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Background
Invented in 1979, Partial Redundancy Elimination (PRE)
received renewed interest in the 90’s, thanks to multiple in-
dustrial efforts crafting optimizing compilers for upcoming
VLIW processors, and also thanks to new efficient PRE al-
gorithms, most notably the Lazy Code Motion [24 ].

Although PRE was ready for industrial implementation,
some of its potential was left unexploited, due to the limited
transformational power of code motion underlying the stan-
dard PRE. We became interested in developing complete
PRE when our experiments revealed that standard PRE
failed to eliminate about 70% of loop invariant expressions—
a disappointing result given that PRE was being imple-
mented as a generalization of loop-invariant code motion.

At the time, it was already known that redundant expres-
sions could be removed completely, in fact with a simple
algorithm that restructured the control flow graph via path
duplication [30 ]. In practice, however, the resulting code
growth limited the use of restructuring to controlled ad hoc
transformations like do-until conversion, which in some cases
improved the standard PRE, but were inadequate in general.

The question that initiated our research thus was how to
integrate code motion with restructuring in a PRE algo-
rithm that would resort to restructuring only when neces-
sary, i.e., when the (preferred) code motion fails. The result,
we hoped, would subsume ad hoc transformations by per-
forming custom restructuring needed to enable code motion.

Besides restructuring, a promising technique for improv-
ing standard PRE was control flow speculation. First ap-
plied in instruction scheduling, this profile-guided technique
broke the very guarantee that made standard PRE incom-
plete: it hoisted instructions along hot program paths into
predecessor basic blocks without restriction, thus enabling
more code motion, but potentially de-optimizing the pro-
gram by executing some instructions more often than in the
original program. Two algorithms for speculative PRE were
known [5, 20 ], but a few questions were left open, partic-
ularly how to perform optimal speculative PRE, and what
kind of profile needs to be used for the purpose.

The questions that we wanted to answer thus were:

1. Completeness. Is it possible to eliminate all redundant
expressions without the excessive code bloat of code
duplication? Is the benefit of completeness worth the
additional implementation complexity?
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2. Profiling. Which trade-offs in PRE should be profile-
guided? Clearly, profiling should be able to prioritize
optimization of hot paths at the expense of cold paths,
but what are suitable abstraction for guiding the trade-
offs and for integrating the transformations?

3. Profile format. To guide PRE (a path-sensitive opti-
mization), a path profile seems necessary. Could the
cheaper edge profile be used instead? When are the
two profiles equally accurate?

Evolution of the idea
At the outset, we felt confident only about solving the first
question. Guided by the intuition developed in our work on
dead-expression removal [2], we were able to define the CMP
region that decomposed the program into parts optimizable
via code motion and parts optimizable via restructuring. As
we came to realize only later, the CMP region is a refine-
ment of the Use Region from [2]: instead of computing a
single dataflow problem of its precursor, it is based on two
problems, one forward and backward, each on a richer lat-
tice, which is what allows it to reduce restructuring. The
CMP region was also instrumental in answering the other
two questions, but not until the follow-up paper [4], which
presented the family of estimators. To provide a big-picture
perspective, we summarize here the connections among the
relevant results, leveraging the insights gained after these
papers were published.

Conclusions, in retrospect
The CMP-based algorithms in the paper equip the stan-
dard PRE based on code motion (M) with the power of
two additional transformations: control-flow-graph restruc-
turing (R) and control-flow speculation (S). One can view
the new PRE algorithms as more aggressive, shown by the
two PRE planes in the figure below. Regarding the style of
the optimization, both code motion and restructuring oper-
ate under the safe PRE model, in which no program path
is allowed to execute more expressions after optimization.
In contrast, speculation requires relaxing this model, by al-
lowing paths to be impaired with new expressions, typically
under profile-guidance. Regarding the necessary profiling
accuracy, when code motion is combined with speculation
(which is in fact a form of code motion), an edge profile is
as accurate as the path profile. In contrast, when restruc-
turing is profile-guided, path-profile is more accurate than
edge profile [4].
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The three transformations can be combined by means of
the CMP region to produce several algorithms, as shown
in the figure below. PRE(M), which achieves the same
transformation as [24, 26 ], uses only code motion, and finds
the best optimization when execution frequencies are not
known. PRE(MS) extends code motion with speculation,
but uses the speculation carefully, to maximize the optimiza-
tion for a given profile. (PRE(R), the algorithm in [30 ], can
also be classified in the triangular space of transformations.
It removes all redundant expressions by restructuring, and
not moving any code.) PRE(MR) also removes all redun-
dant expressions, but duplicates basic blocks only when code
motion fails (it does not minimize code duplication, though;
as was later shown by Melski [6], that problem is NP-hard).
PRE(Mr) and PRE(Msr) use a profile to trade off some
optimization benefit for code-growth reduction.
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Results of interest to compiler engineers
After experiments with PRE for scalar replacement in the
follow-up paper [4], we drew the following conclusions that
may be of interest to those who want to implement PRE.

• How powerful is the standard (code-motion-only) PRE?
In our experiments with integer benchmarks, PRE(M)
eliminated 50% expressions more (dynamically) than
common-subexpression elimination—the most power-
ful path-insensitive transformation. In contrast, com-
plete PRE (PRE(MR) or PRE(R)) eliminated roughly
100% more expressions (see Figure 6.20 in [1]), sug-
gesting that extensions to standard PRE should be
implemented.

• How close is speculative PRE to complete PRE? Some-
what surprisingly, PRE(MS) removes nearly all redun-
dant expressions. It is also easier to implement (be-
cause no restructuring is needed), and hence provides a
very attractive alternative to the complete PRE(MR).

• What if speculation cannot be used? There are situa-
tions when PRE cannot use speculation, e.g., due to
side effects of redundant expressions, such as excep-
tions. In such situations, restructuring must be used.
For simple loops, do-until conversion will do; for more
complicated control flow, the PRE(MR) algorithm will
perform the necessary restructuring.

• Is path profile needed to guide restructuring? When
performing restructuring, one may want to determine
the optimization benefit of code duplication. In the-
ory, path profiles are needed for accurate computation
of the benefit. In practice, the edge-profile-based esti-
mators in [4] incur very small error.

The future of redundancy elimination
The trend of programming with components may move the
focus of program optimization research towards high-level
transformations, such as selection of data structures or rewrit-
ing a client code from one API to another. Since API calls
can be modeled as more complex expressions, PRE may
play a role in such transformations. A relevant open prob-
lem: can speculation be used to simplify the complex inter-
procedural code-motion PRE?

Profile-based demand-driven dataflow analysis
Section 5 of the paper presents an analysis that computes
the frequency of dataflow facts (like [27 ]), but conserva-
tively self-terminates as soon as sufficient (frequency-wise)
facts have been collected. Building on the inter-procedural
analysis in [10 ], where early termination by preventing ex-
ploration of some program paths facilitated scalability, the
algorithm in the paper seeks to provide a guarantee that
unexplored paths did not contain important optimization
opportunities. In retrospect, the alternative approach of re-
stricting the analysis to hot program paths, as was done in
in [4, 19, 20 ], may lead to an equally practical solution.
It should be noted that although we did not experimentally
confirm the usefulness of Section 5, we later successfully used
its idea in a simplified fashion in [3].
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