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1. INTRODUCTION

One of the most critical compiler transformations is register allocation, as a
good register allocator can make a dramatic improvement in program perfor-
mance [Briggs et al. 1994; George and Appel 1996]. One study reported that
careful register allocation can improve performance by one order of magnitude
[Poletto and Sarkar 1999]. Thus, considerable effort has been given to devel-
oping new allocation algorithms or variants of existing ones [Bernstein et al.
1989; Bradlee et al. 1991; Briggs et al. 1992, 1994; Chaitin 1982; Chow and
Hennessy 1990; George and Appel 1996; Gupta et al. 1989; Pinter 1993; Po-
letto and Sarkar 1999; Santhanam and Odnert 1990; Smith et al. 2004]. Given
the many algorithms and the complexity of modern processor architectures,
implementing register allocation is often a complex and error-prone task. It is
particularly difficult to detect and locate errors in an erroneous output program
of the register allocator if the program runs to completion. Various research ef-
forts have proposed techniques to ensure the register allocation for a given
program is correct [Jaramillo et al. 2002; McNerney 1991; Nandivada et al.
2007; Necula 2000; Pereira 2006]. In this article, we describe a novel technique
to check the correctness of register allocation using only the input and output
to the register allocator and to report the location and types of errors found.
This technique is useful throughout the lifetime of a compiler; however, it is
especially helpful during the development period.

Bugs can cause the compiler to fail on some input programs, but not on
others. The generated code may have errors, although the compiler does not
crash. Such latent bugs will not be discovered until a particular test input
causes the program to fail, which could happen after the compiler is released.
Assuming that a test input catches a bug, the developer may believe that the
bug is in the program itself, rather than the compiler. She will spend much
time and effort tracking down the bug to only discover that it is in the compiler
and cannot be readily fixed. All of this leaves the developer in the unfortunate
situation of having little confidence in the correctness of the generated code
because bugs may remain even after testing.

The research community has recognized the difficulty of implementing com-
piler optimizations, including register allocation, and has proposed techniques
to address the situation. Necula [2000] proposed a symbolic evaluation ap-
proach to check the allocator’s output code against its input code. However,
this approach reports false alarms and increases the compile-time by up to
four times. Jaramillo et al. [2002] proposed a dynamic checking approach that
runs the allocator’s input and output code. It compares values in the input and
output to check that they are the same. However, it does not guarantee the
correctness of the allocator’s output unless all paths are exercised by test in-
puts. Nandivada et al. [2007] proposed a framework for designing and verifying
register allocation algorithms; the major aim of this framework is to prove the
soundness of the type system.

In this article, we propose a new approach, called SARAC, which uses static
analyses to check the value flow (values of variables) of the allocator’s output
[Dor et al. 2004; Steffen et al. 1990] with the value flow of its input. SARAC
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reports the location and type of errors in the output code due to an incorrect
allocation. The analyses check that the value flow of the output code matches
the value flow of the input code. SARAC traverses all program paths, using
data flow analysis to gather information about the output code. It then checks
the value flow of variables using the gathered information. A checking step
verifies that the value flow of the input code is preserved in the output code,
according to data dependencies, once the allocator has assigned registers and
possibly spilled registers. The information collected during the analyses is used
to determine error types and locations. Other errors involving register types and
instruction set architecture constraints are still possible. Identifying errors in
the value flow is an important step toward a tool that fully checks and reports
any bugs in the output of the register allocator.

SARAC has several desirable characteristics. It gives hints to the compiler
engineer to help her diagnose and fix bugs in the allocator. It is accurate and
does not rely on knowledge about the allocator implementation. It can be used
with different register allocation algorithms, including those that perform co-
alescing and rematerialization. Such independence from the register allocator
suggests that a single error analysis tool can be built and employed for differ-
ent allocators (in different compilers and target machines). It uses data flow
analyses and can be easily implemented. Finally, the approach has minimal per-
formance and memory overhead, making it efficient and practical. A prototype
tool, called ra-analyzer, that implements SARAC has an average compile-time
overhead of 8% and an average memory requirement of 85KB. Both the perfor-
mance and memory usage of ra-analyzer scale well with function body size, the
number of operands, and the complexity of the Control Flow Graph (CFG). Our
techniques can be used by compiler developers during regression testing and
as a command-line-enabled debugging pass for mysterious compiler behavior.

This article makes several contributions, including:

—an efficient way (SARAC) to statically check that the value flow after register
allocation is the same as before register allocation and to identify and report
the location and type of bugs, independently of the register allocator;

—data flow equations that analyze value locations, stale values, and evicted
values using only the input and output code of a register allocator to provide
information about the type of register allocation errors;

—techniques to support register allocators that perform coalescing, remateri-
alization, and register aliasing;

—a tool (ra-analyzer) that implements SARAC in SUIF’s back-end optimizer
(MachSUIF [Smith and Holloway]) for the Intel IA-32 instruction set archi-
tecture;

—a thorough evaluation of our techniques in ra-analyzer and MachSUIF, in-
cluding validation, performance, and memory overhead, and scalability with
program complexity.

The article is organized in the following way. The next section describes how
register allocation preserves the value flow of the input code. The third section
presents algorithms for gathering and using data flow information to check for
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correctness. The fourth section describes and evaluates ra-analyzer. The fifth
section discusses related work, and the final section concludes the article.

2. REGISTER ALLOCATION

This section describes our register allocator model, including the input and
output code to the allocator. It also gives the motivation and background for
our static analyses that catch and identify bugs in the register allocation.

2.1 Register Allocation Model and Assumptions

We assume that a set of intermediate code instructions is input to the reg-
ister allocator and the output is a set of intermediate code instructions with
registers assigned to the operands. We assume the input code is semantically
correct relative to the source-code. The register allocator is a global allocator
that allocates registers at the function level. It has a limited number of regis-
ters and can inject spill code through copy instructions (e.g., loads, stores, and
register copies). It can also perform register coalescing to remove copy instruc-
tions. Since we focus on value flow, we assume the register allocator uses correct
types and obeys the constraints imposed by the machine instruction set. The
calling convention that we use for the register allocator is caller-save (callee-
save would work as well). We assume the register allocator does not incorporate
other optimizations (e.g., instruction scheduling) [Bradlee et al. 1991; Pinter
1993], and it does not change the structure of the Control Flow Graph (CFG)
or the order of instructions within basic blocks. The core function of the regis-
ter allocator is to assign locations (registers or memory slots) to hold values of
variables.

As typical of most back-end optimizers, we further assume that register pro-
motion is done in a pass prior to register allocation [Cooper and Lu 1997]. Thus,
aliasing, assignment through pointers, array accesses, and related phenomena
have been handled and expanded into low-level code by the register promotion
pass and are not the concern for our technique. For example, in the most con-
servative situation, a variable whose address is taken will be loaded before any
use of the variable and stored after any definition of the variable. The input
code to the register allocator has these load and store operations (to move values
between memory and virtual registers) [Cooper and Lu 1997]. Global and array
values will have similar explicit loads and stores. These loads and stores will not
be removed by the register allocator. Our technique treats these load and store
operations like other computational operations in the input intermediate code.
We also assume that values are not mutated during store operations; however,
memory addressing modes are allowed for destination operands in CISC-style
instructions.

Our technique treats the register allocator as a black box; that is, we only
consider the input code to the register allocator and the output. We assume that
two variables cannot be assigned to the same register if one is live at a program
point where the other is defined, where liveness is defined by a variable being
used after the current point. It should be noted that if another definition of
liveness is used, such as a variable is live if it is both defined before and used
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after the current point, then our technique may report a register allocation
error when in fact there is none. This situation would occur, for example, when
one branch of a conditional defines a variable X and the other branch defines
a variable Y. After the merge point, one path uses X and another path uses Y.
Using our definition of liveness, X and Y would have to be in different registers
while the alternative definition of liveness could place both X and Y in the same
register.

To simplify the following discussion, we often use an instruction identifi-
cation number (ID) to represent an instruction. We use RTL to give actual
instructions in examples [Benitez and Davidson 1988; Davidson and Fraser
1984; GCC]. Although RTL is used for notational convenience, our techniques
can work with other intermediate representations that have the characteristics
described next.

The input and output to the register allocator is intermediate code (IR) in-
structions. The intermediate code is a set of instructions {i0, i1,. . . }, where an
instruction i = (id, op, defs, uses) is a 4-tuple and id is the instruction iden-
tification number. In the definition of instruction i, defs is the ordered set of
operands defined by i and uses is the ordered set of operands used by i. The
order of operands in defs and uses is the order in which they appear in instruc-
tion i. The operands in the intermediate code are the set Operands = Registers
∪ Memory Slots ∪ Variables ∪ Immediates. The Registers set contains all the
usable hardware registers in a target machine. In RTL, r[x] refers to register
x. The Memory Slots set represents memory locations in the activation record,
with constant stack pointer manipulations. In RTL, M[loc] refers to memory
slot loc. The Variables set represents source variables, compiler temporary
variables, and virtual registers. The Immediates set represents constant val-
ues.

In the definition of instruction i, op is the opcode, which is defined as:

—copy for copies, including load, store, and copy between registers or variables.
A copy instruction “propagates” a value from its use to its definition. The
definition and use operand of a copy instruction belong to Registers, Mem-
ory Slots, or Variables. In RTL, a load is shown as “r[x]=M[loc]”, a store
is “M[loc]=r[x]”, and a register-to-register copy is “r[x]=r[y]”.

—call for function calls; if a call has return values, they are in the defs set of
the call instruction.

—comp for all other types of instructions, including arithmetic/logic, jump,
branch, return, and parameter passing instructions. Load and store oper-
ations in the input intermediate code are also handled as comp instructions.
A parameter passing instruction initializes a parameter to the value defined
in the caller. Using RTL notation, a parameter passing instruction is de-
fined as “x=parameter”, indicating that x is a parameter and defined by the
caller.

An instruction of call or comp type is considered by the allocator as defining
a “new” unique value for each of its definition operands. The “new” value can be
represented by a unique symbolic name, say v. Collectively, we call these two
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type instructions as noncopy type instructions. A copy type instruction, on the
other hand, is considered as only propagating a value without defining a “new”
value.

A set of functions is also defined to manipulate the IR code. These are:

—isCopy(i) → Boolean: If i = (id, copy, defs, uses), return true; otherwise, return
false.

—isCall(i) → Boolean: If i = (id, call, defs, uses), return true; otherwise, return
false.

—id(i) → Integer: Given i = (id, op, defs, uses), return id.
—opcode(i) → {copy, call, comp}: Given i = (id, op, defs, uses), return op.
—defs(i) → ordered set of Operands: Given i = (id, op, defs, uses), return defs.
—uses(i) → ordered set of Operands: Given i = (id, op, defs, uses), return uses.
—isAlloc(Operand) → Boolean: If Operand ∈ Registers ∪ Memory Slots ∪ Vari-

ables, return true; otherwise, return false.
—isCallerSave(Operand) → Boolean: This function returns true if the operand

given as a parameter belongs to Registers and is also caller-save; otherwise, it
returns false. A caller-save register may be overwritten during the execution
of a function call and, thus, must be saved by the caller.

The functions defs() and uses() return the ordered definition/use set of an in-
struction. The other functions are self-explanatory.

Since the purpose of a register allocator is to allocate registers to an instruc-
tion’s operands, a one-to-one associating relation (i.e., a mapping) exists for the
noncopy type instructions between the input and output of the register allo-
cator. Given an input instruction i of noncopy type and its associated output
instruction i′, a register allocator maintains the following property.

id(i) = id(i′), opcode(i) = opcode(i′), |defs(i)| = |defs(i′)|, and |uses(i)| = |uses(i′)|.
This property states that, for each noncopy instruction, its associated out-

put instruction has the same identification number, the same opcode, and the
same defs/uses set size. Therefore, the operands of an input noncopy instruc-
tion i and its transformed output i′ also have a one-to-one operand associating
relation. The details of how SARAC generates these mappings are presented
in Section 3.1.

2.2 Example

To discuss register allocation, we give an example in Figure 1, which counts the
number of integer divisors for some number, m. We use this example throughout
the article. In Figure 1, the number after each instruction is the instruction
identification number (ID). The copy instructions are indicated, and all the
instructions not indicated are of noncopy type.

In the example, we assume that r[1] is assigned by the allocator to hold vari-
able m and r[2] is used to hold other variables as necessary. Figure 1(a) shows
the source program, while Figure 1(b) shows the input intermediate code to the
register allocator. Figure 1(c) gives the output code that should be generated by
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Fig. 1. Example: source, input to register allocator, correct and incorrect output where the number
after each instruction is the instruction ID, and cp indicates that an instruction is a copy.

the register allocator, assuming it is correctly implemented. Finally, Figure 1(d)
gives output code that may be generated by a register allocator with a
bug(s).

In this code, there are a few important items to notice. In Figure 1(b), instruc-
tion “p=d” is removed from the correct/incorrect output code due to coalescing.
A number of copy instructions are also injected into the correct/incorrect out-
put. Each noncopy instruction in the input stays in the correct/incorrect output
code. Figure 1(d) shows the effect of a bug in the register allocator. In this code,
two incorrect code edits were made by the register allocator. The first incor-
rect edit occurs to instruction 4, where the wrong register has been assigned to
the second source operand. The other incorrect edit happens at instruction 25,
where the wrong memory location is used for the spill. The example also shows
the instructions where these errors are manifested. The instruction where an
error is manifested is not necessarily the instruction where the incorrect edit is
made. For example, the incorrect edit at instruction 25 is manifested as errors
2 and 3 at instructions 6 and 8.
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2.3 Value Flow Preservation by Register Allocation

A correct allocation of registers must preserve the input code’s semantics, par-
ticularly the data dependencies and the values of these dependencies, or the
value flow [Dor et al. 2004; Steffen et al. 1990]. The copy type instructions only
“propagate” a value, and the noncopy type instructions define a “new” unique
value for each definition. Every input noncopy instruction will be mapped to
an instruction in the output code. Instructions of copy type can be injected or
removed by the register allocator. Intuitively, an allocation has correct value
flow if the “values” defined/used by every noncopy instruction in the output are
the same as the “values” defined/used by the mapped input instruction.

To discuss how the allocator may maintain or violate value flow, we use two
data-dependency-related definitions. In the definitions, we use the notation
“i.x=” to indicate the definition of operand x in instruction i and “i. = x” to
indicate the use of operand x in i. We also use the notation “i.xn = xm” to indicate
a copy type instruction i that uses xm and defines xn.

Definition 1. A du-pair (i0.x =, i1. = x) in a program function is a 2-tuple,
such that:

(i) isAlloc(x) is true,
(ii) there is a definition of x at instruction i0,

(iii) there is a use of x at instruction i1, and
(iv) x defined at i0 reaches i1; that is, there is a path from i0 to i1 such that

there is no other definition of x along the path.

The preceding definition describes a data dependency (e.g., reaching defi-
nitions) with our definition-use terms. Figure 2 displays the complete list of
du-pairs for the example function in Figure 1. For instance, in Figure 2(a), the
du-pair (2.d=,4.=d) indicates that d is defined at instruction 2 and then used
at instruction 4.

Definition 2. Given the du-pairs (Du-pairs) for a function, a du-sequence
(i0.x0 =, i1.x1 = x0, . . . , in.xn = xn−1, in+1. = xn) is a (n + 2)-tuple, where n ≥ 0,
such that:

(i) ¬isCopy(i0) is true,
(ii) ¬isCopy(in+1) is true,

(iii) isCopy(ik) is true, where n ≥ k ≥ 1, and
(iv) (ik .xk =, ik+1. = xk) ∈ Du-pairs, where n ≥ k ≥ 0.

Definition 2 specifies a du-sequence as a sequence of instructions where the
start and end instructions are of noncopy type and the instructions in between
are of copy type. A unique symbolic value, say v, is defined by an instruction
of noncopy type. It is then propagated by a series of copy type instructions
and finally used by a noncopy instruction. A “new” unique symbolic value may
also be defined and used without being propagated by copy instructions. We
use start(du-sequence) to denote the beginning of a du-sequence (“i0.x0= ”)
and end(du-sequence) to denote the end (“in+1. = xn”). Figure 2 displays the
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Fig. 2. Du-pairs and Du-sequences for input to register allocator, correct and incorrect output of
the example.
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complete list of du-sequences for the example function in Figure 1. For example,
in Figure 2(b), the du-sequence (2.d=,7.p=d,8.=p) states that a “new” unique
value is defined by noncopy instruction 2 (i.e., “d=1”), propagated by copy in-
struction 7 (i.e., “p=d”), and finally used by noncopy instruction 8 (i.e., “d=p+1”).

When the allocator correctly maintains the data dependency of the in-
put code, each input du-sequence has one or more associated output du-
sequences. The start of the input du-sequence associates to the start of
the output du-sequence; the end of the input du-sequence associates to
the end of the output du-sequence. For instance, consider Figures 2(b)
and 2(d). The input code to the register allocator has the du-sequence
(2.d=,7.p=d,8.=p) and the correct output code has the du-sequence (2.r[2]=,
22.M[d]=r[2],26.r[2]=M[d],8.=r[2]). These du-sequences are associated in
that “2.d=” associates to “2.r[2]=” and “8.p=” associates to “8.=r[2]”. In other
words, the input definition operand d (of instruction 2) is mapped to the output
definition r[2] and the input use p (of instruction 8) is mapped to the output
use r[2].

Multiple du-sequences may connect to each other by sharing the same start
or ending instruction. That is, a start definition may propagate along multiple
du-sequences to reach different ending uses; likewise, an ending use may be
reachable along multiple du-sequences from different start definitions. For in-
stance, Figure 2(b) has two input du-sequences (1.c=,6.=c) and (6.c=,6.=c)
that have the same ending instruction. During register allocation, the alloca-
tor must make the two defined values of c available in (at least) one common
register (memory slot) before the merge point. This action ensures that both
definitions reach the common use. Figure 2(d) shows the two correct output
du-sequences(1.r[2]=,21.M[c]=r[2],24.r[2]=M[c],6.=r[2]) and (6.r[2]=,
25.M[c]=r[2],24.r[2]=M[c],6.=r[2]), where both defined values for c are
available in M[c] before the merge point. From the perspective of the regis-
ter allocator, multiple definitions that reach the same use may be considered
as different versions of a value. We next define a du-sequence-web to consist of
connected sequences and a helper definition called connected.

Definition 3. Given two du-sequences s and s’, singly-connected(s, s′) is
true if s�=s′ and start(s) = start(s′) ∨ end(s) = end(s′). The relationship “con-
nected” is the transitive closure of singly-connected sequences; that is, if
singly-connected(s0, s1) is true and singly-connected(s1, s2) is true, then
connected(s0, s2) is true.

Definition 4. A du-sequence-web is a set W of du-sequences, {s1, . . . , sn},
such that:

(i) ∀si ∈ W, ∀sj ∈ W, si �= sj , then connected(si, s j ) is true, and
(ii) ∀si ∈ W, ∀s /∈ W , then connected(si, s) is false.

Figure 3 shows the various ways that du-sequences can be connected, using
shared definitions or uses for the input function in Figure 1. The graphs imposed
by the connections of du-sequences are also shown. For instance, in Figure 3(a),
{(1.c=,6.=c),(6.c=,6.=c)} represents the du-sequence-web that involves
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Fig. 3. Du-sequence-webs for input to register allocator of the example.

variable c (with a given value v3). Also, {(4.t=,5.=t)} and {(9.t=,10.=t)} have
only one du-sequence.

2.4 Sources of Errors

A bug in the register allocator that causes the output program (but not the
compiler) to crash or produce a wrong result is manifested through incorrect
code edits that can be made by the allocator. For the register allocator model
defined in Section 2.1, the possible incorrect edits are:

(1) incorrect register (or memory slot) assignment: the wrong register (or mem-
ory slot) is used for an operand in a noncopy instruction;

(2) incorrect instruction of copy type: a value is spilled or copied incorrectly by
using the wrong register or memory slot in a copy instruction;

(3) missing instruction of copy type: a value is not spilled or copied when needed.

These edits can violate the value flow of the input code by causing the du-
sequences from the input function to not associate to the output du-sequences
from the transformed function or vice versa. The incorrect edits can allow the
program to run to completion but produce a wrong result. If there are no ex-
pected correct program results for comparison, the impact of the incorrect edits
on the program’s value flow will not be detected. Even if it is noticed that the
program being compiled produces a wrong result, there is no obvious starting
point to isolate where the incorrect edits occurred. Thus, these incorrect edits
can pose a challenge to the compiler engineer.

Note the distinction between an “incorrect edit” and an “error”: An incorrect
edit is the cause of an error. The incorrect edit defines where the error was
introduced, but it is not necessarily the place where the error is manifested.
An incorrect edit may not manifest itself as an error until a value affected
by the edit is used, which is the instruction at the end of a du-sequence. For
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instance, in Figure 1(d), the incorrect edit at instruction 25 is not manifested
until instructions 6 and 8.

The incorrect edits can lead to three error types: wrong operand error, stale
value error, or eviction error. Although these errors all involve value flow vi-
olations, we distinguish between them to report causal information about an
error. The three errors are defined as follows:

—A wrong operand error occurs when a register or memory slot is referenced
that does not hold the needed value. The value is actually held in some other
location(s). This error is usually caused by an incorrect register assignment.

—A stale value error happens when a register or memory location is referenced
that holds an old version of the needed value. A wrong or missing spill is a
common cause.

—An eviction error occurs when a value is referenced that is not held in any
location. This error is usually caused by a wrong spill.

For each type of error, there is an instance in the incorrect output of
Figure 1(d). First, there is a wrong operand error at instruction 4. This er-
ror is caused by an incorrect register assignment at instruction 4, where d is
assigned to r[1] instead of r[2]. Thus, there is no definition of d that is used
at instruction 4 and a wrong value (of m) is used instead. As shown in Figure 2,
the input du-sequences (2.d=,4.=d) and (8.d=,4.=d) do not have the associ-
ated output du-sequences. The “new” defined value of d is available in r[2] at
instruction 4, but it is not correctly used. Second, there is a stale value error
at instruction 6. This error is introduced by the wrong spill at instruction 25,
where r[2] is spilled to M[d], rather than to M[c]. Thus, there is no du-sequence
for c along the loop’s back edge that reaches the use at instruction 6. A stale
value for c is used instead. That is, the input du-sequence (6.c=,6.=c) does not
have an associated output du-sequence. At instruction 6, only the stale value of
c (previously defined at instruction 1) is available in r[2]. Finally, there is an
eviction error at instruction 8. This error is also caused by the wrong spill at
instruction 25. During the execution of the incorrect code, right before instruc-
tion 25, M[d] is the only location that holds the value of d. At instruction 25,
the value of d is evicted from M[d] due to the wrong spill. Therefore, no loca-
tion holds d after instruction 25 and the value of d cannot be loaded into r[2]
at instruction 26. Finally, an eviction error is caught at instruction 8, where
the value of d is referenced. As shown in Figure 2(f), the output du-sequence
(6.r[2]=,25.M[d]=r[2],26.r[2]=M[d],8.=r[2]) does not have an associated
input du-sequence.

3. ERROR ANALYSIS FOR REGISTER ALLOCATION

To find register allocation errors, we developed a Static and Automatic Reg-
ister Allocation Checking technique, called SARAC. Intuitively, the technique
checks if the du-sequences in the register allocator’s input function match the
du-sequences in the allocator’s output. However, to report error type rather
than just detect errors, the approach first constructs du-sequences for the
allocator’s input function. A unique value, named v, is given to each input
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Fig. 4. Pseudocode for SARAC steps.

du-sequence-web. The unique value v is then mapped to the output definition
and use. At the output definition point, v is considered as the new defined value;
at the use point, v is the value that is expected to be used. Then, a data flow
analysis on the output function propagates v from the definition point along
copy instructions to the use of v by a noncopy instruction. Finally, a check is
done to verify that the value flowing into the use is actually the expected one.
The data flow analysis on the output function implicitly constructs the output
du-sequences, and it also collects information about error types.

SARAC has three steps as shown in Figure 4. First, mapping information
is generated by a step called mapGen using input and output functions to
the allocator. Then, iterative forward data flow analysis, called defAnalysis, is
performed on the output function using the mapping information. This analysis
collects three types of data flow sets that are used to check the correctness of
the output and to report error locations and types. Finally, a linear scan, called
errAnalysis, is done to find and report value flow violations in the output
function with the collected data flow sets.

3.1 Mapping Generation (mapGen)

SARAC needs to collect what values (represented by a name, v) are defined/used
in the input code to the register allocator and what values are actually de-
fined/used in the output code. First, the input du-sequences are constructed
and each du-sequence-web is assigned a unique value, named v. Associations
(i.e., mappings) between input and output noncopy instruction definitions/uses
are generated. An associated definition in the output code for a noncopy in-
struction is considered as defining v. An associated use in the output code for a
noncopy instruction is expected to use v.

To express the mapping information, we use the following grammar.

<mapping> : = id:posn:<dou>: <out> �→ <in>
<dou> : = DEF|USE
<out> : = location | # constant
<in> : = value | # constant
where
id – the identification number for noncopy instructions
posn – operand number in an instruction’s definition or use set
location – a register or memory slot
value – a given unique name representing value(s)

For example, in Figure 1, the instruction “r[2]=0” in the output code associates
to “c=0 in the input code. Therefore, the mapping for the definition operand
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r[2] at instruction 1 is 1:1:DEF:r[2]→v3, where r[2] is a location and v3 is a
value, which is the unique name given to the du-sequence-web involving “1.c=”
(see Figure 3). A mapping can also associate immediate constants in the output
and input. For instance, there is a mapping 1:1:USE:# 0→# 0 that gives the
association between the constants at output instruction “r[2]=0” and input
instruction “c=0”. A mapping is generated for all noncopy instructions in the
output. No mapping is generated for a copy instruction.

As shown in Figure 5, mapGen() generates mappings between the allocator’s
input and output code, where the allocator is viewed as a black box. First, the
input function is processed to traverse each du-sequence-web. This traversal
replaces each definition/use in the start/end instructions with a given unique
name, v. Then, for each output noncopy instruction, its mapped input instruc-
tion is retrieved. The retrieval is based on the input instruction’s identification
number, which is the same as the mapped output instruction. We note that
the input and output code is not necessarily in a specific order to retrieve the
mapped instructions. Finally, each definition/use in every output noncopy in-
struction is mapped to its associated definition/use in the input, which has been
replaced with a unique name v.

The mappings are used by both defAnalysis and errAnalysis. defAnalysis
uses the mappings to track values and their name associations. errAnalysis
uses the mappings to detect errors at uses and to report error causes. Al-
though a complete mapping has an instruction ID, operand number, and an
identifier to distinguish between definitions and uses, we use an abbreviation
(i.e., location�→value) to simplify the discussion of the data flow equations for
SARAC. For example, the output code in Figure 1 has an instruction “r[2]=0”
that is associated to the input instruction “c=0”. We abbreviate the complete
mappings as simply r[2] �→ c and 0 �→ 0 in this case.

3.2 Data Flow Analysis (defAnalysis)

To check if the register allocation is correct and to determine error locations
and types, defAnalysis gathers information about the behavior of the register
allocator using the output code and the mappings. defAnalysis gathers three
types of information at all points in the program: (1) the values that are cur-
rently held in all locations (registers and memory), (2) the stale values, and (3)
the evicted values. Note if we only wanted to know whether a register allocation
is correct, we would not need the eviction information. Because we also want
to report the error types to help isolate a bug, all three types of information are
gathered. We develop a data flow algorithm to gather the information by using
the mappings to get the values in the input code associated with locations in
the output code. For example, when output instruction 2, “r[2]=1”, in Figure 1
is processed, the mapped destination operand v1 (that replaces d) is retrieved
from the mappings. This mapping is used to derive three pieces of information.
First, the current value of v1 is defined in r[2]. Second, the value v3 in r[2] is
evicted. Finally, any previous value of v1 in other locations is stale.

This information is collected in three data flow sets: the Location set (L), the
Stale set (ST) and the Eviction set (E). Each set consists of triples (l, v, c), where
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Fig. 5. Pseudocode for mapping generation.
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l is a location (register or memory) from the output code, v is a value (name)
from the input code, and c is a vector consisting of instructions. The instructions
in c indicate how the relationship between l and v is built and have different
semantics in three different sets; this information will help debugging when an
error is exposed. The semantics of (l, v, c) for L, ST and E are defined as follows.

—The Location set L records the fact that location l holds v. The vector c records
a du-sequence for v; that is, it incrementally records the intervening copy
operations in a du-sequence such that when the data flow equations reach
a fixed point, there will be sequential descriptions for every du-sequence in
the program.

—The Stale set ST records that location l holds a stale v. When the data flow
equations reach a fixed point, the vector c incrementally records the non-
copy instruction that makes v become stale and the copy instructions that
propagate stale v to location l.

—The Eviction set E records that v has been evicted from location l. For E, c is
always a single-instruction vector, and that instruction kills v from l.

In a triple (l, v, c), we use the notation ∗ to indicate a don’t care value; that is,
any value in a field in the triple matches with a ∗.

3.2.1 Data Flow Equations. A forward data flow analysis is used to com-
pute L, ST, and E. We assume a control flow graph representation for the output
code of the register allocator.

Our data flow equations extend the traditional dataset operations due to the
third field of the triple, which is a vector. We redefine “∩” and “–” to handle the
vector field c.

P ∩ Q = {(l ,v,c) | ((l ,v,c) ∈ P ∧ (l ,v,∗) ∈ Q) ∨ ((l ,v,∗) ∈ P ∧ (l ,v,c) ∈ Q) } (1)

P − Q = {(l ,v,c) | (l ,v,c) ∈ P ∧ (l ,v,∗) /∈ Q } (2)

These two operators are similar to the normal set operators, but the operations
are based only on the first two fields in the triple. The third field c is handled
in a special way. We also use the traditional “∪” definition.

P ∪ Q = {(l ,v,c) | (l ,v,c) ∈ P ∨ (l ,v,c) ∈ Q } (3)

Computing the Location Set (L).

L gen[i] = {(l , v, 〈i〉) |¬isCopy(i) ∧ l ∈ defs (i) ∧ l �→ v} (4)

L gen[i] is computed when the processed instruction i is of noncopy type. For
each such instruction, each of its definitions is considered as defining a new
value (i.e., the mapped v). Therefore, a triple (l, v, 〈i〉) is generated for each defi-
nition operand l. For instance, when instruction 6, “r[2]=r[2]+1, in Figure 1(d)
is processed, a triple (r[2],v3,<6>) is generated in L gen[i] due to r[2]�→v3.

L kill[i] considers that the execution of i destroys the value in each of its
definition operands and that crossing a function might destroy the value in
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each caller-save register.

L kill[i] = {(l , ∗, ∗) |l ∈ defs(i) ∨ (isCall(i) ∧ isCallerSave(l ))} (5)

Without knowledge about the usage of caller-save registers from the callee func-
tion, the global register allocator assumes that every caller-save register would
be overwritten within the callee function. Therefore, the same assumption ap-
plies when checking the register allocation.

For value propagation of copy instructions, an operator ⊕ is defined as follows.

P ⊕ i =
{

(ld , v, 〈i1, . . . , ik , i〉)
∣∣∣∣ ∃ (ls, v, 〈i1, . . . , ik〉) ∈ P∧

isCopy(i) ∧ {ld} = defs(i) ∧ {ls} = uses(i)

}
(6)

The operator states that, if the source of a copy instruction holds a value that
is indicated by (ls, v, 〈i1, . . . , ik〉) ∈ P , the same value will be propagated to
the definition operand of that copy instruction. The vector 〈i1, . . . , ik , i〉 is also
modified to record the chain of value definition and propagation, which will
result in a du-sequence.

Given the Gen, Kill and IN sets, L out[i] is computed as follows.

L out[i] = L gen[i] ∪ (
L in[i] ⊕ i

) ∪ (
L in[i] − L kill [i]

)
(7)

The value propagation of copy type instructions is conducted when comput-
ing L out[i]. For example, when instruction 21, “M[c]=r[2]”, in Figure 1(d) is
processed, it is known that (r[2],v3,<1>) is in L in[21]. Therefore, a triple
(M[c],v3,<1,21>) is generated to indicate the fact that v3 is defined in r[2]
at instruction 1 and is copied to M[c] at instruction 21. Finally, L out[i] records
all the locations (registers and memory) that hold a value up to instruction i,
regardless of whether the value is current or stale.

Computing the Stale Set (ST).

ST gen[i] = L gen[i] (8)

ST gen[i] is the same as L gen[i]. For instructions of noncopy type, every defi-
nition operand l is considered as having a new value (i.e., v) defined. Therefore,
the new definition of v makes the previous v held in any other location stale.
All the locations (other than l) that hold a previous v will be discovered from
L in[i].

ST kill[i] is computed identically as L kill[i].

ST kill[i] = L kill[i] (9)

The operator • for finding stale values is defined as follows.

P • Q = {(l ′, v, 〈i〉)|(l , v, 〈i〉) ∈ P ∧ (l ′, v, ∗) ∈ Q ∧ l �= l ′.} (10)

For instance, when instruction 6, “r[2]=r[2]+1”, in Figure 1(d) is processed,
the definition operand r[2] is mapped to v3 and (M[c], v3, <1, 21>) is retrieved
from L in[6]. Due to the new definition of v3 into r[2], the previous v3 in M[c]
is now stale. Therefore, a triple(M[c], v3, <6>) is generated.

ST out[i] is computed as follows.

ST out[i] = (ST gen[i] • L in[i]) ∪ (ST in[i] ⊕ i) ∪ (ST in[i] − ST kill[i]) (11)

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 15, Pub. date: April 2010.



15:18 • Y. Huang et al.

In the equation, the operator ⊕ is applied to propagate the stale value. For a
copy type instruction, if its source operand holds a stale value, then the value
propagated into its definition is also stale. Whether the value in the source of a
copy is stale or not is discovered from ST in[i]. For example, when instruction
24, “r[2] = M[c]”, in Figure 1(d) is processed, it is known that (M[c], v3, <6>) is
in ST in[24] along the loop’s back edge. Therefore, a triple (r[2], v3, <6, 24>) is
generated to record the fact that v3 in M[c] is stale due to the new definition of
v3 at instruction 6 and is copied to r[2] at instruction 24 along the loop’s back
edge.

Computing the Eviction Set (E).
The equations for computing E are closely related to those for L.

E gen[i] = {(l , ∗, 〈i〉)|(l , ∗, ∗) ∈ L kill[i]} (12)

E kill[i] = L gen[i] (13)

E gen[i] records that any value saved in l will be evicted because of i. What
value actually evicted will be discovered from L in[i]. E kill[i] indicates that a
new value is defined into the definition(s) of a noncopy instruction i.

To discover the actually evicted value, the operator ♦ is defined as follows.

P ♦ Q = {(l , v, 〈i〉)|(l , ∗, 〈i〉) ∈ P ∧ (l , v, ∗) ∈ Q} (14)

E out[i] is computed as follows.

E out[i] = ((E gen[i] ♦ L in[i]) ∪ E in[i]) − (E kill[i] ∪ (L in[i] ⊕ i)) (15)

The operator ⊕ is used here to discover the value propagated into the desti-
nation of a copy instruction i, which essentially kills a triple in E. Please also
note that a triple in E gen[i] can also be in E kill[i]. For instance, E gen[i] and
E kill[i] may both have (l, v, 〈i〉). This situation happens when a previous in-
struction defines v in l and the following instruction i redefines v in l. In this
case, (l, v, 〈i〉) should not be in E out[i] because v is still in l after executing
instruction i. The association order in the equation enforces this semantics.

3.2.2 The defAnalysis Algorithm. Given the mapping information, def-
Analysis analyzes the output code of the register allocator and returns the
data flow sets L, ST, and E. The algorithm is shown in Figure 6. It implements
a forward iterative data flow analysis.

In the algorithm, the function setInitialization() is called to initialize the
IN sets of L, ST, and E for each basic block. As in standard iterative data flow
analysis, the initialization value for IN (i.e., empty, ø , or universal, U) depends
on which set operation (e.g., intersection or union) is applied at merge points
in the control flow graph and whether a basic block is a CFG entry node. Given
the initial IN sets, setInitialization(), calls computeLocalFlow() to compute the
OUT sets for each basic block. The function computeLocalFlow() implements
the data flow equations from Section 3.2.1. The data flow equations are executed
in the order that they were discussed in Section 3.2.1.

In the iterative steps, mergeFlow() is called to execute set operations on L,
ST, and E at a merge point. The code on lines 29−31 performs the set operations
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Fig. 6. Pseudocode for data flow analysis algorithm.

on L, ST, and E. First, at the merge point to block B, L in is computed by ∩
on L outs of all predecessors to B. A correct register allocation has the same
value in a common location along any preceding path for a later common use.
Therefore, ∩ removes any “inconsistent triples” where the same location holds
different values in different paths. For example, a triple from one path might
show that r[1] holds x, but the other path indicates that r[1] does not hold x.
Second, ST in is computed as the union on ST outs of all predecessors to B. The
union is performed because if the value is stale along any path to the merge
point, it is possible that the stale value might be used later. Hence, the union
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operation preserves the fact that the value is stale along some path. Finally,
E in is computed as the union of E outs of all predecessors to B. E in[B] holds
a value’s history of most recent evictions from any location along all preceding
paths.

As shown on lines 33–35 of Figure 6, the function mergeFlow() also collects
the inconsistent L datasets, where a common location at a merge point holds
the different values from the preceding paths. With a correct register allocation,
different values cannot flow past merge points in a common location. Thus, it is
safe to assume that these different values are evicted from the common location
at the merge. The merge point (the label of a block) is also recorded to indicate
where the inconsistency is exposed, and the resulting datasets are collected
into the E set to help error reporting.

The data flow equations in Section 3.2.1 indicate that ST records a subset
of L. In other words, ST records the locations that hold a stale value and L
records all the locations that hold any value. As L inconsistent is not recorded
in L in, there is no reason to continuously record it in ST in. For optimization,
L inconsistent is removed from ST in at line 36 in the pseudocode.

3.3 Checking and Reporting (errAnalysis)

Once L, ST, and E are collected, they are used to check the output code. The
error analysis step ensures that the value flow from the input is preserved
in the output. The algorithm for identifying and reporting errors is shown in
Figure 7.

The errAnalysis algorithm iterates over all instructions in the output code.
It calls useCheck() when processing every noncopy instruction. A copy type
instruction is implicitly checked due to the value propagation performed in
defAnalysis. useCheck verifies whether all uses in each noncopy instruction
are correct in terms of the input value flow. It reports the error location and
type for any value flow violations. For each use l, it consults the mappings to
determine which value l should use. When l actually holds v, which is recorded
as a triple (l, v, ∗) in L in, useCheck further verifies if v in l is stale. Next,
useCheck checks if v is in other locations. If so, then a wrong operand is used.
Otherwise, an eviction error must have occurred. The history of v’s most recent
eviction from any location is reported.

3.4 SARAC Applied to the Example

Based on the example in Figure 1, this section illustrates how SARAC works.
We describe how SARAC can detect the errors in the incorrect output code
(Figure 1(d)) from the example.

3.4.1 Mapping Information. When mapGen() is applied to the input and
the incorrect output code in Figure 1, the mappings generated are as in Figure 8.
The mappings in bold are the ones that relate to the instructions where there
are errors. For example, at output instruction 4, the mapping indicates that the
second register source operand, r[1], expectedly holds v0.
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Fig. 7. Pseudocode for checking algorithm.

Fig. 8. Mappings between the incorrect ouput and input code in Figure 1.

3.4.2 Data Flow Sets. When the defAnalysis algorithm converges, L, ST,
and E have been computed at each instruction of the output code. Figure 9 shows
the data flow sets for some selected points in the incorrect output. Figure 9 uses
solid horizontal lines to mark different basic blocks of the output. Consider two
merge points in the example. First, the merge point (L1) shows the joined data
flow sets of two blocks, which end by instructions 3 and 10. Similarly, the merge
(L2) shows the joined data flow sets from instructions 5 and 25. The data flow
sets are not changed when there is no destination operand in an instruction.
In the figure, the data flow sets after instruction 22 are the same as the ones
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Fig. 9. Data flow sets at selected instructions of the incorrect output in Figure 1.

after instruction 3. These data flow sets are also the same for instructions after
4 and 5 and for instructions after 9 and 10.

3.4.3 Identify Errors. Incorrect edits in the incorrect output of Figure 1
are identified by errAnalysis using the data flow sets (Figure 9) and the map-
pings (Figure 8). The incorrect edits are: an incorrect register assignment at
instruction 4 and a wrong spill at 25.

At instruction 4, mappings indicate that the second source operand r[1] is
expected to hold v1. However, after instruction 23, L reports that v1 is actually
in r[2]. Therefore, a wrong operand error is reported. L also reports that v1
flows into r[2] along two paths. First, v1 is defined at instruction 2, spilled to
M[d] at 22, and reloaded into r[2] at 23. Second, v1 is defined at 8, spilled to
M[d] at 27, and reloaded into r[2] at 23. This information will help a compiler
engineer discover that v1 is in r[2] at instruction 4 and r[2] should have been
used as the second source operand. A register assignment error is identified.

At instruction 6, the mapping information states that source operand r[2]
should hold v3. After instruction 24, the L set indicates that r[2] does in
fact hold v3. However, ST reports that the value of v3 in r[2] is stale. Triple

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 15, Pub. date: April 2010.



Detecting Bugs in Register Allocation • 15:23

(r[2], v3, <6, 24>) in ST indicates that the value of v3 in memory is stale due
to the new definition of v3 (into r[2]) at instruction 6. The stale value of v3 is
loaded into r[2] at instruction 24. Another triple in ST, (M[c], v3, <6>), indi-
cates that the value of v3 in M[c] remains stale because the newly defined v3 is
never spilled to M[c] along the loop’s back edge. This error is attributed to the
wrong spill code edit at 25, where the newly defined v3 (in r[2]) is incorrectly
spilled to M[d].

At instruction 8, the mappings show that the source operand r[2] should hold
v1. The L set, however, tells that v1 is not in any location. An eviction error is re-
ported. The L set after instruction 26 shows that no value is loaded into r[2] by
the load instruction 26. There is no value in M[d]when the control flow merges at
L2, which is indicated by triples (M[d], v1, <L2>) and (M[d], v3, <L2>) in E. That
is, v1 is evicted from M[d] due to inconsistencies among the L sets from the pre-
decessors. The preceding path ending at instruction 5 shows that v1 is in M[d],
which is indicated by triples (M[d], v1, <2, 22>) and (M[d], v1, <8, 27>) in L. The
other path ending at instruction 25 shows that v3 is in M[d], which is indicated
by triple (M[d], v3, <6, 25>) in L. Therefore, the values in M[d] are inconsistent
and there is no valid value in M[d] flowing past L2. Triple (M[d], v3, <6, 25>) in
L shows how v3 flows into M[d]. v3 is defined in r[2] at instruction 6 and spilled
to the wrong memory location M[d] at 25. The eviction error is caused by the
wrong spill edit at instruction 25.

3.5 Extensions

Two important extensions to a register allocator are rematerialization [Briggs
et al. 1992, 1994; Chaitin 1982; George and Appel 1996] and register aliasing
[Smith et al. 2004]. This section describes how SARAC supports these exten-
sions.

3.5.1 Rematerialization. Rematerialization improves spill code by recom-
puting values rather than reloading them from memory. The recomputed values
are not touched by the register allocator; only the rematerialized instructions
are moved (usually the instruction ID is changed). Rematerialization is done for
constant expressions in the code, such as integer constants in load-immediate
instructions and address offsets.

To handle rematerialization, our approach is extended to minimally use in-
formation from the allocator. The assumption about strict independence from
the register allocator is relaxed to let the allocator indicate to SARAC the map-
ping information used for rematerialized instructions. The mapping informa-
tion given by the register allocator is not necessarily assumed to be correct. Any
incorrect rematerialization will be exposed and caught by SARAC’s data flow
analyses.

3.5.2 Register Aliasing. Many processor architectures allow registers from
different subregister classes to overlap. Such overlapping registers are defined
as a “register alias set” [Smith et al. 2004]. For instance, the Intel IA-32 has
registers AL and AH in the 8-bit register class. These two registers overlap with
registers AX in the 16-bit register class and EAX in the 32-bit register class.
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The “register alias set” of AL and AH is {AL, AX, EAX} and {AH, AX, EAX}
respectively. The register allocator has to consider the overlap when assigning
subregister classes because a write to a register will destroy the value in any
register of its alias set.

To handle register aliasing, SARAC needs to consider the effects of the “reg-
ister alias set” on the data flow equations. Only a modest modification is needed
to the data flow equation for computing L kill[i]. The computations of ST kill[i]
and E gen[i] are based on the modified L kill[i]. The modification is as follows.

L kill[i] =
{(

l ′, ∗, ∗) ∣∣∣∣ ∀l ′,l ′ ∈ reg alias (l ) ∧(
l ∈ def(i) ∨ (

isCall(i) ∧ isCallerSave(l )
)) }

(16)

The function reg alias(l) returns the register alias set if l is a hardware regis-
ter; otherwise, it returns a set with l itself as the single element.

4. EXPERIMENTS

SARAC was implemented as a tool called ra-analyzer. We used MachSUIF, ver-
sion 2.02.07.15, for the Intel IA-32 [Smith and Holloway]. MachSUIF is SUIF’s
back-end optimizer. A global graph coloring register allocator [George and Appel
1996] is included as a pass in MachSUIF. ra-analyzer is run after register al-
location. We conducted three experiments with ra-analzyer. First, faults were
injected into the allocator’s output to validate ra-analyzer and to explore how
the tool might be used to find bugs. Second, the performance and memory over-
head of the tool was measured. Finally, the scalability of our technique was
investigated.

For the experiments, we used all the benchmarks from SPECint2K, Media-
Bench [Lee et al. 1997], and MiBench that can be compiled by base SUIF. The
functions in the benchmarks span a range of code sizes and complexities. The
experiments were run on a RedHat Linux computer with a 2.4 GHz Pentium 4
and 1GB RAM.

4.1 Fault Injection

We checked if MachSUIF’s allocator causes errors in the benchmarks and found
no errors. There are two possible reasons that there are no errors. First, Mach-
SUIF’s allocator is correct (the ideal situation). Second, it could be that not
enough test programs were used to cover all possible situations for the alloca-
tor. In particular, because many benchmark programs cannot be compiled by
SUIF, there may be latent bugs which are not exposed by the benchmarks that
can be compiled. Indeed, this situation illustrates the dilemma faced by a com-
piler engineer and user. In particular, we believe that ra-analyzer can improve
the confidence in the allocator. It is especially useful for regression tests during
the development of the compiler.

To validate ra-analyzer based on many runs and to illustrate how ra-analyzer
might be used by a compiler engineer, we injected bugs into the output of Mach-
SUIF’s allocator. We used ra-analyzer to find the bugs. The bugs were automat-
ically injected by a “fault injector”. The fault injector made incorrect edits to
the output code, including incorrect register assignment, wrong store/load, and

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 15, Pub. date: April 2010.



Detecting Bugs in Register Allocation • 15:25

Table I. Validation Experiment by Fault Injection

Errors Fault Edits Errors
Benchmarks wrg opnd stale eviction total wrg assn wrg ld wrg st mis ld mis st total Faults
164.gzip 974 482 708 2,164 436 331 355 163 102 1,387 1.56
175.vpr 2,650 1,406 2,644 6,700 1,198 864 980 567 185 3,794 1.77
181.mcf 212 90 318 620 108 83 93 21 4 309 2.01
197.parser 2,732 1,142 2,588 6,462 1,268 1,030 1,035 286 77 3,696 1.75
255.vortex 7,552 2,648 7,903 18,103 3,198 2,245 2,859 1,834 613 10,749 1.68
256.bzip2 693 280 450 1,423 321 210 234 113 48 926 1.54
300.twolf 1,883 1,037 2,145 5,065 813 642 680 382 137 2,654 1.91
FFT 49 19 64 132 24 14 15 9 3 65 2.03
bitcount 136 61 63 260 66 53 60 4 3 186 1.40
dijkstra 51 18 39 108 22 15 22 13 5 77 1.40
sha 79 55 56 190 36 28 32 11 5 112 1.70
stringsearch 84 35 76 195 36 32 33 13 3 117 1.67
jpeg 4,652 2,321 6,485 13,458 2,035 1,634 1,757 638 225 6,289 2.14
adpcm 49 38 35 122 22 21 18 10 5 76 1.61
epic 481 278 420 1,179 213 168 176 78 36 671 1.76
g721 268 115 199 582 115 103 88 18 8 332 1.75
mpeg2 1,836 803 1,652 4.291 856 592 703 343 144 2,638 1.63

missing store/load. For each edit type, the fault injector randomly selected a ba-
sic block to change. An appropriate instruction was selected for a modification,
based on the edit type. If an appropriate instruction could not be located, the
edit was abandoned and a new one was tried. The injector attempted to make
five changes for each edit type, but it sometimes made fewer edits when it could
not find a candidate. Each function in every benchmark had zero to twenty-five
incorrect edits. For each incorrect edit, we know the location and type of errors.

Table I shows the fault injection experiment. Sixty-five to 10,749 total incor-
rect edits were made to the benchmarks. The simpler programs (e.g., FFT) had
the fewest edits, while the more complex ones (e.g., 255.vortex) had the most.
Of the total edits, there were 22–3,198 incorrect register assignment edits, 29–
5,104 wrong store/load edits, and 7–2,447 missing store/load edits. The edits
covered the possible changes to the code described in Section 2.4. The edits
lead to a total of 108–18,103 errors. There were 18–2,648 stale errors, 49–7,552
wrong operand errors, and 35–7,903 eviction errors. When ra-analyzer was ap-
plied on the code, it correctly caught all of the errors without generating any
false positives or negatives, and reported their locations and types. The ratio of
errors to faulty edits was also investigated, with an average of 1.72 across all
benchmarks. This supports the claim that an erroneous edit can be detected as
multiple errors because it can break multiple data dependencies.

As an example, the fault injector changed one register operand to a different
register in the FFT benchmark. In this case, the instruction movl $1, %ecx was
changed to movl $1, %ebx. The register %ecx holds the virtual register $vr12.
When ra-analyzer checked the code, it reported the error message.

addl %ecx, %eax
//Wrong operand - %ecx, "movl $1, %ebx" defined $vr12 in %ebx

From the error message, a compiler engineer can identify what went wrong.
For example, consistently using the wrong register might suggest that liveness
analysis or interference graph construction had a problem. Randomly using a
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Table II. Memory Usage and Performance

# Instructions Memory Usage (KByte) Performance (Sec.)
Benchmarks Total # Funcs Avg. Instrs Avg Max Min ra-analyzer RA Total
164.gzip 17,396 106 164 44.3 553.7 0.2 4.06 3.29 53.30
175.vpr 56,693 300 189 44.5 1,971.9 0.1 13.02 10.95 169.55
181.mcf 4,844 26 186 40.5 230.9 1.0 1.13 0.95 28.14
197.parser 40,677 324 126 43.7 2,147.4 0.1 11.64 7.15 112.89
255.vortex 203,810 923 221 80.6 10,027.1 0.1 53.29 41.78 599.66
256.bzip2 10,680 74 144 48.2 988.1 0.2 3.21 2.30 32.09
300.twolf 99,780 191 522 454.3 9,881.3 0.2 87.95 25.29 307.81
FFT 953 7 136 22.1 77.2 1.9 0.23 0.19 6.65
bitcount 816 15 54 7.2 21.0 1.3 0.10 0.13 12.19
dijkstra 434 6 72 10.9 32.8 0.2 0.07 0.06 1.95
sha 824 8 103 14.4 56.2 5.0 0.15 0.21 4.19
stringsearch 974 10 97 18.0 31.2 0.6 0.17 0.17 10.25
jpeg 82,923 506 164 38.8 925.6 0.1 20.90 17.12 279.54
adpcm 710 5 142 27.7 57.4 9.9 0.12 0.13 5.70
epic 11,452 49 234 88.8 1,935.3 1.0 6.22 4.46 41.49
g721 3,942 28 141 32.8 425.4 3.6 0.79 0.80 13.48
mpeg2 45,995 206 223 67.2 1,920.0 0.2 13.76 10.26 131.44

wrong register suggests that the coloring function might cause the error. With
the information from ra-analyzer, a compiler engineer can use a debugger to
step through the allocator and find bugs.

4.2 Performance and Memory Overhead

Table II shows the memory usage and performance of ra-analyzer for the bench-
marks. The major column “# Instructions” gives the benchmark size. The sec-
ondary column “Total” is the total number of intermediate code instructions
in a benchmark, “# Funcs” is the number of functions, and “Avg. Instrs” is the
average number of instructions per function.

The memory overhead experiment was conducted to ensure that SARAC does
not impose excessively high memory demands due to the collection of its data
flow sets. In Table II, the major column “Memory Usage” gives statistics about
the memory overhead (i.e., the sum of the sizes of L, ST, and E datasets and map-
pings for a function). The average (Avg), maximum (Max), and minimum (Min)
data sizes in kilobytes are presented for the functions in each benchmark. As
expected, MiBench has the lowest memory requirements. These programs have
small functions (e.g., bitcount has an average of 54 instructions in a function),
and as a result, the size of the data flow sets tends to be small. Other pro-
grams, namely 255.vortex and 300.twolf, have larger memory requirements. In
255.vortex, Draw701() needs 10MB because of its large number of intermediate
code instructions (5,228). However, 255.vortex’s average memory requirement is
consistent with the other benchmarks because it has only a few large functions
and many smaller ones. On the other hand, 300.twolf has a relatively small
number of functions that are quite large and complex (varying from 3–4,462
intermediate instructions). As a result, its average memory consumption is the
largest among all programs. In this benchmark, uclosepns() has the maxi-
mum memory overhead (9.8MB) because it has a large number of instructions
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Fig. 10. Compile-time performance overhead versus register allocation.

(4,001) and basic blocks (417). Although it doesn’t have the most instructions in
300.twolf, uclosepns() has the most basic blocks and as a result, it incurs the
most memory overhead. The average memory overhead is 85KB for all bench-
marks. This overhead is minimal and has a small impact on the compiler, given
the many gigabytes of memory available in today’s machines.

Performance experiments were also conducted. These experiments measure
the overhead imposed by checking the register allocation; we need to ensure
that SARAC’s overhead is reasonable enough that it will be useful in practice.
In Table II, the major column “Performance” gives ra-analyzer’s runtime. The
column “ra-analyzer” is the total runtime in seconds for ra-analyzer, the column
“RA” is the runtime for MachSUIF’s register allocator, and the column “Total”
is the runtime for MachSUIF without ra-analyzer. The runtimes are totals
and account for compilation of all functions in a benchmark. The system call
“time()” was used to measure the runtimes. The I/O time for reading/writing
intermediate code was included, which can be significant for MachSUIF.

We summarize the performance overhead from the table in Figure 10. This
figure gives the percentage overhead of ra-analyzer versus MachSUIF’s regis-
ter allocator. The overhead varies from 71%–348%, with an average of 131%.
We expect that the runtime of ra-analyzer should be about the same as the run-
time for the register allocator since both do somewhat similar analysis steps.
In all benchmarks, except 300.twolf and 197.parser, the overhead follows this
expectation, ranging from 71%–139%. In 300.twolf the overhead is 348% and
in 197.parser the overhead is 163%. This higher overhead is due to the use of
iterative data flow analysis in ra-analyzer. In these two benchmarks, there is at
least one complicated function where the data flow sets take a while to converge
due to multiple, deep loop nests.

Figure 11 summarizes the total percentage increase in compile-time when
ra-analyzer is run. The bar labeled “ra-analyzer” summarizes the overhead
relative to the whole compiler runtime from Table II. For most benchmarks,
ra-analyzer’s overhead is less than 10%. In 300.twolf, the total compile-time
overhead is 29% for ra-analyzer due to this benchmark’s complexity as noted
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Fig. 11. Compile-time performance overhead versus full compilation.

before. Figure 11 also shows the total overhead when the eviction information is
not collected. Recall that this information is needed to report errors, rather than
to actually detect errors. As a result, it can be turned off. As the graph shows,
disabling the collection of the eviction set does help ra-analyzer’s performance
somewhat. For example, 300.twolf’s overhead is improved to 27%. However,
the total overhead is not significantly impacted due to the iterative data flow
analysis (it takes the same number of iterations to converge with and without
collecting the E set). Finally, the average overhead relative to total compile-time
is 8% with the E set and 7% without the eviction set. From this experiment, we
conclude that the benefit of ensuring that the register allocation is correct is
worth the small average overhead cost, especially when developing a compiler.

4.3 Scalability

To understand what aspects of SARAC have the largest impact on ra-analyzer’s
performance and memory requirements, we studied its scalability as function
size is increased. The scalability study investigates what are the important
factors that most affect performance and memory usage.

Table III shows memory scalability. For the benchmarks, the functions are
sorted into multiple ranges according to the number of instructions in a func-
tion. “Funcs” is the number of functions in a range. In each range, the average
(Avg), minimum (Min), and maximum (Max) total memory usage (Total) data
in bytes are presented. Correspondingly, the data flow sets (L, ST, and E) and
the mappings contributing to the total memory usage are also presented.

The average values show that the memory usage (Total, Mapping, L, ST,
and E) of ra-analyzer scales well with function body size (Instrs). That is, the
larger function body size, the larger memory consumption, as expected. The
total memory usage and the mappings demonstrate linear scalability. There
are also deviations from this trend. In many ranges, some maximum values are
larger than the corresponding minimum values in the following ranges. These
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Table III. Memory Usage Scalibility of ra-analyzer

# Total Mappings L ST E
Instructions Funcs (byte) (byte) (byte) (byte) (byte) Instrs Opnds Preds Blks

Avg 434 388 34 11 1 5 22 2 3
1–9 121 Min 100 88 12 0 0 2 20 2 3

Max 980 884 60 24 12 9 26 2 3
Avg 6,481 4,398 290 877 915 50 57 9 8

10–99 1,293 Min 880 736 84 60 0 10 26 2 3
Max 21,304 8,420 1,020 5,656 6,208 98 100 29 20
Avg 45,327 20,284 1,077 12,756 11,210 224 193 35 25

100–499 1,109 Min 10,468 9,652 60 396 360 100 68 2 3
Max 232,160 38,948 5,056 86,636 101,520 492 382 169 107
Avg 241,160 63,033 3,125 94,778 80,224 693 552 100 67

500–999 186 Min 64,824 57,784 292 4,724 2,024 519 281 10 9
Max 666,556 87,820 4,464 352,280 221,992 993 820 179 119
Avg 807,285 123,859 5,763 380,416 297,246 1,358 1,056 188 124

1000–1999 50 Min 140,176 120,396 600 9,796 9,384 1,026 1,210 19 15
Max 2,367,520 133,052 10,428 1,395,132 828,908 1,633 1,048 468 283
Avg 2,279,540 225,952 10,849 1,250,763 791,976 2,405 1,928 313 205

2000–2999 18 Min 630,336 217,616 7,388 190,700 214,632 2,206 1,761 204 139
Max 5,252,940 235,104 17,896 3,196,864 1,803,076 2,638 2,238 530 351
Avg 7,513,830 366,500 15,668 4,470,704 2,660,958 3,875 3,941 584 390

3000–3999 2 Min 6,710,252 369,876 14,896 3,473,144 2,852,336 3,965 4,125 563 381
Max 8,317,408 363,124 16,440 5,468,264 2,469,580 3,784 3,756 605 398
Avg 7,500,023 418,027 19,495 4,185,669 2,876,832 4,423 3,834 571 375

4000–5999 5 Min 3,863,508 458,304 18,592 1,941,340 1,445,272 4,462 3,307 369 261
Max 10,027,076 444,476 31,668 4,741,600 4,809,332 5,228 3,184 841 506

deviations are attributed to factors other than the number of instructions in
the functions. These other factors include the number of operands (Opnds), the
CFG complexity, and the characteristics of the live ranges. The CFG complexity
is indicated by the number of basic blocks (Blks), the number of predecessors
(Preds), and the loop nest level. The characteristics of live ranges can be rep-
resented by the interference graph of live ranges. For instance, the maximum
values (i.e., for function table pointer() in 197.parser) of L, ST, E, and Total
in the range 10–99 are larger than the corresponding minimum values (i.e.,
for function usage() in jpeg) in range 100–499. Although these two functions
have similar body size (one has 98 instructions and the other has100), their
CFG complexity are quite different. table pointer() has 20 basic blocks and
each basic block has an average of 1.45 (i.e., 29/20) predecessors, while usage()
has only 3 basic blocks. This difference causes the CFG of table pointer() to
be more complex than usage(). Furthermore, table pointer() has 100 differ-
ent operands in the input intermediate code, but usage() has 68. The study
also shows that the live range interference graph for table pointer() is more
complex than usage().

We also investigated how the data flow sets (L, ST, and E) and the mappings
contribute to total memory overhead. Because ST is a subset of L (see the
data flow equations in Section 3.2), ra-analyzer records stale values only in ST
for efficiency (i.e., L does not record stale values, which are already in ST).
Across the benchmarks, L has the least memory consumption and ST has the
most. L tends to be small (e.g., for uclosepns(), it is 18KB) because of the
relatively small number of locations (operands) that it records. ST, on the other
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Table IV. Performance Scalibility of ra-analyzer

# Instructions Funcs Time (Sec) Iters Instrs Opnds Preds Blks
Avg 0.0006 2 5 22 2 3

1–9 121 Min 0 2 2 20 2 3
Max 0.002 2 9 27 2 3
Avg 0.006 2.3 50 57 9 8

10–99 1,293 Min −0.048 2 32 41 7 6
Max 0.022 4 92 102 18 15
Avg 0.042 2.7 224 193 35 25

1,109 1,109 Min 0.001 3 102 91 19 15
Max 0.21 4 449 616 10 9
Avg 0.21 3.1 693 552 100 67

500–999 186 Min 0.08 2 514 265 34 27
Max 0.67 5 993 820 179 119
Avg 0.64 3.4 1,358 1,056 188 124

1000–1999 50 Min 0.24 2 1,026 1,210 19 15
Max 1.94 5 1,739 1,595 271 175
Avg 2.08 3.8 2,405 1,928 313 205

2000–2999 18 Min 0.72 2 2,206 1,761 204 139
Max 4.47 5 2,826 2,921 164 116
Avg 7.85 5 3,875 3,941 584 390

3000–3999 2 Min 7.10 5 3,965 4,125 563 381
Max 8.61 5 3,784 3,756 605 398
Avg 7.57 4.4 4,423 3,834 571 375

4000–5999 5 Min 4.06 3 4,462 3,307 369 261
Max 10.96 5 4,001 3,909 629 417

hand, tracks stale values. Thus, it is generally quite large (e.g., in uclosepns(),
it is 6.26MB). E is typically moderate in size; in uclosepns(), it is 3.2MB.
The mappings also consume memory, which is proportional to the number of
intermediate instructions and the number of operands. For the benchmarks,
the mappings take 88 bytes to 450KB (average 19KB).

Table IV shows performance scalability. Across the benchmarks, the func-
tions are sorted into multiple ranges according to the number of instructions.
In each range, the average (Avg), minimum (Min), and maximum (Max) run-
times (Time) of ra-analyzer in seconds are reported based on the function
level. The system call “gettimeofday()” was used to measure the time that ra-
analyzer spent on checking each function. The I/O time for reading/writing
intermediate code was excluded from the measurement. “Iters” is the num-
ber of iterations that the iterative data flow analysis step (defAnalysis) of
ra-analyzer takes to converge. “Time” and “Iters” have a close (but not linear)
relationship.

The average values show that the performance of ra-analyzer scales well
with function body size (Instrs). It has a monotonically increasing trend. Simi-
lar to memory scalability, performance also has deviations. In many ranges, the
maximum time is larger than the minimum time in the immediately following
ranges. These deviations are attributed to other factors besides the function
body size, including the number of operands (Opnds) and the CFG complexity.
The linear relationship between “Time” and “Iters” indicates that the CFG com-
plexity is perhaps the most critical factor that affects performance. The reason
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is that the CFG complexity is important in determining how many iterations
the iterative data flow analysis will take to converge. In Table IV, the Max
and Min data in the bottom range happens to the function uclosepns() and
config1() in 300.twolf, respectively. The function uclosepns() takes the most
time (10.96 sec), although it has only 4,001 instructions. It has 15 loop nests
(with a maximum nest depth of 3) and takes up to 5 iterations for the data flow
sets to converge. However, config1() takes much less time (4.056 sec) even
though it has a larger body size (4,462 instructions). This is because config1()
has a less complex CFG (i.e., with fewer deep loop nests).

5. RELATED WORK

The importance of compiler optimization and the error-prone nature of compiler
implementation have led to a number of research efforts related to our work.
These efforts can be categorized into verification of optimization implementa-
tions, static checking of optimization outputs, dynamic checking of optimization
outputs, and data flow analysis in related areas.

5.1 Verification of Optimization Implementations

The research of Lerner et al. [2003] focused on optimization implementations.
It automatically proved the soundness of optimization implementations, where
optimizations are proved correct once and for all, for any input code. How-
ever, this approach requires compiler optimizations to be implemented in a
specific way. A compiler engineer has to use a domain-specific language to
implement optimizations to automate the reasoning about correctness. Opti-
mizations must be expressed as first-order predicates. Furthermore, the input
code to the optimizations needs to be written in a subset of the domain-specific
language. For predicates to be proved automatically by a theorem prover, the
domain-specific language is strict and limited compared with a general-purpose
language such as C. With such a domain-specific language, it is difficult to ex-
press advanced data structures in complicated optimizations, including reg-
ister allocation. In their later work [Lerner et al. 2005], the domain-specific
language expresses optimizations using explicit data flow facts manipulated
by local propagation and transformation rules. Lee [2003] presents a register
allocation framework and formally verifies it with an inductive theorem prover.
In this work, the verification of the register allocator’s implementation is not
introduced.

5.2 Static Checking of Optimization Outputs

Several research efforts suggested statically checking the output code of an
optimization against the input code [Barthe et al. 2006; Blech and Gregoire
2008; Leroy 2006; Li et al. 2007; McNerney 1991; Nandivada et al. 2007;
Necula 2000; Necula and Lee 1998; Pereira 2006; Pnueli et al. 1998; Rinard
1999; Rival 2004]. In these works, the semantic equivalence between the input
and the output code is automatically checked. These techniques guarantee the
correctness of the output code, and therefore, improve the reliability of the
optimization implementation. However, the range of optimizations that can

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 4, Article 15, Pub. date: April 2010.



15:32 • Y. Huang et al.

be handled is typically limited. Pnueli et al. [1998] and Rinard [1999] do not
consider register allocation in their work. Another similar project [Rival 2004]
also does not consider aggressive optimizations, including register allocation.
This work checks the semantic equivalence between the source and compiled
programs in one pass while our work focuses on register allocation to identify
and report detailed information about bugs. Leroy [2006], McNerney [1991],
Necula [2000], Nandivada et al. [2007], and Pereira [2006] have examined how
to check the register allocator’s output code.

Leroy’s work [2006] formally certifies a compiler backend including register
allocation by using Coq proof assistant. When certifying register allocation cor-
rectness, it relies on the register allocator to give correct mapping information.
This reliance may reduce certification confidence. Our approach does not rely
on the register allocator to provide correct mapping information even when
extended to support rematerialization.

The approach of McNerney [1991] checks several optimizations includ-
ing register allocation. They implemented a specialized program equivalence
prover for the domain of assembly language programs emitted by the Con-
nection Machine Fortran compiler and targeted for the CM-2. Using abstract
interpretation, the prover removes details such as register and stack usage, as
well as evaluation order within functional blocks, thereby reducing the prob-
lem to a trivial tree comparison. The symbolic values of the register allocator’s
input and output code are compared at block boundaries to detect mismatches.
However, it detects mismatching values without gathering information about
the cause of mismatches. This approach applies only to a restricted domain of
programs. Evaluation data is not presented.

The approach of Necula [2000] also can handle several optimizations includ-
ing register allocation. However, this approach reports false alarms and can
have high compile-time overhead (about four times). This approach is based
on symbolic evaluation. Simulation relations are used to describe under what
conditions two program fragments are equivalent. The mismatching symbolic
values are reported without collecting the information for investigating the
cause of mismatches. However, the error causes are valuable to isolating
allocator bugs.

Nandivada et al. [2007] propose a framework for designing, verifying, and
evaluating register allocation algorithms. A major component of their frame-
work is a type checker that checks the output of a register allocator to help
find bugs and to prove the soundness of the type system. Our work focuses on
checking the value flow consistency of register allocation.

The work by Pereira [2006] presents a collection of data flow algorithms that
statically validate the data flow semantic consistency of register allocation.
This work formalizes the concept of semantic consistency of register allocation
based on a simplified register allocation model. The soundness of the approach
is proved. However, the simplified model does not include advanced register
allocation functions, like register coalescing. It also does not consider the case
that two live ranges of the same variable are allocated to different registers at
a merge point. Although the author implements the technique, experimental
data is not presented.
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By focusing on register allocation, SARAC can exploit properties of the allo-
cation process (e.g., the property that def-use pairs are preserved in the output).
As a result, our approach is precise and fast (average compile-time overhead
is 8%). Our approach reports causal information about errors in the register
allocator’s output code, including value flow error types and locations. This in-
formation can be used to help track down the bug in the register allocator that
caused the error.

5.3 Dynamic Checking of Optimization Outputs

Jaramillo et al. [2002] proposed to dynamically check the register allocator’s
output code with annotations. Annotations are inserted by the compiler in both
the input and output code of the register allocator. Programs with and without
register allocation are run at the same time and the corresponding values from
the two programs are compared at the annotated instructions. Errors are re-
ported when the values differ. However, unlike SARAC, this dynamic approach
can not guarantee 100% coverage of a program; some errors along a specific
path may not be detected. With this approach, the program must be run many
times under different test data inputs to ensure a good coverage. Although they
described this approach, it is not implemented and evaluated.

5.4 Data Flow Analysis in Related Areas

Data flow analysis has been used to check/verify program properties, which
are related to our approach. The work by Dwyer and Clarke [1994] used data
flow analysis to verify concurrent code properties. However, their work does not
check the correctness of register allocation. Data flow analysis has also been
applied to source-level debugging, including debugging code optimized with
register allocation [Adl-Tabatabai and Gross 1993, 1996; Jaramillo et al. 2002;
Wismueller 1994]. Jaramillo et al. [2002] used data flow analyses, including
reachability and postdominance, to determine where and what annotations to
use in their comparison checking techniques for optimized code. Adl-Tabatabai
and Gross [1993, 1996] considered the aspects of global register allocation on
the residency problem, which determines if a variable is in its assigned register
at a breakpoint. Wismueller [1994] also utilized data flow analysis to ensure the
correct debugger behavior with optimized programs, including register alloca-
tion. Compared with SARAC, these approaches use data flow analysis to relate a
runtime value to a source variable, allowing the source program to be debugged.
SARAC is used to check the correctness of the register allocator’s output code.

6. SUMMARY AND FUTURE WORK

This article describes SARAC, which is a new approach to catch and identify
bugs in register allocation. The approach statically checks that the value flow
of the input code to the register allocator is maintained in the output code,
given that the register allocator performs limited code edits (including regis-
ter coalescing). SARAC is accurate and fast. The approach can be extended to
handle rematerialization and register aliasing. A prototype tool (ra-analyzer)
shows that our approach has minimal compile-time and memory overhead. The
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performance and memory usage of ra-analyzer scale well with function body
size, number of operands, and CFG complexity.

A goal for future work is to make ra-analyzer stand-alone so that it can
be used with other compilers and machine architectures. To achieve this goal,
SARAC will need to support more register allocators and register file struc-
tures, particularly ones that allow predication or have irregular register types.
We also plan to more fully support type and architectural constraint checking.
This support is important because types and architectural constraints can be a
common error source in a register allocator. Another issue is how to connect the
tool to different compilers and intermediate representations. A final issue in
making SARAC stand-alone is to develop a way to describe machine-dependent
information to the tool about the registers.
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