November 1997.

R. Gupta, D. Berson, and J.Z. Fang. Resource-sensitive
profile-directed data flow analysis for code optimization. In
90th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 358-368, December 1997.

R. Gupta, D. Berson, and J.Z. Fang. Path profile guided par-
tial redundancy elimination using speculation. In IEEE In-
ternational Conference on Computer Languages, May 1998.

Richard E. Hank, Wen-Mei W. Hwu, and B. Ramakrishna
Rau. Region-based compilation: An introduction and mo-
tivation. In 28th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, Ann Arbor, Michigan, 1995.

Susan Horwitz, Thomas Reps, and Mooly Sagiv. Demand
Interprocedural Dataflow Analysis. In Proceedings of the
Third ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 104-115, October 1995.

Johan Janssen and Henk Corporaal. Controlled node split-
ting. In Compiler Conslruction, 6th International Conjer-
ence, volume 1060 of Springer Lecture Notes in Computer
Science, pages 44-58, Sweden, April 1996.

Jens Knoop, Oliver Riithing, and Bernhard Steffen. Optimal
code motion: Theory and practice. ACM Trans. on Progr.
Languages and Systems, 16(4):1117-1155,1994.

S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank,
W.M. W. Hwu, B. R. Rau, and M. S. Schlansker. Sen-
tinel scheduling for VLIW and superscalar processors. A CM
Transactions on Computer Systems, 11(4):376-408,1993.

E. Morel and C. Renviose. Global optimization by supression
of partial redundancies. CACM, 22(2):96-103, 1979.

G. Ramalingam. Data flow frequency analysis. In Proceed-
ings of the ACM SIGPLAN ‘96 Conj. on Progr. Language
Design and Implementation, pages 267-277, June 1996.

Barbara G. Ryder and Marvin C. Paull. Elimination al-
gorithms for data flow analysis. ACM Computing Surveys,
18(3):277-316, September 1986.

Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise in-
terproceduraldataflow analysis with applications to constant
propagation. Theoretical Computer Science, 167(1-2):131-
170,1996.

Bernhard Steffen. Property oriented expansion. In Proc.
Int. Static Analysis Symposium (SAS’96), volume 1145 of
LNCS, pages 22-41, Germany, September 1996. Springer.

14

