
Dimension: An Instrumentation Tool
for Virtual Execution Environments

Jing Yang Shukang Zhou Mary Lou Soffa

Department of Computer Science, University of Virginia

{jy8y, zhou, soffa}@cs.virginia.edu

ABSTRACT
Translation-based virtual execution environments (VEEs) are
becoming increasingly popular because of their usefulness. With
dynamic translation, a program in a VEE has two binaries: an
input source binary and a dynamically generated target binary.
Program analysis is important for these binaries, and both the
developers and users of VEEs need an instrumentation system to
customize program analysis tools. However, existing
instrumentation systems for use in VEEs have two drawbacks.
First, they are tightly bound with a specific VEE and thus are
difficult to reuse without a lot of effort. Second, most of them can
not support instrumentation on both the source and target binaries.

This paper presents Dimension, a flexible tool that provides
instrumentation services for a variety of VEEs. To our knowledge,
it is the first stand-alone instrumentation tool that is specially
designed for use in VEEs. Given an instrumentation specification,
Dimension can be used by a VEE to provide customized
instrumentation, enabling analyses on both the source and target
binaries.

We present two case studies demonstrating that Dimension can
be reused easily by different VEEs. We experiment with the two
cases and show that the same instrumentation provided by
Dimension does not lose efficiency compared to its manual
implementation for that particular VEE (the average performance
difference is within 2%). We also illustrate that by interfacing
with a special VEE that has the same source and target binary
formats, Dimension can be used to build an efficient dynamic
instrumentation system for traditional execution environments.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors – code generation, compilers,
optimization, run-time environments

General Terms Performance, Design, Experimentation

Keywords Virtual Execution Environment, Dynamic Translation,
Instrumentation, Program Analysis Tool

1. INTRODUCTION
Over the last decade, interest in virtual execution environments
(VEEs) has been growing with the increased recognition of their
usefulness and power. A VEE provides a self-contained operating
environment that facilitates programmatic modification of an

executing program for diverse purposes, such as architecture-
portability [9, 23], performance [2, 3, 14], instrumentation [15, 16,
18], security [19], and power consumption [6]. Many VEEs
execute applications by using software dynamic translation, which
has the potential to produce high quality code and to utilize
resources efficiently. With dynamic translation, a VEE
simultaneously handles two different binaries: an input source
binary that is typically translated at runtime and a dynamically
generated target binary that is executed on the host CPU. Our
focus in this paper is on translation-based VEEs.

Similar to traditional execution environments, program
analysis is an important technique for both the source binary and
the target binary of a VEE. Instrumentation, which inserts extra
code into a program for profiling, monitoring, and controlling
execution, is a widely used technique for enabling program
analysis on binary code. Many instrumentation systems have been
developed to customize program analysis tools for traditional
execution environments. Static instrumentation systems
manipulate a statically compiled program before program
execution [22]. These systems are unable to handle the target
binary in a VEE because the target code is generated on-the-fly
during program execution. In contrast, dynamic instrumentation
systems directly instrument executable code by deferring
instrumentation until runtime [4, 5, 15, 16, 18, 21]. However,
existing systems only instrument code that is executable on the
host CPU and thus are unable to handle the non-executable source
binary in a VEE, such as a Java bytecode program. Some research
efforts have been expended on instrumentation in VEEs. For
example, Jazz instruments Java programs for structural testing and
JRat instruments Java bytecode for runtime analysis [17, 10].
However, these systems are tightly bound with a specific VEE
(e.g., Jazz depends on the Java virtual machine) and usually can
not instrument both the source and target binaries (e.g., JRat only
instruments Java bytecode), limiting their use.

Thus, an instrumentation tool that is stand-alone and can
instrument both the source and target binaries would be valuable
to both the developers and users of VEEs. VEEs execute on
different architectures and are written in different languages.
Their source and target binaries have different formats from one
VEE to another. What is needed is an instrumentation tool that
can be reconfigured to different requirements. In order to develop
a stand-alone instrumentation tool for VEEs, details of both
instrumentation and virtual execution need to be abstracted.

In this paper, we present Dimension, a tool that provides
instrumentation services for VEEs. The objective for Dimension
was to build a flexible and efficient instrumentation tool that can
be used by a variety of VEEs. Given an instrumentation
specification, Dimension can be used by a VEE to provide
customized instrumentation, enabling analyses on both the source
and target binaries. The design of Dimension identifies the few
components of VEEs that need to communicate with an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
VEE’06 June 14–16, 2006, Ottawa, Ontario, Canada.
Copyright © 2006 ACM 1-59593-332-6/06/0006…$5.00.

instrumenter and develops interfaces between the VEE and
Dimension. Dimension is designed to be both flexible and
comprehensive.

Flexibility. The effort to use Dimension with diverse VEEs is
minimal. It is straightforward to modify a VEE to use Dimension,
and Dimension can be easily reconfigured to interface with VEEs
running on different architectures and written in different
programming languages.

Comprehensiveness. Dimension can instrument both the source
and target binaries of a VEE. Instrumentation can be done at
various levels of granularities from instruction level to method
level.

Ease-of-use and efficiency are two other properties that were
important in the development of Dimension.

Ease-of-Use. Dimension is transparent to the instrumentation
users. Its user-model is similar to ATOM [22] and Pin [15].

Efficiency. Optimization techniques for instrumentation are
applied in Dimension with the result that the slowdown from
instrumentation is reasonable, compared to other instrumentation
tools.

The particular contributions include:

• The first stand-alone instrumentation tool for VEEs that is able
to instrument both the source and target binaries at various
levels of granularities.

• Simple interfaces between VEEs and Dimension with a VEE
providing information readily available.

• Two approaches to reconfigure when Dimension is used for a
new architecture or with a new programming language.

• Two case studies and experiments demonstrating the flexibility
of using Dimension without losing instrumentation efficiency.

• Extension of the use domain of Dimension to build efficient
dynamic instrumentation systems for traditional execution
environments.

The remainder of the paper is organized as follows. The next

section discusses the design decisions of this work, and section 3
describes Dimension. Section 4 discusses some implementation
issues, and Section 5 demonstrates the use of Dimension in two
VEEs. Section 6 then evaluates Dimension in both cases. Section
7 discusses future work and Section 8 surveys related work.
Finally Section 9 concludes this paper.

2. DESIGN DECISIONS
Although much work has been done on program instrumentation
in the past decade, interesting issues arise when we consider
instrumentation in a VEE, because of the dynamic nature of the
execution environment. The section discusses the design of
Dimension, including the paradigm used and its relation with
VEEs.

2.1 Paradigm
Three basic approaches to instrument applications in a VEE are
illustrated in Figure 1. Paradigm (a) implements instrumentation
inside a VEE, intermixing the code for virtual execution and the
code for instrumentation. The VEE often needs significant
modification, and more importantly, the code for instrumentation
is difficult to separate and reuse for other VEEs.

Figure 1. Three possible paradigms to perform instrumentation in

a VEE.

Paradigm (b) implements an instrumentation system as another

VEE. For example, Pin, a dynamic instrumentation system, is
implemented as a translation-based VEE [15]. In this paradigm, a
VEE executes applications on top of the instrumentation system.
The instrumentation system perceives and translates every
instruction executed by the application as well as those by the
VEE to add instrumentation during translation. It is able to
distinguish application code from the VEE code with hints from
the VEE. This paradigm, however, has high runtime overheads.
All of the application code needs to be translated by the VEE and
then translated again by the instrumentation system before
actually being executed on the host CPU. In addition, a VEE’s
code needs to be translated by the instrumentation system, even if
no instrumentation is needed for the VEE code. Extra time and
space are consumed by the unnecessary translation. In addition to
the extra translation overhead, this paradigm introduces extra
context-switches. Every context-switch in normal virtual
execution now becomes two context-switches: one is between the
application and the VEE, and the other is between the VEE and
the instrumentation system.

Paradigm (c) develops the instrumentation system as a separate
tool, which provides instrumentation services to VEEs through
specific interfaces. Compared to paradigm (a), the separate
instrumentation module can be employed by other VEEs.
Compared to paradigm (b), the instrumentation module in this
paradigm that directly changes the code in VEEs’ code cache does
not introduce the extra translation and context-switches. Since our
goal is to have a separate instrumentation tool that can be used by
a variety of VEEs, Dimension uses paradigm (c).

2.2 Instrumentation in VEEs
The relationship with VEEs is critical for the design of Dimension.
We briefly review the inherent structure of a typical VEE, and
then investigate how virtual execution affects instrumentation. We
also discuss our decisions regarding these issues.

As shown in Figure 2, a typical VEE has five conceptual
modules: (1) an initializer that sets up the entire environment
when program execution starts; (2) a translator that translates the
source binary to the target binary, one code fragment (called a
translation unit) at a time; (3) a code cache that stores the target
binary for execution; (4) a dispatcher that decides whether the
target code of a desired code segment can be directly executed
(when it is available in the code cache) or to invoke the translator;
and (5) a finalizer that cleans up the environment when program
execution terminates.

VEE with
Instrumentation

Application

OS + Hardware
(a)

Application

OS + Hardware
(b)

VEE
Instrumentation

Application

OS + Hardware
(c)

VEE Instrumentation

Figure 2. Conceptual modules in a typical VEE.

To avoid interfering with a VEE’s code generation and code

cache management mechanisms, Dimension uses the probe-based
instrumentation technique, replacing a program’s binary
instructions with jumps to invoke the instrumentation code [11].
Therefore, a VEE needs to provide the location of both the source
and target code to Dimension, and Dimension then can analyze
the instructions and make instrumentation decisions according to
an instrumentation specification.

When a user wants source binary instrumentation, one
approach actually instruments source binary before translation and
the instrumented code is then translated and executed. Extra
translation overhead is paid for instrumentation code in this
approach. Another scheme modifies the target binary after
translation, since the effects of source binary instrumentation can
always be achieved by instrumenting the corresponding target
binary. This method requires the mapping from the source
instructions to the target instructions, and a VEE needs to provide
the source-to-target mapping to the instrumentation system.
Compared to the first approach, the second method avoids the
extra translation overhead, but has more communication overhead.
Dimension uses the second approach for simplicity. Therefore, it
requires the VEE to provide the source-to-target mapping when
source binary instrumentation is needed.

Moreover, on variable-length ISAs, if the VEE uses a multiple-
entry translation unit, Dimension has to identify the basic blocks
that the unit comprises. On a variable-length ISA, the probe-based
instrumentation technique used by Dimension requires that the
code unit being instrumented (called an instrumentation unit) is
single-entry as will be explained in Section 4.1. VEEs’ translation
units, however, do not always possess this property. The
translation units in most modern VEEs fall into four classes: an
instruction, a basic block, a superblock, or a method. For the
VEEs using an instruction, a basic block, or a superblock as a
translation unit, the translation unit is naturally an instrumentation
unit as well. For those using a method as a translation unit, the
VEEs often have the basic block information of the method for its
virtual execution purpose (e.g., Jikes RVM [1]). In our design,
therefore, a VEE needs to transmit identification of basic blocks
to Dimension, which can use the identification to partition a
translation unit into a series of single-entry instrumentation units.

The location of the source and target binaries, the source-to-
target mapping, and the identification of basic blocks (if
applicable) are what Dimension needs from a VEE. In many cases
it is straightforward for a VEE to provide them, because they are
either readily available for virtual execution purpose or easily
retrieved using existing information.

2.3 Instrumentation Specification
For ease of use, the user-model for Dimension is similar to
ATOM [22] and Pin [15]. The user writes an instrumentation
specification that includes analysis routines and instrumentation
routines. Analysis routines are invoked when execution hits
certain program points. Instrumentation routines specify
instrumentation policies including where to place calls to analysis
routines, what arguments are passed, and tasks to be performed at
the beginning and the end of program execution. Dimension
allows arbitrary analysis routines and provides APIs for users to
write instrumentation routines.

Figure 3. Instrumentation specification routines.

We use a basic block tracing tool to demonstrate the ease of

using Dimension. Figure 3 is the instrumentation specification
that a user would write to print a trace of addresses for every
dynamically executed basic block in the source binary in a VEE.
Instrumentation routine DIM_ProgramBegin (lines 3-8) is a
function that is called when the program starts to initialize
instrumentation. It opens the trace file and uses API
DIM_InsertBBCall (lines 6 and 7) to inform Dimension a
basic-block-level instrumentation policy. This policy is for source
binary instrumentation (specified by SOURCE) that inserts a call
to the analysis routine record_bb at the entry (specified by
ENTRY) of every basic block. The address of the basic block
(specified by ARG_BB_ADDR) is passed as an argument.
DIM_ProgramEnd (lines 10-13), another instrumentation
routine, is called when the program ends to perform tasks needed
to complete instrumentation. Lines 15-18 are the definition of the
analysis routine record_bb, which prints the address of a basic
block to the trace file.

Although the example only shows fairly simple
instrumentation, Dimension has been used to build various
complex program analysis tools, such as hardware cache
simulators and program structure testers.

Note that the code works with any VEE that uses
instrumentation services from Dimension. The user does not need
to know how the target binary is generated, what the granularity
of a translation unit is, or how the code cache is managed. In
addition, the code also works regardless of which architecture the
VEE is running on and which programming language is used to
implement the VEE.

1 FILE *trace;
2
3 // Called when program begins
4 EXPORT void DIM_ProgramBegin() {
5 trace = fopen("trace.out", "w");
6 DIM_InsertBBCall(SOURCE, ENTRY,
7 FUNCPTR(record_bb), ARG_BB_ADDR, ARG_END);
8 }
9
10 // Called when program ends
11 EXPORT void DIM_ProgramEnd() {
12 fclose(trace);
13 }
14
15 // Print a basic block record
16 void record_bb(void *addr) {
17 fprintf(trace, "%p\n", addr);
18 }

3. DIMENSION
This section presents Dimension, which follows the design
described in the previous section. We first discuss the component
organization of Dimension. We then describe its simple
communication interfaces that interact with VEEs. We also
discuss Dimension’s instrumentation mechanism. We conclude
this section by discussing how to reconfigure Dimension when it
is used (1) on a new architecture and (2) with a VEE that is
implemented in a different language than the one used to
implement Dimension.

3.1 Component Organization
We decompose Dimension into two groups of components. One
group interfaces with a VEE and the second group is VEE-
transparent. Figure 4 shows the component organization of
Dimension as well as how components communicate with a VEE.

Figure 4. Interfaces between Dimension and a VEE.

3.1.1 Components that Interface with VEEs
Dimension has three components that interface with VEEs. A
VEE needs to know how to pass information to employ
Dimension, including formats, which turn out to be fairly simple.
Note that although the three components are relevant to VEEs,
they are VEE-independent, requiring no modification when
Dimension is reused with a new VEE.

• Initialization Assistant. The execution of the initialization
assistant is triggered by a VEE’s initializer, as shown in Figure
4. It sets up Dimension at the beginning of program execution.
It also loads the instrumentation specification and stores it in
Dimension, so that Dimension can instrument programs
according to the specification.

• Instrumentation Assistant. As shown in Figure 4, the
instrumentation assistant receives code segments with relevant
information from a VEE’s translator. It also prepares for actual
instrumentation (the preparation will be further discussed in
Section 3.3). The instrumentation assistant is triggered
immediately after the VEE translates a translation unit. Starting
from the instrumentation assistant, Dimension instruments the
code right after translation, which not only guarantees that all
dynamically executed code is instrumented, but also handles
self-modifying code as long as the code is re-translated by the
VEE. Communication at this point also avoids interfering with
the VEEs’ code generation mechanism.

• Finalization Assistant. As Figure 4 shows, the finalization
assistant is invoked by a VEE’s finalizer. It cleans up
Dimension at the end of program execution. It also finalizes
instrumentation results, such as writing instrumentation results
to a file.

3.1.2 Other Components
Besides the above three components, Dimension has other
components that do not interface with the VEE. They include:

• Instrumenter. Invoked by the instrumentation assistant, the
instrumenter instruments the code received from the
instrumentation assistant according to the instrumentation
specification.

• Auxiliary Code Cache. The auxiliary code cache stores
instrumentation code generated by Dimension.

• Instrumentation Repository. The instrumentation repository
maintains information that is used for instrumentation purposes,
such as instrumentation specification and source-to-target
mapping.

The instrumenter, in particular, is the only architecture-

dependent component, which needs to be modified when the
format of the source binary or the target binary is changed.

3.2 Communication Interfaces
Dimension works as an independent module with well-defined
interfaces to communicate with VEEs. We minimize the
communication interfaces in terms of both the number and
complexity. On the other hand, the interfaces have to convey
sufficient information so that Dimension is able to accomplish
comprehensive instrumentation, such as instrumenting arbitrary
instructions in a binary. As Figure 4 shows, three Dimension
components (the initialization assistant, the instrumentation
assistant, and the finalization assistant) communicate with three
VEE modules (the initializer, the translator, and the finalizer)
through three interfaces.

3.2.1 Interface InitDimension
A VEE calls the InitDimension interface to trigger the
initialization of Dimension. In particular, as shown in Figure 4,
the VEE’s initializer uses it to invoke Dimension’s initialization
assistant. The format is as follows.

void InitDimension();

This interface is quite simple, requiring no parameters.

3.2.2 Interface StartInstrumentation
A VEE calls the StartInstrumentation interface to pass a
translation unit to Dimension, which then immediately
instruments this translation unit. In particular, as shown in Figure
4, the VEE’s translator uses it to invoke Dimension’s
instrumentation assistant. The format is as follows.

void StartInstrumentation

(addr src_start, addr src_end,
 addr tgt_start, addr tgt_end,
 src_to_tgt_mapping map, bb_info bb);

StartInstrumentation needs six parameters: (1) the
start address, (2) the end address of the source binary code of the
translation unit, (3) the start address, (4) the end address of the
target binary code of the translation unit, (5) the source-to-target
mapping information, and (6) the identification of basic blocks in
the translation unit. While the first four parameters are always
readily available, the other two need more consideration.

Identification of basic blocks is needed only if the VEE
executes on a variable-length ISA, and it uses a multiple-entry
translation unit. For VEEs that translate from machine code to
machine code, the translation unit is usually single-entry (e.g., a
single instruction, a basic block, or a super block). For VEEs that
translate from some intermediate representation to machine code,
the translation unit can be multiple-entry, typically a method or a
function. In these cases, information to partition the unit into basic

blocks is always maintained by the VEE for virtual execution
purpose (e.g., Jikes RVM uses basic block information to perform
garbage collection [1]).

Source-to-target mapping information is needed when applying
source binary instrumentation. For instructions in the source
binary and target binary, the mapping can be many-to-one, one-to-
many or one-to-one. If a VEE has not already provided it, the
VEE developer needs to add the functionality to support
Dimension. A challenge in maintaining the exact mapping
information comes from a VEE’s code optimization, which may
move instructions (e.g., scheduling and partial redundancy
elimination) or alter the control flow structure using code
replication (e.g., function inlining and loop unrolling). Previous
work has shown that for most classical optimizations (e.g., loop
transformations), the exact mapping information from un-
optimized code to optimized code can be achieved, except dead
statements (which apparently need no instrumentation) [7, 8].

3.2.3 Interface FinalizeDimension
A VEE calls the FinalizeDimension interface to trigger the
finalization assistant of Dimension. In particular, as shown in
Figure 4, the VEE’s finalizer uses it to invoke Dimension’s
finalization assistant. The format is as follows.

void FinalizeDimension();

This interface is also quite simple, requiring no parameters.

3.3 Instrumentation Mechanism
With the knowledge of Dimension’s component organization and
its interfaces with VEEs, we now discuss the instrumentation
mechanism, and Figure 5 and 6 show its key algorithms. We start
the discussion by addressing target binary instrumentation,
followed by source binary instrumentation. We then present
several approaches in Dimension to reduce the slowdown of
instrumentation.

3.3.1 Target Binary Instrumentation
We emphasize the parts in our algorithms that are relevant to
target binary instrumentation in this sub-section. When program
execution begins, the VEE’s initializer triggers the execution of
Dimension’s initialization assistant. The initialization assistant
loads the instrumentation specification and stores it in the
instrumentation repository.

During program execution, every time after the VEE translates
a code segment, Dimension’s instrumentation assistant is invoked
through StartInstrumentation, whose pseudo-code is
shown in Figure 5. If the translation unit is multiple-entry, line 6
partitions the translation unit into a series of single-entry basic
blocks, using the identification of basic blocks provided by the
VEE. Lines 8-16 then pass the target binary code to the
instrumenter, one single-entry code segment (as an
instrumentation unit) at a time.

Figure 6 shows InstrumentUnit, which instruments each
single-entry unit. The instrumenter scans the target instructions,
finds appropriate ones according to each instrumentation policy
stored in the instrumentation repository, and then generates a
preliminary instrumentation plan (lines 17-25). The plan includes
the target instructions to be instrumented, the associated analysis
routine, and the arguments to be passed. On line 27, the
preliminary plan is optimized for efficiency (details of
optimization will be discussed in Section 3.3.3).

Figure 5. StartInstrumentation algorithm.

Figure 6. InstrumentUnit algorithm.

Once an optimized instrumentation plan is generated,

Dimension performs actual instrumentation (lines 28-32). As
discussed earlier, Dimension does not interfere with VEEs’ code
cache management. Therefore, it cannot shift or extend code in
VEEs’ code cache. To instrument a target instruction, the
instrumenter replaces it with a jump that branches to a trampoline.
A trampoline is a code sequence that performs a context-switch,
prepares the parameters to be passed to analysis routines, and
transfers control to analysis routines. It also executes the replaced
instruction. In this way, when execution hits the instrumented
location, it follows the trampoline to execute the analysis routines
with all parameters and context properly maintained. A jump and
its associated trampoline are a probe. The trampolines are stored
in Dimension’s auxiliary code cache, and thus they do not
interfere with VEEs’ code cache management.

When program execution terminates, the VEE’s finalizer
invokes Dimension’s finalization assistant. The finalization

1 InstrumentUnit(addr usrc_start, addr usrc_end,
2 addr utgt_start, addr utgt_end) {
3
4 p = load_policy(repository);
5 if(p needs source instrumentation) {
6 map = load_mapping(repository);
7 foreach source insn si between
8 usrc_start and usrc_end {
9 if(si belongs to p.where) {
10 ti = map_tgt(map, si);
11 record_plan(plan_pool, ti.addr,
12 p.analysis_routine, p.parameter);
13 }
14 }
15 }
16
17 if(p needs target instrumentation) {
18 foreach target insn ti between
19 utgt_start and utgt_end {
20 if(ti belongs to p.where) {
21 record_plan(plan_pool, ti.addr,
22 p.analysis_routine, p.parameter);
23 }
24 }
25 }
26
27 opt_plan_pool = opt_plan(plan_pool);
28 foreach optimized plan op in opt_plan_pool {
29 trampoline = gen_trampoline
30 (op.analysis_routine, op.parameter);
31 replace_jump(op.addr, trampoline);
32 }
33 }

1 StartInstrumentation(addr src_start,
2 addr src_end, addr tgt_start, addr tgt_end,
3 src_to_tgt_mapping map, bb_info bb) {
4
5 store_mapping(map, repository);
6 bbs[] = partition_bb(src_start, src_end, bb);
7
8 foreach basic block b in bbs[] {
9 <usrc_start, usrc_end> =
10 get_bb_boundary(b, <src_start, src_end>);
11 <utgt_start, utgt_end> =
12 get_bb_boundary(b, <tgt_start, tgt_end>,
13 map);
14 InstrumentUnit(usrc_start, usrc_end,
15 utgt_start, utgt_end);
16 }
17 }

assistant completes instrumentation and records the result
according to the instrumentation specification.

3.3.2 Source Binary Instrumentation
The process of source binary instrumentation is quite similar to
that of target binary instrumentation, except that it needs several
more steps to locate where to instrument. We emphasize the parts
of our algorithms that are exclusively relevant to source binary
instrumentation in this sub-section. When Dimension’s
instrumentation assistant is invoked, it first stores the source-to-
target mapping in the instrumentation repository (line 5 in Figure
5), then passes the code (both the source binary and the target
binary) to the instrumenter, one single-entry code segment at a
time (lines 14-15 in Figure 5). When the instrumenter receives an
instrumentation unit, it scans the source instructions, finds
appropriate ones according to the instrumentation specification
(stored in the instrumentation repository), and uses the source-to-
target mapping (also stored in the instrumentation repository) to
locate the corresponding target instructions that should be
instrumented (lines 7-10 in Figure 6). After this point, source
binary instrumentation is the same as target binary
instrumentation.

3.3.3 Optimizing Instrumentation
As suggested by [12, 13, 15], most of the slowdown from
instrumentation is caused by executing the instrumentation code.
Therefore, after a preliminary instrumentation plan is generated,
Dimension optimizes it to reduce the overhead of instrumentation
code. The optimization techniques are applied automatically in a
similar manner as conventional compiler optimization techniques.
In probe-based instrumentation technique, the overhead of
instrumentation code includes the time (1) to execute the jump
which branches to the trampoline, (2) to perform the context-
switch, (3) to transfer control to analysis routines, and (4) to
execute analysis routines. Dimension uses different techniques
that have been shown effective to improve them.

To lower the first overhead, Dimension uses probe coalescing
to reduce the number of the jumps that branch to trampolines [12].
For each instrumentation unit (a single-entry code segment), the
probe coalescing technique combines separate probes into a single
one, keeping exactly the same functionality (i.e., all the analysis
routines of the previously separate probes are now invoked in the
combined probe's trampoline in the same order). Note that, if
arguments need to be passed to the analysis routine, probes can be
coalesced only if all the parameter values remain available.

The context-switch overhead can be reduced by partial context-
switch. Dimension first analyzes analysis routines to determine a
partial context (i.e., registers in most platforms) that may actually
be used in analysis routines. During instrumentation, Dimension
only generates code to save and to restore this partial context. The
overhead to maintain unused context can thus be saved.

Dimension also inlines analysis routines into trampolines to
reduce the overhead of transfer of control from trampolines to
analysis routines. Currently, we only inline short analysis routines
to avoid code expansion.

Finally, for overhead (4), executing analysis routines,
Dimension is able to invoke a light-weighted binary-to-binary
optimizer to improve analysis routines’ code quality at runtime.

As our experiments demonstrated, these optimizations greatly
reduce the slowdown of instrumentation. Moreover, these
improvement techniques are quite consistent with our objective (a
flexible tool that provides instrumentation services to VEEs).
Similar to a compiler, Dimension automatically performs these

optimization techniques to any instrumentation specified by users,
and the application is transparent to the executing VEE or VEE
user.

3.4 Reconfiguring Dimension
Dimension has the flexibility to work with a variety of VEEs.
However, as for many binary-level systems, it has to be
reconfigured to be used. Among its six components, the
instrumenter directly handles binaries and thus is architecture-
dependent. The initialization assistant, the instrumentation
assistant, and the finalization assistant communicate with VEEs,
so they are sensitive to the language that implements the VEE’s
initializer, translator, and finalizer. The other two components (the
auxiliary code cache and instrumentation repository) are generic
and do not need modification.

3.4.1 For New Architectures
A binary-level instrumentation system is architecture-dependent,
because it must understand (decode) and modify (encode) binary
instructions. In particular, Dimension must be able to decode both
the source and target binaries, and be able to encode the target one.
Therefore, we need a new version of Dimension when the format
of either the source or the target binary changes.

To facilitate reconfiguration, we develop a binary-editing
utility library for each expected binary format. A library is
associated with a binary format, and can be used regardless of
whether the format is the source binary or the target binary in a
VEE. Binary-editing utility libraries provide general binary
rewriting services to Dimension, such as decoding, encoding,
generating, and replacing binary instructions. Dimension’s source
code uses these utility library calls, instead of directly handling
binary instructions. When Dimension needs to be reconfigured to
a new architecture, we only need to implement those utility
library functions for the new architecture, while the source code
of Dimension does not need change, which effectively reduces the
reconfiguration efforts.

3.4.2 For New Languages Used in VEE Implementation
Dimension is currently written in the programming language C. C
is used to implement many VEEs, and these VEEs can use
Dimension through the three communication interfaces (i.e., three
functions written in C). However, Dimension needs some
reconfiguration if a VEE is written in a language that cannot
directly call functions written in C. For example, the translator in
Jikes RVM [1] is written in Java that cannot call C functions
directly.

Fortunately, most languages provide some mechanism to call C
functions. Java, for example, is able to call C functions through Java
Native Interface (JNI). When reconfiguring Dimension for a new
language, we only need write three stub functions using the
language’s “native interface”. The first stub function
(InitDimensionStub) is to call InitDimension; the
second one (StartInstrumentationStub) wraps
information received from the VEE into required parameters and
calls StartInstrumentation; and the third one
(FinalizeDimensionStub) is to call
FinalizeDimension. VEEs written in the new language are
able to call the three stub functions, getting through the interfaces
indirectly.

We avoid re-writing the interfaces (C functions) by writing
new stub functions that are simple and easy to write. The stub

function for Java to call InitDimension, for instance, is as the
following.

JNIEXPORT void JNICALL
Java_Initializer_InitDimensionStub(JNIEnv *env,
 jobject jobj) {
 InitDimension();
}

Note that the number of architectures and programming

languages is limited while the number of VEEs is growing. As
configurations for new architectures and languages are developed
and installed in the libraries, Dimension will be able to use these
configurations to instrument new VEEs.

4. IMPLEMENTATION
Dimension is compiled as a shared object to be loaded
dynamically by a VEE. It uses about 100 KB address space for
code (including the binary-editing utility library) and 3 MB for
data (2 MB for the auxiliary code cache and 1 MB for the
instrumentation repository). Each instance of Dimension is
configured for a specific source binary format and a specific target
binary format. In this section, we discuss several implementation
challenges that are caused by Dimension’s portability to different
architectures and VEE implementation languages.

4.1 Probe-Based Instrumentation
As discussed in Section 2.2, Dimension employs the probe-based
technique to instrument programs. While the implementation is
quite straightforward for fixed-length ISAs, where a jump always
replaces a single complete instruction, it is much more difficult
for variable-length ones.

In a variable-length ISA, a jump may be longer than the
original instruction, so that several continuous instructions need to
be replaced. If, however, one of these instructions is the target of a
control-transfer instruction, the program may potentially execute
an illegal instruction that is part of a jump. This situation places a
restriction on the probe-based technique – the instrumentation unit
should be single-entry, which is also required by Dimension as
described in Section 2.2.

Another situation happens when the instrumentation unit is
smaller than the size of a jump. In such cases, we use a shorter
instruction instead of jump (e.g., INT 3 in x86) for replacement
purpose. Although this short instruction may be more expensive to
execute than a regular jump, they are rarely executed since most
instrumentation units in programs are longer than a jump.

Since a jump may not always replace complete instructions,
another issue in probe-based instrumentation is what instructions
should be relocated to the trampoline. Dimension uses a
mechanism that is similar to Dyninst [4]. It relocates each
complete instruction as long as part of the instruction is replaced
by the jump. If the relocated instruction is a PC-relative branch or
jump, its offset is re-calculated to match the target address. A
relocated call is always emulated as a jump which has the same
addressing type. This mechanism is general enough to be used for
all variable-length ISAs and does not imply either performance or
memory overhead.

In Dimension, if a jump replaces several instructions and more
than one instruction need to be instrumented, the corresponding
analysis routine for each instrumented instruction is called inside
the same trampoline. For example, suppose the x86 code contains
three instructions – a two-byte-long integer-add, a two-byte-long
integer-sub and a three-byte-long integer-add. The user wants to
instrument each integer-add and a five-byte-long jump is used to

construct the probe. Figure 7 illustrates how Dimension deals
with such a situation – it replaces all three instructions with a
jump to the trampoline. The three instructions are executed
sequentially, and the analysis routine is called once for each of the
integer-adds.

Figure 7. An example of how Dimension handles

 variable-length ISA.

4.2 Parameter Wrapping in Stub Functions
For a VEE that is written in a programming language that cannot
directly call C functions, stub functions have to be invoked to
access the interfaces of Dimension (described in Section 3.4.2).
Among the three stub functions,
StartInstrumentationStub has the special functionality
to prepare the six parameters required by
StartInstrumentation.

In Dimension, the choice of the six parameters follows the C
language feature, using a start address and an end address to
represent a binary code segment. In our implementation, each
address is defined as a pointer to a byte (i.e., char *). However,
this representation is not appropriate for all programming
languages, especially those that do not support pointer types.

As a bridge, StartInstrumentationStub has to wrap
the information which VEEs provide to the formats that
StartInstrumentation expects. For example, to write stub
function StartInstrumentationStub for Java, we use a
byte array to represent a binary code unit. This information can be
easily provided by a VEE written in Java and is straightforward to
be converted to the arguments required by
StartInstrumentation. GetByteArrayElements, a
JNI function, is used to get the start address and end address
(defined as C byte pointers) from a Java byte array.

5. CASE STUDY
In this section, we describe two case studies of different VEEs
that use Dimension, namely, Strata [20] and Jikes RVM [1]. Strata
is a reconfigurable and retargetable software dynamic translation
framework. In our experiment, we chose the version running on
the SPARC V8/V9 ISA and Solaris operating system. Jikes RVM
is a multi-platform Java virtual machine, and we chose the version
developed for the IA-32 ISA and Linux operating system. We
mainly focus on the efforts to insert the interfaces into both VEEs,
demonstrating Dimension’s flexibility. We also discuss the

binary-editing utility library development for both SPARC and
IA-32, which contains several interesting issues.

5.1 Dimension-Strata on SPARC/Solaris
Strata is written in C so that Dimension interfaces can be directly
invoked. It has an explicit function that initializes the application
and another one that is invoked when the application exits.
Therefore, we invoke InitDimension and
FinalizeDimension inside these two functions. Similarly,
the place where Strata finishes the translation of each code
segment is easy to locate, which is also in a single function. The
translation unit of Strata is a single-entry fragment containing a
straight-line sequence of instructions. Therefore, for
StartInstrumentation, Strata only has to specify five
parameters, and not the basic block information. In Strata, source-
to-target instruction mapping is mainly one-to-one, except for
some transfer-control instructions whose mapping can be easily
obtained.

The SPARC instructions are uniform in length and have a
relatively simple encoding. However, SPARC has delay slot
instructions (DSI), which are associated with control transfer
instructions. DSIs on SPARC can be annulled, i.e., not executed if
the branch is taken or not taken. To instrument a DSI, we
instrument the control transfer instruction right before it to capture
the values in the general-purpose registers. If the control transfer
instruction is an annulled branch, we test the condition code
before calling the analysis routine. SPARC maintains a register
window for twenty-four general-purpose registers, which can be
efficiently saved and restored by a single instruction. A partial
context-switch applies when the analysis routine does not use the
eight global registers, the floating-point state register, the
conditional code, or the Y register. The binary-editing utility
library for SPARC/Solaris contains 1,500 lines of code taking one
person four days to finish.

5.2 Dimension-Jikes RVM on IA-32/Linux
Jikes RVM is mainly written in Java so that it has to call the Java
version stub functions. It provides two APIs that insert monitors
when the application starts to run and exits. Using these two APIs,
we insert InitDimensionStub and
FinalizeDimensionStub into Jikes RVM. Jikes RVM also
has an explicit class that compiles the Java bytecode, where we
insert the StartInstrumentationStub. The translation
unit of Jikes RVM is a method, with the basic block information

provided. The mapping between bytecode and the compiled
machine code is also accessed directly after translation. Both
information can be easily extracted from Jikes RVM’s data
structure (implemented as arrays) and stored as required
parameters.

The IA-32 ISA has variable-length instructions, which are
difficult to decode and encode. It also has so limited general-
purpose registers and spilling is frequently needed. The
opportunity of partial context-switch on IA-32 mostly comes from
the eflags register, whose access is rather expensive. Two cases
can happen here: (1) the analysis routine does not modify eflags
so that no save and restore is needed; (2) the analysis routine owns
instructions that only modify the lowest byte of eflags (e.g., JA
re/8), so that the inexpensive LAHF and SAHF instructions can
be used instead of expensive PUSHFD and POPFD. Our
lightweight implementation of the binary-editing utility library for
IA-32/Linux contains about 2,500 lines of code and took one
person 7 days to finish.

6. EXPERIMENTS AND EVALUATION
In this section, we performed experiments to determine the
efficiency of Dimension. Three different experiments were
performed to evaluate Dimension’s performance from different
reference points. The first experiment focuses on the
instrumentation optimization mechanisms that are described in
Section 3.3.3. Each of the optimizations is evaluated to determine
its effectiveness to improve Dimension’s performance. In the
second experiment, the same instrumentation that was manually
implemented in the VEE (paradigm (a) in Figure 1) is performed
automatically by interfacing with Dimension. By comparing the
two performances, Dimension is evaluated to see how its
portability feature can affect its performance. In the last
experiment, we demonstrate that the use domain of Dimension
can be extended to provide efficient instrumentation in traditional
execution environments.

The experimental setup is as follows. For Strata, we run
SPECint2000 benchmarks (using reference inputs) compiled with
gcc -O3 option in the first experiment and cc -O5 option in the
third experiment. For Jikes RVM, we run SPECjvm98 (using data
sets provided in the benchmark). We choose to use the baseline
compiler everywhere and employ mark-and-sweep garbage
collection.

0

4

8

12

16

20

gz
ip vp

r
mcf

cra
fty

pa
rse

r

pe
rlb

mk
ga

p
vo

rte
x

bz
ip2 tw

olf

AriM
ea

n

Sl
ow
do
w
n

O0 = NO_OPT

O1 = O0 + INL

O2 = O1 + PCS

O3 = O2 + PC

0

1

2

3

4

5

co
mpre

ss jes
s

raytr
ac

e db
jav

ac

mpe
ga

ud
io mtrt

jac
k

AriM
ea

n

S
lo
w
do
w
n

O0 = NO_OPT

O1 = O0 + INL

O2 = O1 + PCS

O3 = O2 + PC

 (a) Strata (b) Jikes RVM

Figure 8. Slowdown from target binary instrumentation. (a) is for Strata and (b) is for Jikes RVM. “NO_OPT” stands for no optimization;
“INL” stands for inlining; “PCS” stands for partial context-switch; and “PC” stands for probe coalescing.

6.1 Effectiveness of Optimizations
In this experiment, we use a simple instrumentation – calculating
the average integer-add instructions executed in each basic block
– to show how each of our optimizations can reduce the
slowdown from instrumentation. For Jikes RVM, two experiments
are performed: one instruments the source binary and the other
instruments the target binary. For Strata, only target binary is
instrumented.

Figure 8 shows the performance of both VEEs with the target
binary instrumentation. To focus on Dimension's performance, the
time shown is normalized to the VEE execution time without
instrumentation. Each benchmark is executed using four different
optimization levels. Without any optimization, the slowdown is
fairly large, up to 16.2x in Strata (gzip) and 4.5x in Jikes RVM
(mpegaudio). Inlining helps, with the average slowdown
improving from 8.6x to 6.4x in Strata and from 2.4x to 2.1x in
Jikes RVM. A significant performance improvement comes from
partial context-switch, which reduces the average slowdown to
2.6x in Strata and 1.4x in Jikes RVM. Probe coalescing finally
reduces it to 2.0x in Strata and 1.1x in Jikes RVM.

0

0.5

1

1.5

2

2.5

3

co
mpre

ss jes
s

ray
tra

ce db
jav

ac

mpe
ga

ud
io mtrt

jac
k

AriM
ea

n

S
lo
w
do
w
n

O0 = NO_OPT

O1 = O0 + INL
O2 = O1 + PCS

O3 = O2 + PC

Figure 9. Slowdown from source binary instrumentation in Jikes
RVM. “NO_OPT” stands for no optimization; “INL” stands for

inlining; “PCS” stands for partial context-switch; and “PC” stands
for probe coalescing.

Figure 9 shows the slowdown from source binary

instrumentation in Jikes RVM, which follows the same trend (the
average slowdown is reduced from 1.7x without optimization to
1.2x after fully optimized), except that probe coalescing actually
slightly increases the average slowdown. This is because integer-
add is relatively infrequent in Java bytecode compared to that in
the target binary, limiting the benefits from probe coalescing but
applying it still introduces considerable runtime overhead. Probe
coalescing benefits the instrumentation on the target binary of
Jikes RVM because there are many opportunities: the number of
integer-add instructions in the translated machine code is higher
than that in Java bytecode due to translation, e.g., a load and a
store in Java bytecode is translated to several target instructions,
including an integer-add.

As shown, the optimizations applied in Dimension effectively
reduce the slowdown from instrumentation in both the source and
target binaries. Their benefits are consistent across the two
different VEEs but, as usual, depend on the number of
optimization opportunities.

6.2 Efficiency
In this experiment, we investigate how Dimension’s flexibility
affects the efficiency, i.e., the performance difference between
Dimension and instrumentation systems that are built using
paradigm (a) in Figure 1. We use Dimension to perform the same
instrumentation that has been manually implemented on a VEE
and compare their performances.

0

0.5

1

1.5

2

co
mpre

ss jes
s db

jav
ac

mpe
ga

ud
io mtrt

jac
k

AriM
ea

n

Sl
ow
do
w
n

Jazz

Dimension

Figure 10. Comparison of slowdown from instrumentation

between Jazz and Dimension.

Jazz [17] builds a branch coverage tester by instrumenting each
basic block of a Java program to determining what edges are
covered by an execution. The system is built on the IA-32 version
of Jikes RVM. We use Dimension to build the same
instrumentation for Jikes RVM and compare their performances.
To our knowledge, Jazz uses all the instrumentation optimization
techniques that Dimension uses, so the comparison can fairly
illustrate the tradeoff between efficiency and flexibility. Figure 10
shows the slow down caused by instrumentation, which is
normalized to the execution time of Jikes RVM without
instrumentation. Although for each single benchmark, the
performance varies between two implementations, the average
slowdown is comparable.

As demonstrated, Dimension achieves comparable
performance against the systems in which instrumentation is
manually built into a VEE. The flexibility of Dimension
introduces negligible effect on its performance.

6.3 Dimension in Traditional Execution Environments
Although Dimension is specially designed for use in VEEs, its use
domain easily extends to traditional execution environments. A
dynamic instrumentation system can be easily built using
Dimension on a VEE. Conceptually, the combination of the VEE
and Dimension can be considered as a system that uses virtual
execution technique to implement instrumentation, and this
approach is used to develop many dynamic instrumentation
systems, such as Pin, Diota and Valgrind [15, 16, 18]. The source
and target binaries of the VEE should be in the same format.

We built an instrumentation tool (called Strata-Dimension) by
using Dimension with Strata on SPARC. The process is
straightforward and quite easy as discussed previously. Strata is
an efficient software dynamic translation framework, with an
average slowdown of 1.3x over native execution on SPARC [20].
It translates the source binary to the almost identical target binary,
but ensuring it gains the control of the execution. Therefore, Strata
is a good choice on which a regular instrumentation system for
use in traditional execution environments can be built with
Dimension.

0

2

4

6

8

10

12

14

gz
ip vp

r
mcf

cra
fty

pa
rse

r

pe
rlb

mk
ga

p
vo

rte
x

bz
ip2 tw

olf

AriM
ea

n

Sl
ow
do
w
n

Valgrind
DynamoRIO
Pin
Strata-Dimension

Figure 11. Comparison of slowdown from instrumentation in

traditional execution environments.

In this experiment, we use a standard instrumentation, basic-
block counting, to compare the performance of Strata-Dimension
against Pin, Valgrind, and DynamoRIO. The metric used is the
slowdown from instrumentation, which is the execution time with
instrumentation normalized to the native execution. The data for
Valgrind, DynamoRIO and Pin were obtained from a public
publication [15]. As Figure 11 illustrates, Strata-Dimension
introduces a reasonable slowdown from instrumentation. The
average slowdown for Strata-Dimension is 2.6x, which is slightly
worse than Pin (2.3x) but better than both DynamoRIO (4.9x) and
Valgrind (7.5x). Pin performs more complicated optimizations on
instrumentation than Dimension does. DynamoRIO is primarily
designed for dynamic optimization, and does not automatically
perform instrumentation optimizations (e.g., partial context-switch)
as Dimension and Pin. We believe the slowdown of Valgrind
mainly comes from its overall infrastructure, which has a
slowdown of 5.6x even when program is executed without
instrumentation. The experiment demonstrates that Dimension can
be used to build efficient dynamic instrumentation tools in
traditional execution environments.

From experimental results, Dimension achieves flexibility and
efficiency simultaneously. The optimization techniques applied by
Dimension effectively reduce the slowdown from instrumentation,
leading to a comparable performance against systems in which
instrumentation is developed for a particular VEE. The use
domain of Dimension can be easily extended, e.g., building
efficient regular instrumentation systems for use in traditional
execution environments.

7. FUTURE WORK
Dimension has several limitations that prevent it from being a
completely “transparent” tool and seeking the solutions for them
will be the focus of our future work.

Firstly, Dimension needs the VEE to provide basic block
information or source-to-target mapping when applicable. If the
required information cannot be provided by the VEE developer,
Dimension loses the ability to do certain instrumentation. A
potential solution is that Dimension determines this information
by itself. Through careful analysis of both the source binary and
the target binary, Dimension may be able to find the correct way
to partition a translation unit into single-entry instrumentation
units. It may also apply certain de-optimization techniques to map
the source and target instructions.

Secondly, the reconfiguration of Dimension needs to write the
binary-editing utility library and stub functions if the architecture

or language is not in the libraries yet. Currently the
implementation is done manually, which is cumbersome,
especially when the architecture is very complex. The future work
for this is to implement a framework which can generate a new
binary-editing utility library and all the new stub functions based
on the specifications (e.g., instruction format) of that architecture
and language.

Finally, the current Dimension does not capture the high-level
context of both binaries, such as finding an arbitrary local variable
in a Java bytecode method. By capturing these contexts,
Dimension’s power will be increased to implement much more
complex program analysis tools.

8. RELATED WORK
At the highest level, binary instrumentation can be classified into
two categories: static binary instrumentation rewrites the program
before it executes while dynamic binary instrumentation inserts
extra code on demand during program execution.

Static binary instrumentation systems were pioneered by
ATOM [22]. They have inherent drawbacks in dealing with
mixing code and data, indirect branches, shared libraries,
dynamically-generated code and self-modifying code.

Dynamic binary instrumentation systems can overcome the
above limitations by identifying code at runtime. Many systems
use the probe-based approach [4, 5, 21], which works by
dynamically replacing instructions in the original program with
jumps to the instrumentation code. This technique is based on the
fast breakpoint technique proposed by [11]. Many other systems
use the jit-based approach [15, 16, 18], which translates the
program on-the-fly to directly add the instrumentation code in.

Some VEEs have been manually extended to provide
instrumentation. Jazz [17] is a program testing tool which builds
instrumentation functionality in Jikes RVM for structural testing.
DynamoRIO [3] was extended from a dynamic optimization
system, with the addition of a set of instrumentation APIs for
building customized program analysis tools. Both Jazz and
DynamoRIO provide customized instrumentation by extending
the original translation-based VEE. However, designs and
implementations are for one particular system, which lacks the
portability to a wide variety of different translation-based VEEs.

Our work is highly motivated by FIST [13], which is a binary
instrumentation toolkit that is portable to different translation-
based VEEs. However, FIST neither tries to minimize the
modification to the VEE nor shows convincing evidence that the
built-on instrumentation can be both effective and efficient.

Several techniques have been used by previous probe-based
instrumentation systems to deal with variable-length instruction
sets. DTrace replaces each instrumented instruction with an OS-
trap, which is the shortest instruction in some architectures (e.g.,
x86) [5]. Though only one instruction needs to be relocated every
time, frequent traps to the operating system prevents a reasonable
performance. Vulcan creates a larger basic block and copies the
instrumented code there if it cannot fit into the original place [21].
The head of the old basic block is replaced by a jump to the new
one. Such a mechanism relocates the whole basic block, which
has a large memory overhead. FIST does not relocate any
instruction, but copies the replaced instructions (which may be
incomplete) back to the original place for execution [13]. The
extra copy-back action may cause a significant performance
overhead.

Many binary instrumentation systems do instrumentation
optimizations. Among them, probe coalescing is specially

designed for probe-based instrumentation (first proposed by INS-
OP [12]). We implement their algorithm in Dimension and get the
similar result as their work.

Inlining has been adopted by many instrumentation systems to
reduce the performance overhead. Several systems employ partial
inlining that inlines the frequently executed part while leaving the
other part as a normal analysis routine. INS-OP can use profiling
information to employ partial inlining and Pin provides an API for
a user to specify which part of the analysis routine she wants to
inline [12, 15].

9. CONCLUSION
As interest in translation-based VEEs has been growing, it is
important to build a wide variety of customized program analysis
tools for both the source and target binaries that can serve diverse
VEEs. We develop Dimension, an instrumentation tool that is
specially designed for use in VEEs. The design of Dimension
identifies the few components interfacing with VEEs and
develops simple communication interfaces between the VEE and
Dimension. With the two case studies, we demonstrate the
flexibility of using Dimension. From experimental results, we
show the effectiveness of optimization techniques applied in
Dimension, the negligible effect introduced by flexibility of
Dimension on performance, and the reasonable slowdown caused
by Dimension compared with other instrumentation systems. We
conclude that Dimension is a well-designed flexible,
comprehensive, easy-to-use, and efficient instrumentation tool for
programs in VEEs. Moreover, its use domain can easily extend to
traditional execution environments.

ACKNOWLEDGEMENTS
This paper benefited from fruitful discussions with Naveen Kumar
and Jonathan Misurda. We also thank the anonymous reviewers
for their useful suggestions and comments on how to improve the
paper.

REFERENCES
[1] M. Arnold, S. Fink, D. Grove, M. Hind and P. Sweeney.

Adaptive Optimization in the Jalapeno JVM. In Proc. of Conf.
on Object-Oriented Programming Systems, Languages and
Applications, October 2000.

[2] V. Bala, E. Duesterwald and S. Banerjia. Dynamo: A
Transparent Dynamic Optimization System. In Proc. of Conf.
on Programming Language Design and Implementation, June
2000.

[3] D. Bruening, T. Garnett and S. Amarasinghe. An Infrastructure
for Adaptive Dynamic Optimization. In Proc. of Intl. Symp. on
Code Generation and Optimization, March 2003.

[4] B. Buck and J. Hollingsworth. An API for Running Code
Patching. Journal of High Performance Computing
Applications, 14 (4), 2000.

[5] B. Cantrill, M. Shapiro and A. Leventhal. Dynamic
Instrumentation of Production Systems. In Proc. of Symp. on
Operating Systems Design and Implementation, December
2004.

[6] K. Hazelwood and D. Brooks. Eliminating Voltage
Emergencies via Microarchitectural Voltage Control Feedback
and Dynamic Optimization. In Proc. of Intl. Symp. on Low
Power Electronics and Design, August 2004.

[7] Clara Jaramillo, Rajiv Gupta, Mary Lou Soffa. Capturing the
Effects of Code Improving Transformations. In Proc. of Intl.
Conf. on Parallel Architectures and Compilation Techniques,
October 1998.

[8] Clara Jaramillo, Rajiv Gupta, Mary Lou Soffa. Debugging and
Testing Optimizers through Comparison Checking. Electronic
Notes in Theoretical Computation Science, 65(2), 2002.

[9] The Java Technology website. http://java.sun.com/.
[10] The JRat website. http://jrat.sourceforge.net/.
[11] P. Kessler. Fast Breakpoints: Design and Implementation. In

Proc. of Conf. on Programming Language Design and
Implementation, June 1990.

[12] N. Kumar, B. Childers and M. L. Soffa. Low Overhead
Program Monitoring and Profiling. In Proc. of Workshop on
Program Analysis for Software Tools and Engineering,
September 2005.

[13] N. Kumar, J. Misurda, B. Childers and M. L. Soffa.
Instrumentation in Software Dynamic Translators for Self-
Managed Systems. In Proc. of Workshop of Self-Managing
Systems, November 2004.

[14] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proc. of
Intl. Symp. on Code Generation and Optimization, March
2004.

[15] C. Luk. R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. Reddi and K. Hazelwood. Pin: Building
Customized Program Analysis Tools with Dynamic
Instrumentation. In Proc. of Conf. on Programming Language
Design and Implementation, June 2005.

[16] J. Maebe, M. Ronsse and K. De Bosschere. Diota: Dynamic
Instrumentation, Optimization and Transformation of
Applications. In Comp. of Workshops and Tutorials held in
conjunction with the 11th Intl. Conf. on Parallel Architectures
and Compilation Techniques, September 2002.

[17] J. Misurda, J. Clause, J. Reed, B. Childers and M. Soffa.
Demand-driven Structural Testing with Dynamic
Instrumentation. In Proc. of Intl. Conf. on Software
Engineering, May 2005.

[18] N. Nethercote. Dynamic Binary Analysis and Instrumentation
or Building Tools is Easy. Ph.D. Thesis, University of
Cambridge, November 2004.

[19] K. Scott and J. Davidson. Safe Virtual Execution Using
Software Dynamic Translation. In Proc. of the 18th Annual
Computer Security Applications Conf., July 2002.

[20] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson
and M. L. Soffa. Reconfigurable and Retargetable Software
Dynamic Translation. In Proc. of Intl. Symp. on Code
Generation and Optimization, March 2003.

[21] A. Srivastava, A. Edwards and H. Vo. Vulcan: Binary
Transformation in A Distributed Environment. Technical
Report MSR-TR-2001-50, Microsoft Research, April 2001.

[22] A. Srivastava and A. Eustace. Atom: A System for Building
Customized Program Analysis Tools. In Proc. of Conf. on
Programming Language Design and Implementation, June
1994.

[23] The Transitive website. http://www.transitive.com/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

