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ABSTRACT 
Translation-based virtual execution environments (VEEs) are 
becoming increasingly popular because of their usefulness. With 
dynamic translation, a program in a VEE has two binaries: an 
input source binary and a dynamically generated target binary. 
Program analysis is important for these binaries, and both the 
developers and users of VEEs need an instrumentation system to 
customize program analysis tools. However, existing 
instrumentation systems for use in VEEs have two drawbacks. 
First, they are tightly bound with a specific VEE and thus are 
difficult to reuse without a lot of effort. Second, most of them can 
not support instrumentation on both the source and target binaries. 

This paper presents Dimension, a flexible tool that provides 
instrumentation services for a variety of VEEs. To our knowledge, 
it is the first stand-alone instrumentation tool that is specially 
designed for use in VEEs. Given an instrumentation specification, 
Dimension can be used by a VEE to provide customized 
instrumentation, enabling analyses on both the source and target 
binaries.  

We present two case studies demonstrating that Dimension can 
be reused easily by different VEEs. We experiment with the two 
cases and show that the same instrumentation provided by 
Dimension does not lose efficiency compared to its manual 
implementation for that particular VEE (the average performance 
difference is within 2%). We also illustrate that by interfacing 
with a special VEE that has the same source and target binary 
formats, Dimension can be used to build an efficient dynamic 
instrumentation system for traditional execution environments.   
 
Categories and Subject Descriptors    D.3.4 [Programming 
Languages]: Processors – code generation, compilers, 
optimization, run-time environments 
 
General Terms   Performance, Design, Experimentation 
 
Keywords   Virtual Execution Environment, Dynamic Translation, 
Instrumentation, Program Analysis Tool 
 
 
 
 

1. INTRODUCTION 
Over the last decade, interest in virtual execution environments 
(VEEs) has been growing with the increased recognition of their 
usefulness and power.  A VEE provides a self-contained operating 
environment that facilitates programmatic modification of an 

executing program for diverse purposes, such as architecture-
portability [9, 23], performance [2, 3, 14], instrumentation [15, 16, 
18], security [19], and power consumption [6]. Many VEEs 
execute applications by using software dynamic translation, which 
has the potential to produce high quality code and to utilize 
resources efficiently. With dynamic translation, a VEE 
simultaneously handles two different binaries: an input source 
binary that is typically translated at runtime and a dynamically 
generated target binary that is executed on the host CPU.  Our 
focus in this paper is on translation-based VEEs. 

Similar to traditional execution environments, program 
analysis is an important technique for both the source binary and 
the target binary of a VEE.  Instrumentation, which inserts extra 
code into a program for profiling, monitoring, and controlling 
execution, is a widely used technique for enabling program 
analysis on binary code. Many instrumentation systems have been 
developed to customize program analysis tools for traditional 
execution environments. Static instrumentation systems 
manipulate a statically compiled program before program 
execution [22]. These systems are unable to handle the target 
binary in a VEE because the target code is generated on-the-fly 
during program execution. In contrast, dynamic instrumentation 
systems directly instrument executable code by deferring 
instrumentation until runtime [4, 5, 15, 16, 18, 21]. However, 
existing systems only instrument code that is executable on the 
host CPU and thus are unable to handle the non-executable source 
binary in a VEE, such as a Java bytecode program. Some research 
efforts have been expended on instrumentation in VEEs. For 
example, Jazz instruments Java programs for structural testing and 
JRat instruments Java bytecode for runtime analysis [17, 10]. 
However, these systems are tightly bound with a specific VEE 
(e.g., Jazz depends on the Java virtual machine) and usually can 
not instrument both the source and target binaries (e.g., JRat only 
instruments Java bytecode), limiting their use. 

Thus, an instrumentation tool that is stand-alone and can 
instrument both the source and target binaries would be valuable 
to both the developers and users of VEEs. VEEs execute on 
different architectures and are written in different languages. 
Their source and target binaries have different formats from one 
VEE to another. What is needed is an instrumentation tool that 
can be reconfigured to different requirements. In order to develop 
a stand-alone instrumentation tool for VEEs, details of both 
instrumentation and virtual execution need to be abstracted. 

In this paper, we present Dimension, a tool that provides 
instrumentation services for VEEs. The objective for Dimension 
was to build a flexible and efficient instrumentation tool that can 
be used by a variety of VEEs. Given an instrumentation 
specification, Dimension can be used by a VEE to provide 
customized instrumentation, enabling analyses on both the source 
and target binaries. The design of Dimension identifies the few 
components of VEEs that need to communicate with an 
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instrumenter and develops interfaces between the VEE and 
Dimension. Dimension is designed to be both flexible and 
comprehensive. 

Flexibility. The effort to use Dimension with diverse VEEs is 
minimal.  It is straightforward to modify a VEE to use Dimension, 
and Dimension can be easily reconfigured to interface with VEEs 
running on different architectures and written in different 
programming languages.  

Comprehensiveness. Dimension can instrument both the source 
and target binaries of a VEE. Instrumentation can be done at 
various levels of granularities from instruction level to method 
level.  

Ease-of-use and efficiency are two other properties that were 
important in the development of Dimension. 

Ease-of-Use.  Dimension is transparent to the instrumentation 
users. Its user-model is similar to ATOM [22] and Pin [15].  

Efficiency. Optimization techniques for instrumentation are 
applied in Dimension with the result that the slowdown from 
instrumentation is reasonable, compared to other instrumentation 
tools. 

The particular contributions include: 
 

• The first stand-alone instrumentation tool for VEEs that is able 
to instrument both the source and target binaries at various 
levels of granularities.  

• Simple interfaces between VEEs and Dimension with a VEE 
providing information readily available. 

• Two approaches to reconfigure when Dimension is used for a 
new architecture or with a new programming language. 

• Two case studies and experiments demonstrating the flexibility 
of using Dimension without losing instrumentation efficiency. 

• Extension of the use domain of Dimension to build efficient 
dynamic instrumentation systems for traditional execution 
environments. 
 
The remainder of the paper is organized as follows. The next 

section discusses the design decisions of this work, and section 3 
describes Dimension. Section 4 discusses some implementation 
issues, and Section 5 demonstrates the use of Dimension in two 
VEEs. Section 6 then evaluates Dimension in both cases. Section 
7 discusses future work and Section 8 surveys related work. 
Finally Section 9 concludes this paper. 
 

2. DESIGN DECISIONS 
Although much work has been done on program instrumentation 
in the past decade, interesting issues arise when we consider 
instrumentation in a VEE, because of the dynamic nature of the 
execution environment. The section discusses the design of 
Dimension, including the paradigm used and its relation with 
VEEs.  
 

2.1 Paradigm 
Three basic approaches to instrument applications in a VEE are 
illustrated in Figure 1. Paradigm (a) implements instrumentation 
inside a VEE, intermixing the code for virtual execution and the 
code for instrumentation. The VEE often needs significant 
modification, and more importantly, the code for instrumentation 
is difficult to separate and reuse for other VEEs. 

 

 
Figure 1. Three possible paradigms to perform instrumentation in 

a VEE. 
 
Paradigm (b) implements an instrumentation system as another 

VEE.  For example, Pin, a dynamic instrumentation system, is 
implemented as a translation-based VEE [15]. In this paradigm, a 
VEE executes applications on top of the instrumentation system. 
The instrumentation system perceives and translates every 
instruction executed by the application as well as those by the 
VEE to add instrumentation during translation. It is able to 
distinguish application code from the VEE code with hints from 
the VEE. This paradigm, however, has high runtime overheads. 
All of the application code needs to be translated by the VEE and 
then translated again by the instrumentation system before 
actually being executed on the host CPU. In addition, a VEE’s 
code needs to be translated by the instrumentation system, even if 
no instrumentation is needed for the VEE code. Extra time and 
space are consumed by the unnecessary translation. In addition to 
the extra translation overhead, this paradigm introduces extra 
context-switches. Every context-switch in normal virtual 
execution now becomes two context-switches: one is between the 
application and the VEE, and the other is between the VEE and 
the instrumentation system. 

Paradigm (c) develops the instrumentation system as a separate 
tool, which provides instrumentation services to VEEs through 
specific interfaces. Compared to paradigm (a), the separate 
instrumentation module can be employed by other VEEs.  
Compared to paradigm (b), the instrumentation module in this 
paradigm that directly changes the code in VEEs’ code cache does 
not introduce the extra translation and context-switches. Since our 
goal is to have a separate instrumentation tool that can be used by 
a variety of VEEs, Dimension uses paradigm (c). 

 

2.2 Instrumentation in VEEs 
The relationship with VEEs is critical for the design of Dimension.  
We briefly review the inherent structure of a typical VEE, and 
then investigate how virtual execution affects instrumentation. We 
also discuss our decisions regarding these issues. 

As shown in Figure 2, a typical VEE has five conceptual 
modules: (1) an initializer that sets up the entire environment 
when program execution starts; (2) a translator that translates the 
source binary to the target binary, one code fragment (called a 
translation unit) at a time; (3) a code cache that stores the target 
binary for execution; (4) a dispatcher that decides whether the 
target code of a desired code segment can be directly executed 
(when it is available in the code cache) or to invoke the translator; 
and (5) a finalizer that cleans up the environment when program 
execution terminates. 
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Figure 2. Conceptual modules in a typical VEE. 

 
To avoid interfering with a VEE’s code generation and code 

cache management mechanisms, Dimension uses the probe-based 
instrumentation technique, replacing a program’s binary 
instructions with jumps to invoke the instrumentation code [11]. 
Therefore, a VEE needs to provide the location of both the source 
and target code to Dimension, and Dimension then can analyze 
the instructions and make instrumentation decisions according to 
an instrumentation specification. 

When a user wants source binary instrumentation, one 
approach actually instruments source binary before translation and 
the instrumented code is then translated and executed. Extra 
translation overhead is paid for instrumentation code in this 
approach. Another scheme modifies the target binary after 
translation, since the effects of source binary instrumentation can 
always be achieved by instrumenting the corresponding target 
binary. This method requires the mapping from the source 
instructions to the target instructions, and a VEE needs to provide 
the source-to-target mapping to the instrumentation system. 
Compared to the first approach, the second method avoids the 
extra translation overhead, but has more communication overhead. 
Dimension uses the second approach for simplicity. Therefore, it 
requires the VEE to provide the source-to-target mapping when 
source binary instrumentation is needed. 

Moreover, on variable-length ISAs, if the VEE uses a multiple-
entry translation unit, Dimension has to identify the basic blocks 
that the unit comprises. On a variable-length ISA, the probe-based 
instrumentation technique used by Dimension requires that the 
code unit being instrumented (called an instrumentation unit) is 
single-entry as will be explained in Section 4.1.  VEEs’ translation 
units, however, do not always possess this property. The 
translation units in most modern VEEs fall into four classes: an 
instruction, a basic block, a superblock, or a method. For the 
VEEs using an instruction, a basic block, or a superblock as a 
translation unit, the translation unit is naturally an instrumentation 
unit as well. For those using a method as a translation unit, the 
VEEs often have the basic block information of the method for its 
virtual execution purpose (e.g., Jikes RVM [1]). In our design, 
therefore, a VEE needs to transmit identification of basic blocks 
to Dimension, which can use the identification to partition a 
translation unit into a series of single-entry instrumentation units. 

The location of the source and target binaries, the source-to-
target mapping, and the identification of basic blocks (if 
applicable) are what Dimension needs from a VEE. In many cases 
it is straightforward for a VEE to provide them, because they are 
either readily available for virtual execution purpose or easily 
retrieved using existing information. 

2.3 Instrumentation Specification 
For ease of use, the user-model for Dimension is similar to 
ATOM [22] and Pin [15]. The user writes an instrumentation 
specification that includes analysis routines and instrumentation 
routines.  Analysis routines are invoked when execution hits 
certain program points. Instrumentation routines specify 
instrumentation policies including where to place calls to analysis 
routines, what arguments are passed, and tasks to be performed at 
the beginning and the end of program execution. Dimension 
allows arbitrary analysis routines and provides APIs for users to 
write instrumentation routines. 

 

 
Figure 3. Instrumentation specification routines.  

 
We use a basic block tracing tool to demonstrate the ease of 

using Dimension. Figure 3 is the instrumentation specification 
that a user would write to print a trace of addresses for every 
dynamically executed basic block in the source binary in a VEE. 
Instrumentation routine DIM_ProgramBegin (lines 3-8) is a 
function that is called when the program starts to initialize 
instrumentation. It opens the trace file and uses API 
DIM_InsertBBCall (lines 6 and 7) to inform Dimension a 
basic-block-level instrumentation policy. This policy is for source 
binary instrumentation (specified by SOURCE) that inserts a call 
to the analysis routine record_bb at the entry (specified by 
ENTRY) of every basic block. The address of the basic block 
(specified by ARG_BB_ADDR) is passed as an argument. 
DIM_ProgramEnd (lines 10-13), another instrumentation 
routine, is called when the program ends to perform tasks needed 
to complete instrumentation. Lines 15-18 are the definition of the 
analysis routine record_bb, which prints the address of a basic 
block to the trace file. 

Although the example only shows fairly simple 
instrumentation, Dimension has been used to build various 
complex program analysis tools, such as hardware cache 
simulators and program structure testers.   

Note that the code works with any VEE that uses 
instrumentation services from Dimension. The user does not need 
to know how the target binary is generated, what the granularity 
of a translation unit is, or how the code cache is managed. In 
addition, the code also works regardless of which architecture the 
VEE is running on and which programming language is used to 
implement the VEE. 

 
 

 

1  FILE *trace; 
2 
3  // Called when program begins 
4  EXPORT void DIM_ProgramBegin() { 
5    trace = fopen("trace.out", "w"); 
6    DIM_InsertBBCall(SOURCE, ENTRY, 
7      FUNCPTR(record_bb), ARG_BB_ADDR, ARG_END); 
8  } 
9 
10 // Called when program ends 
11 EXPORT void DIM_ProgramEnd() { 
12   fclose(trace); 
13 }  
14 
15 // Print a basic block record 
16 void record_bb(void *addr) { 
17   fprintf(trace, "%p\n", addr); 
18 }  



 

3. DIMENSION 
This section presents Dimension, which follows the design 
described in the previous section. We first discuss the component 
organization of Dimension. We then describe its simple 
communication interfaces that interact with VEEs. We also 
discuss Dimension’s instrumentation mechanism. We conclude 
this section by discussing how to reconfigure Dimension when it 
is used (1) on a new architecture and (2) with a VEE that is 
implemented in a different language than the one used to 
implement Dimension. 
 

3.1 Component Organization 
We decompose Dimension into two groups of components. One 
group interfaces with a VEE and the second group is VEE-
transparent. Figure 4 shows the component organization of 
Dimension as well as how components communicate with a VEE. 
 

 
Figure 4. Interfaces between Dimension and a VEE. 

 

3.1.1 Components that Interface with VEEs 
Dimension has three components that interface with VEEs. A 
VEE needs to know how to pass information to employ 
Dimension, including formats, which turn out to be fairly simple. 
Note that although the three components are relevant to VEEs, 
they are VEE-independent, requiring no modification when 
Dimension is reused with a new VEE. 
 

• Initialization Assistant. The execution of the initialization 
assistant is triggered by a VEE’s initializer, as shown in Figure 
4. It sets up Dimension at the beginning of program execution. 
It also loads the instrumentation specification and stores it in 
Dimension, so that Dimension can instrument programs 
according to the specification. 

• Instrumentation Assistant. As shown in Figure 4, the 
instrumentation assistant receives code segments with relevant 
information from a VEE’s translator. It also prepares for actual 
instrumentation (the preparation will be further discussed in 
Section 3.3). The instrumentation assistant is triggered 
immediately after the VEE translates a translation unit. Starting 
from the instrumentation assistant, Dimension instruments the 
code right after translation, which not only guarantees that all 
dynamically executed code is instrumented, but also handles 
self-modifying code as long as the code is re-translated by the 
VEE. Communication at this point also avoids interfering with 
the VEEs’ code generation mechanism. 

• Finalization Assistant. As Figure 4 shows, the finalization 
assistant is invoked by a VEE’s finalizer. It cleans up 
Dimension at the end of program execution. It also finalizes 
instrumentation results, such as writing instrumentation results 
to a file.  

 

3.1.2 Other Components 
Besides the above three components, Dimension has other 
components that do not interface with the VEE.  They include: 

• Instrumenter. Invoked by the instrumentation assistant, the 
instrumenter instruments the code received from the 
instrumentation assistant according to the instrumentation 
specification. 

• Auxiliary Code Cache. The auxiliary code cache stores 
instrumentation code generated by Dimension. 

• Instrumentation Repository. The instrumentation repository 
maintains information that is used for instrumentation purposes, 
such as instrumentation specification and source-to-target 
mapping. 

 
The instrumenter, in particular, is the only architecture-

dependent component, which needs to be modified when the 
format of the source binary or the target binary is changed. 
 

3.2 Communication Interfaces 
Dimension works as an independent module with well-defined 
interfaces to communicate with VEEs. We minimize the 
communication interfaces in terms of both the number and 
complexity. On the other hand, the interfaces have to convey 
sufficient information so that Dimension is able to accomplish 
comprehensive instrumentation, such as instrumenting arbitrary 
instructions in a binary. As Figure 4 shows, three Dimension 
components (the initialization assistant, the instrumentation 
assistant, and the finalization assistant) communicate with three 
VEE modules (the initializer, the translator, and the finalizer) 
through three interfaces. 
 

3.2.1 Interface InitDimension 
A VEE calls the InitDimension interface to trigger the 
initialization of Dimension. In particular, as shown in Figure 4, 
the VEE’s initializer uses it to invoke Dimension’s initialization 
assistant. The format is as follows. 
 
void InitDimension(); 

 
This interface is quite simple, requiring no parameters. 
 

3.2.2 Interface StartInstrumentation 
A VEE calls the StartInstrumentation interface to pass a 
translation unit to Dimension, which then immediately 
instruments this translation unit. In particular, as shown in Figure 
4, the VEE’s translator uses it to invoke Dimension’s 
instrumentation assistant. The format is as follows. 

 
void StartInstrumentation 

(addr src_start, addr src_end,  
 addr tgt_start, addr tgt_end, 
 src_to_tgt_mapping map, bb_info bb); 

 

StartInstrumentation needs six parameters: (1) the 
start address, (2) the end address of the source binary code of the 
translation unit, (3) the start address, (4) the end address of the 
target binary code of the translation unit, (5) the source-to-target 
mapping information, and (6) the identification of basic blocks in 
the translation unit. While the first four parameters are always 
readily available, the other two need more consideration.  

Identification of basic blocks is needed only if the VEE 
executes on a variable-length ISA, and it uses a multiple-entry 
translation unit. For VEEs that translate from machine code to 
machine code, the translation unit is usually single-entry (e.g., a 
single instruction, a basic block, or a super block). For VEEs that 
translate from some intermediate representation to machine code, 
the translation unit can be multiple-entry, typically a method or a 
function. In these cases, information to partition the unit into basic 



 

blocks is always maintained by the VEE for virtual execution 
purpose (e.g., Jikes RVM uses basic block information to perform 
garbage collection [1]). 

Source-to-target mapping information is needed when applying 
source binary instrumentation. For instructions in the source 
binary and target binary, the mapping can be many-to-one, one-to-
many or one-to-one. If a VEE has not already provided it, the 
VEE developer needs to add the functionality to support 
Dimension. A challenge in maintaining the exact mapping 
information comes from a VEE’s code optimization, which may 
move instructions (e.g., scheduling and partial redundancy 
elimination) or alter the control flow structure using code 
replication (e.g., function inlining and loop unrolling). Previous 
work has shown that for most classical optimizations (e.g., loop 
transformations), the exact mapping information from un-
optimized code to optimized code can be achieved, except dead 
statements (which apparently need no instrumentation) [7, 8].  
 

3.2.3 Interface FinalizeDimension 
A VEE calls the FinalizeDimension interface to trigger the 
finalization assistant of Dimension. In particular, as shown in 
Figure 4, the VEE’s finalizer uses it to invoke Dimension’s 
finalization assistant. The format is as follows. 
 
void FinalizeDimension(); 

 
This interface is also quite simple, requiring no parameters. 

 

3.3 Instrumentation Mechanism 
With the knowledge of Dimension’s component organization and 
its interfaces with VEEs, we now discuss the instrumentation 
mechanism, and Figure 5 and 6 show its key algorithms. We start 
the discussion by addressing target binary instrumentation, 
followed by source binary instrumentation. We then present 
several approaches in Dimension to reduce the slowdown of 
instrumentation. 
 

3.3.1 Target Binary Instrumentation 
We emphasize the parts in our algorithms that are relevant to 
target binary instrumentation in this sub-section. When program 
execution begins, the VEE’s initializer triggers the execution of 
Dimension’s initialization assistant. The initialization assistant 
loads the instrumentation specification and stores it in the 
instrumentation repository. 

During program execution, every time after the VEE translates 
a code segment, Dimension’s instrumentation assistant is invoked 
through StartInstrumentation, whose pseudo-code is 
shown in Figure 5. If the translation unit is multiple-entry, line 6 
partitions the translation unit into a series of single-entry basic 
blocks, using the identification of basic blocks provided by the 
VEE. Lines 8-16 then pass the target binary code to the 
instrumenter, one single-entry code segment (as an 
instrumentation unit) at a time. 

Figure 6 shows InstrumentUnit, which instruments each 
single-entry unit. The instrumenter scans the target instructions, 
finds appropriate ones according to each instrumentation policy 
stored in the instrumentation repository, and then generates a 
preliminary instrumentation plan (lines 17-25). The plan includes 
the target instructions to be instrumented, the associated analysis 
routine, and the arguments to be passed. On line 27, the 
preliminary plan is optimized for efficiency (details of 
optimization will be discussed in Section 3.3.3). 

 
Figure 5. StartInstrumentation  algorithm. 

 

 
Figure 6. InstrumentUnit  algorithm. 

 
Once an optimized instrumentation plan is generated, 

Dimension performs actual instrumentation (lines 28-32). As 
discussed earlier, Dimension does not interfere with VEEs’ code 
cache management. Therefore, it cannot shift or extend code in 
VEEs’ code cache. To instrument a target instruction, the 
instrumenter replaces it with a jump that branches to a trampoline. 
A trampoline is a code sequence that performs a context-switch, 
prepares the parameters to be passed to analysis routines, and 
transfers control to analysis routines. It also executes the replaced 
instruction. In this way, when execution hits the instrumented 
location, it follows the trampoline to execute the analysis routines 
with all parameters and context properly maintained. A jump and 
its associated trampoline are a probe. The trampolines are stored 
in Dimension’s auxiliary code cache, and thus they do not 
interfere with VEEs’ code cache management. 

When program execution terminates, the VEE’s finalizer 
invokes Dimension’s finalization assistant. The finalization 

1  InstrumentUnit(addr usrc_start, addr usrc_end,  
2      addr utgt_start, addr utgt_end) { 
3 
4    p = load_policy(repository); 
5    if(p needs source instrumentation) { 
6      map = load_mapping(repository); 
7      foreach source insn si between  
8          usrc_start and usrc_end { 
9        if(si belongs to p.where) { 
10         ti = map_tgt(map, si); 
11         record_plan(plan_pool, ti.addr,  
12             p.analysis_routine, p.parameter); 
13       } 
14     } 
15   }  
16 
17   if(p needs target instrumentation) { 
18     foreach target insn ti between  
19         utgt_start and utgt_end { 
20       if(ti belongs to p.where) { 
21         record_plan(plan_pool, ti.addr,  
22             p.analysis_routine, p.parameter); 
23       } 
24     }   
25   } 
26 
27   opt_plan_pool = opt_plan(plan_pool); 
28   foreach optimized plan op in opt_plan_pool { 
29     trampoline = gen_trampoline  
30         (op.analysis_routine, op.parameter); 
31     replace_jump(op.addr, trampoline); 
32   } 
33 }

1  StartInstrumentation(addr src_start,  
2      addr src_end, addr tgt_start, addr tgt_end, 
3      src_to_tgt_mapping map, bb_info bb) { 
4 
5    store_mapping(map, repository); 
6    bbs[] = partition_bb(src_start, src_end, bb); 
7 
8    foreach basic block b in bbs[] { 
9      <usrc_start, usrc_end> =  
10          get_bb_boundary(b, <src_start, src_end>); 
11     <utgt_start, utgt_end> =  
12          get_bb_boundary(b, <tgt_start, tgt_end>,   
13                          map); 
14     InstrumentUnit(usrc_start, usrc_end,  
15          utgt_start, utgt_end); 
16   } 
17 }  



 

assistant completes instrumentation and records the result 
according to the instrumentation specification. 

 

3.3.2 Source Binary Instrumentation 
The process of source binary instrumentation is quite similar to 
that of target binary instrumentation, except that it needs several 
more steps to locate where to instrument. We emphasize the parts 
of our algorithms that are exclusively relevant to source binary 
instrumentation in this sub-section. When Dimension’s 
instrumentation assistant is invoked, it first stores the source-to-
target mapping in the instrumentation repository (line 5 in Figure 
5), then passes the code (both the source binary and the target 
binary) to the instrumenter, one single-entry code segment at a 
time (lines 14-15 in Figure 5). When the instrumenter receives an 
instrumentation unit, it scans the source instructions, finds 
appropriate ones according to the instrumentation specification 
(stored in the instrumentation repository), and uses the source-to-
target mapping (also stored in the instrumentation repository) to 
locate the corresponding target instructions that should be 
instrumented (lines 7-10 in Figure 6). After this point, source 
binary instrumentation is the same as target binary 
instrumentation. 
 

3.3.3 Optimizing Instrumentation 
As suggested by [12, 13, 15], most of the slowdown from 
instrumentation is caused by executing the instrumentation code. 
Therefore, after a preliminary instrumentation plan is generated, 
Dimension optimizes it to reduce the overhead of instrumentation 
code. The optimization techniques are applied automatically in a 
similar manner as conventional compiler optimization techniques. 
In probe-based instrumentation technique, the overhead of 
instrumentation code includes the time (1) to execute the jump 
which branches to the trampoline, (2) to perform the context-
switch, (3) to transfer control to analysis routines, and (4) to 
execute analysis routines. Dimension uses different techniques 
that have been shown effective to improve them. 

To lower the first overhead, Dimension uses probe coalescing 
to reduce the number of the jumps that branch to trampolines [12]. 
For each instrumentation unit (a single-entry code segment), the 
probe coalescing technique combines separate probes into a single 
one, keeping exactly the same functionality (i.e., all the analysis 
routines of the previously separate probes are now invoked in the 
combined probe's trampoline in the same order). Note that, if 
arguments need to be passed to the analysis routine, probes can be 
coalesced only if all the parameter values remain available. 

The context-switch overhead can be reduced by partial context-
switch. Dimension first analyzes analysis routines to determine a 
partial context (i.e., registers in most platforms) that may actually 
be used in analysis routines. During instrumentation, Dimension 
only generates code to save and to restore this partial context. The 
overhead to maintain unused context can thus be saved. 

Dimension also inlines analysis routines into trampolines to 
reduce the overhead of transfer of control from trampolines to 
analysis routines. Currently, we only inline short analysis routines 
to avoid code expansion.  

Finally, for overhead (4), executing analysis routines, 
Dimension is able to invoke a light-weighted binary-to-binary 
optimizer to improve analysis routines’ code quality at runtime. 

As our experiments demonstrated, these optimizations greatly 
reduce the slowdown of instrumentation. Moreover, these 
improvement techniques are quite consistent with our objective (a 
flexible tool that provides instrumentation services to VEEs). 
Similar to a compiler, Dimension automatically performs these 

optimization techniques to any instrumentation specified by users, 
and the application is transparent to the executing VEE or VEE 
user. 

 

3.4 Reconfiguring Dimension 
Dimension has the flexibility to work with a variety of VEEs. 
However, as for many binary-level systems, it has to be 
reconfigured to be used. Among its six components, the 
instrumenter directly handles binaries and thus is architecture-
dependent. The initialization assistant, the instrumentation 
assistant, and the finalization assistant communicate with VEEs, 
so they are sensitive to the language that implements the VEE’s 
initializer, translator, and finalizer. The other two components (the 
auxiliary code cache and instrumentation repository) are generic 
and do not need modification. 
 

3.4.1 For New Architectures 
A binary-level instrumentation system is architecture-dependent, 
because it must understand (decode) and modify (encode) binary 
instructions. In particular, Dimension must be able to decode both 
the source and target binaries, and be able to encode the target one. 
Therefore, we need a new version of Dimension when the format 
of either the source or the target binary changes. 

To facilitate reconfiguration, we develop a binary-editing 
utility library for each expected binary format. A library is 
associated with a binary format, and can be used regardless of 
whether the format is the source binary or the target binary in a 
VEE. Binary-editing utility libraries provide general binary 
rewriting services to Dimension, such as decoding, encoding, 
generating, and replacing binary instructions. Dimension’s source 
code uses these utility library calls, instead of directly handling 
binary instructions. When Dimension needs to be reconfigured to 
a new architecture, we only need to implement those utility  
library functions for the new architecture, while the source code 
of Dimension does not need change, which effectively reduces the 
reconfiguration efforts. 
 

3.4.2 For New Languages Used in VEE Implementation 
Dimension is currently written in the programming language C. C 
is used to implement many VEEs, and these VEEs can use 
Dimension through the three communication interfaces (i.e., three 
functions written in C). However, Dimension needs some 
reconfiguration if a VEE is written in a language that cannot 
directly call functions written in C. For example, the translator in 
Jikes RVM [1] is written in Java that cannot call C functions 
directly. 

Fortunately, most languages provide some mechanism to call C 
functions. Java, for example, is able to call C functions through Java 
Native Interface (JNI). When reconfiguring Dimension for a new 
language, we only need write three stub functions using the 
language’s “native interface”. The first stub function 
(InitDimensionStub) is to call InitDimension; the 
second one (StartInstrumentationStub) wraps 
information received from the VEE into required parameters and 
calls StartInstrumentation; and the third one 
(FinalizeDimensionStub) is to call 
FinalizeDimension. VEEs written in the new language are 
able to call the three stub functions, getting through the interfaces 
indirectly. 

We avoid re-writing the interfaces (C functions) by writing 
new stub functions that are simple and easy to write. The stub 



 

function for Java to call InitDimension, for instance, is as the 
following. 

 
JNIEXPORT void JNICALL 
Java_Initializer_InitDimensionStub(JNIEnv *env,   
                                   jobject jobj) { 
  InitDimension(); 
} 

 
Note that the number of architectures and programming 

languages is limited while the number of VEEs is growing. As 
configurations for new architectures and languages are developed 
and installed in the libraries, Dimension will be able to use these 
configurations to instrument new VEEs. 
 

4. IMPLEMENTATION 
Dimension is compiled as a shared object to be loaded 
dynamically by a VEE. It uses about 100 KB address space for 
code (including the binary-editing utility library) and 3 MB for 
data (2 MB for the auxiliary code cache and 1 MB for the 
instrumentation repository). Each instance of Dimension is 
configured for a specific source binary format and a specific target 
binary format. In this section, we discuss several implementation 
challenges that are caused by Dimension’s portability to different 
architectures and VEE implementation languages. 
 

4.1 Probe-Based Instrumentation  
As discussed in Section 2.2, Dimension employs the probe-based 
technique to instrument programs. While the implementation is 
quite straightforward for fixed-length ISAs, where a jump always 
replaces a single complete instruction, it is much more difficult 
for variable-length ones.  

In a variable-length ISA, a jump may be longer than the 
original instruction, so that several continuous instructions need to 
be replaced. If, however, one of these instructions is the target of a 
control-transfer instruction, the program may potentially execute 
an illegal instruction that is part of a jump. This situation places a 
restriction on the probe-based technique – the instrumentation unit 
should be single-entry, which is also required by Dimension as 
described in Section 2.2.  

Another situation happens when the instrumentation unit is 
smaller than the size of a jump. In such cases, we use a shorter 
instruction instead of jump (e.g., INT 3 in x86) for replacement 
purpose. Although this short instruction may be more expensive to 
execute than a regular jump, they are rarely executed since most 
instrumentation units in programs are longer than a jump.  

Since a jump may not always replace complete instructions, 
another issue in probe-based instrumentation is what instructions 
should be relocated to the trampoline. Dimension uses a 
mechanism that is similar to Dyninst [4]. It relocates each 
complete instruction as long as part of the instruction is replaced 
by the jump. If the relocated instruction is a PC-relative branch or 
jump, its offset is re-calculated to match the target address. A 
relocated call is always emulated as a jump which has the same 
addressing type. This mechanism is general enough to be used for 
all variable-length ISAs and does not imply either performance or 
memory overhead. 

In Dimension, if a jump replaces several instructions and more 
than one instruction need to be instrumented, the corresponding 
analysis routine for each instrumented instruction is called inside 
the same trampoline. For example, suppose the x86 code contains 
three instructions – a two-byte-long integer-add, a two-byte-long 
integer-sub and a three-byte-long integer-add. The user wants to 
instrument each integer-add and a five-byte-long jump is used to 

construct the probe.  Figure 7 illustrates how Dimension deals 
with such a situation – it replaces all three instructions with a 
jump to the trampoline. The three instructions are executed 
sequentially, and the analysis routine is called once for each of the 
integer-adds.  

 

 
Figure 7. An example of how Dimension handles 

 variable-length ISA. 
 

4.2 Parameter Wrapping in Stub Functions 
For a VEE that is written in a programming language that cannot 
directly call C functions, stub functions have to be invoked to 
access the interfaces of Dimension (described in Section 3.4.2). 
Among the three stub functions, 
StartInstrumentationStub has the special functionality 
to prepare the six parameters required by 
StartInstrumentation.  

In Dimension, the choice of the six parameters follows the C 
language feature, using a start address and an end address to 
represent a binary code segment. In our implementation, each 
address is defined as a pointer to a byte (i.e., char *). However, 
this representation is not appropriate for all programming 
languages, especially those that do not support pointer types. 

As a bridge, StartInstrumentationStub has to wrap 
the information which VEEs provide to the formats that 
StartInstrumentation expects. For example, to write stub 
function StartInstrumentationStub for Java, we use a 
byte array to represent a binary code unit. This information can be 
easily provided by a VEE written in Java and is straightforward to 
be converted to the arguments required by 
StartInstrumentation.   GetByteArrayElements, a 
JNI function, is used to get the start address and end address 
(defined as C byte pointers) from a Java byte array. 
 

5. CASE STUDY 
In this section, we describe two case studies of different VEEs 
that use Dimension, namely, Strata [20] and Jikes RVM [1]. Strata 
is a reconfigurable and retargetable software dynamic translation 
framework. In our experiment, we chose the version running on 
the SPARC V8/V9 ISA and Solaris operating system. Jikes RVM 
is a multi-platform Java virtual machine, and we chose the version 
developed for the IA-32 ISA and Linux operating system. We 
mainly focus on the efforts to insert the interfaces into both VEEs, 
demonstrating Dimension’s flexibility. We also discuss the 



 

binary-editing utility library development for both SPARC and 
IA-32, which contains several interesting issues.   
 

5.1 Dimension-Strata on SPARC/Solaris 
Strata is written in C so that Dimension interfaces can be directly 
invoked. It has an explicit function that initializes the application 
and another one that is invoked when the application exits. 
Therefore, we invoke InitDimension and 
FinalizeDimension inside these two functions. Similarly, 
the place where Strata finishes the translation of each code 
segment is easy to locate, which is also in a single function.   The 
translation unit of Strata is a single-entry fragment containing a 
straight-line sequence of instructions. Therefore, for 
StartInstrumentation, Strata only has to specify five 
parameters, and not the basic block information. In Strata, source-
to-target instruction mapping is mainly one-to-one, except for 
some transfer-control instructions whose mapping can be easily 
obtained. 

The SPARC instructions are uniform in length and have a 
relatively simple encoding. However, SPARC has delay slot 
instructions (DSI), which are associated with control transfer 
instructions. DSIs on SPARC can be annulled, i.e., not executed if 
the branch is taken or not taken. To instrument a DSI, we 
instrument the control transfer instruction right before it to capture 
the values in the general-purpose registers. If the control transfer 
instruction is an annulled branch, we test the condition code 
before calling the analysis routine. SPARC maintains a register 
window for twenty-four general-purpose registers, which can be 
efficiently saved and restored by a single instruction. A partial 
context-switch applies when the analysis routine does not use the 
eight global registers, the floating-point state register, the 
conditional code, or the Y register. The binary-editing utility 
library for SPARC/Solaris contains 1,500 lines of code taking one 
person four days to finish. 

 

5.2 Dimension-Jikes RVM on IA-32/Linux 
Jikes RVM is mainly written in Java so that it has to call the Java 
version stub functions. It provides two APIs that insert monitors 
when the application starts to run and exits. Using these two APIs, 
we insert InitDimensionStub and 
FinalizeDimensionStub into Jikes RVM. Jikes RVM also 
has an explicit class that compiles the Java bytecode, where we 
insert the StartInstrumentationStub. The translation 
unit of Jikes RVM is a method, with the basic block information 

provided. The mapping between bytecode and the compiled 
machine code is also accessed directly after translation. Both 
information can be easily extracted from Jikes RVM’s data 
structure (implemented as arrays) and stored as required 
parameters.  

The IA-32 ISA has variable-length instructions, which are 
difficult to decode and encode. It also has so limited general-
purpose registers and spilling is frequently needed. The 
opportunity of partial context-switch on IA-32 mostly comes from 
the eflags register, whose access is rather expensive. Two cases 
can happen here: (1) the analysis routine does not modify eflags 
so that no save and restore is needed; (2) the analysis routine owns 
instructions that only modify the lowest byte of eflags (e.g., JA 
re/8), so that the inexpensive  LAHF and SAHF instructions can 
be used instead of expensive PUSHFD and POPFD. Our 
lightweight implementation of the binary-editing utility library for 
IA-32/Linux contains about 2,500 lines of code and took one 
person 7 days to finish. 

 

6. EXPERIMENTS AND EVALUATION 
In this section, we performed experiments to determine the 
efficiency of Dimension.  Three different experiments were 
performed to evaluate Dimension’s performance from different 
reference points. The first experiment focuses on the 
instrumentation optimization mechanisms that are described in 
Section 3.3.3. Each of the optimizations is evaluated to determine 
its effectiveness to improve Dimension’s performance. In the 
second experiment, the same instrumentation that was manually 
implemented in the VEE (paradigm (a) in Figure 1) is performed 
automatically by interfacing with Dimension. By comparing the 
two performances, Dimension is evaluated to see how its 
portability feature can affect its performance. In the last 
experiment, we demonstrate that the use domain of Dimension 
can be extended to provide efficient instrumentation in traditional 
execution environments. 

The experimental setup is as follows. For Strata, we run 
SPECint2000 benchmarks (using reference inputs) compiled with 
gcc -O3 option in the first experiment and cc -O5 option in the 
third experiment. For Jikes RVM, we run SPECjvm98 (using data 
sets provided in the benchmark). We choose to use the baseline 
compiler everywhere and employ mark-and-sweep garbage 
collection. 
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  (a) Strata      (b) Jikes RVM 

Figure 8. Slowdown from target binary instrumentation. (a) is for Strata and (b) is for Jikes RVM. “NO_OPT” stands for no optimization; 
“INL” stands for inlining; “PCS” stands for partial context-switch; and “PC” stands for probe coalescing. 



6.1 Effectiveness of Optimizations 
In this experiment, we use a simple instrumentation – calculating 
the average integer-add instructions executed in each basic block 
– to show how each of our optimizations can reduce the 
slowdown from instrumentation. For Jikes RVM, two experiments 
are performed: one instruments the source binary and the other 
instruments the target binary. For Strata, only target binary is 
instrumented.  

Figure 8 shows the performance of both VEEs with the target 
binary instrumentation. To focus on Dimension's performance, the 
time shown is normalized to the VEE execution time without 
instrumentation. Each benchmark is executed using four different 
optimization levels. Without any optimization, the slowdown is 
fairly large, up to 16.2x in Strata (gzip) and 4.5x in Jikes RVM 
(mpegaudio). Inlining helps, with the average slowdown 
improving from 8.6x to 6.4x in Strata and from 2.4x to 2.1x in 
Jikes RVM. A significant performance improvement comes from 
partial context-switch, which reduces the average slowdown to 
2.6x in Strata and 1.4x in Jikes RVM. Probe coalescing finally 
reduces it to 2.0x in Strata and 1.1x in Jikes RVM. 
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Figure 9. Slowdown from source binary instrumentation in Jikes 
RVM.  “NO_OPT” stands for no optimization; “INL” stands for 

inlining; “PCS” stands for partial context-switch; and “PC” stands 
for probe coalescing. 

 
Figure 9 shows the slowdown from source binary 

instrumentation in Jikes RVM, which follows the same trend (the 
average slowdown is reduced from 1.7x without optimization to 
1.2x after fully optimized), except that probe coalescing actually 
slightly increases the average slowdown. This is because integer-
add is relatively infrequent in Java bytecode compared to that in 
the target binary, limiting the benefits from probe coalescing but 
applying it still introduces considerable runtime overhead. Probe 
coalescing benefits the instrumentation on the target binary of 
Jikes RVM because there are many opportunities: the number of 
integer-add instructions in the translated machine code is higher 
than that in Java bytecode due to translation, e.g., a load and a 
store in Java bytecode is translated to several target instructions, 
including an integer-add. 

As shown, the optimizations applied in Dimension effectively 
reduce the slowdown from instrumentation in both the source and 
target binaries. Their benefits are consistent across the two 
different VEEs but, as usual, depend on the number of 
optimization opportunities. 

 
 
 

6.2 Efficiency 
In this experiment, we investigate how Dimension’s flexibility 
affects the efficiency, i.e., the performance difference between 
Dimension and instrumentation systems that are built using 
paradigm (a) in Figure 1. We use Dimension to perform the same 
instrumentation that has been manually implemented on a VEE 
and compare their performances. 
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Figure 10. Comparison of slowdown from instrumentation 

between Jazz and Dimension. 
 

Jazz [17] builds a branch coverage tester by instrumenting each 
basic block of a Java program to determining what edges are 
covered by an execution. The system is built on the IA-32 version 
of Jikes RVM. We use Dimension to build the same 
instrumentation for Jikes RVM and compare their performances. 
To our knowledge, Jazz uses all the instrumentation optimization 
techniques that Dimension uses, so the comparison can fairly 
illustrate the tradeoff between efficiency and flexibility. Figure 10 
shows the slow down caused by instrumentation, which is 
normalized to the execution time of Jikes RVM without 
instrumentation. Although for each single benchmark, the 
performance varies between two implementations, the average 
slowdown is comparable. 

As demonstrated, Dimension achieves comparable 
performance against the systems in which instrumentation is 
manually built into a VEE. The flexibility of Dimension 
introduces negligible effect on its performance. 

 

6.3 Dimension in Traditional Execution Environments 
Although Dimension is specially designed for use in VEEs, its use 
domain easily extends to traditional execution environments. A 
dynamic instrumentation system can be easily built using 
Dimension on a VEE. Conceptually, the combination of the VEE 
and Dimension can be considered as a system that uses virtual 
execution technique to implement instrumentation, and this 
approach is used to develop many dynamic instrumentation 
systems, such as Pin, Diota and Valgrind [15, 16, 18]. The source 
and target binaries of the VEE should be in the same format. 

We built an instrumentation tool (called Strata-Dimension) by 
using Dimension with Strata on SPARC. The process is 
straightforward and quite easy as discussed previously. Strata is 
an efficient software dynamic translation framework, with an 
average slowdown of 1.3x over native execution on SPARC [20]. 
It translates the source binary to the almost identical target binary, 
but ensuring it gains the control of the execution. Therefore, Strata 
is a good choice on which a regular instrumentation system for 
use in traditional execution environments can be built with 
Dimension. 
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Figure 11. Comparison of slowdown from instrumentation in 

traditional execution environments. 
 

In this experiment, we use a standard instrumentation, basic-
block counting, to compare the performance of Strata-Dimension 
against Pin, Valgrind, and DynamoRIO. The metric used is the 
slowdown from instrumentation, which is the execution time with 
instrumentation normalized to the native execution. The data for 
Valgrind, DynamoRIO and Pin were obtained from a public 
publication [15]. As Figure 11 illustrates, Strata-Dimension 
introduces a reasonable slowdown from instrumentation. The 
average slowdown for Strata-Dimension is 2.6x, which is slightly 
worse than Pin (2.3x) but better than both DynamoRIO (4.9x) and 
Valgrind (7.5x). Pin performs more complicated optimizations on 
instrumentation than Dimension does. DynamoRIO is primarily 
designed for dynamic optimization, and does not automatically 
perform instrumentation optimizations (e.g., partial context-switch) 
as Dimension and Pin. We believe the slowdown of Valgrind 
mainly comes from its overall infrastructure, which has a 
slowdown of 5.6x even when program is executed without 
instrumentation. The experiment demonstrates that Dimension can 
be used to build efficient dynamic instrumentation tools in 
traditional execution environments. 

From experimental results, Dimension achieves flexibility and 
efficiency simultaneously. The optimization techniques applied by 
Dimension effectively reduce the slowdown from instrumentation, 
leading to a comparable performance against systems in which 
instrumentation is developed for a particular VEE. The use 
domain of Dimension can be easily extended, e.g., building 
efficient regular instrumentation systems for use in traditional 
execution environments. 
 

7. FUTURE WORK 
Dimension has several limitations that prevent it from being a 
completely “transparent” tool and seeking the solutions for them 
will be the focus of our future work. 

Firstly, Dimension needs the VEE to provide basic block 
information or source-to-target mapping when applicable. If the 
required information cannot be provided by the VEE developer, 
Dimension loses the ability to do certain instrumentation. A 
potential solution is that Dimension determines this information 
by itself. Through careful analysis of both the source binary and 
the target binary, Dimension may be able to find the correct way 
to partition a translation unit into single-entry instrumentation 
units. It may also apply certain de-optimization techniques to map 
the source and target instructions. 

Secondly, the reconfiguration of Dimension needs to write the 
binary-editing utility library and stub functions if the architecture 

or language is not in the libraries yet. Currently the 
implementation is done manually, which is cumbersome, 
especially when the architecture is very complex. The future work 
for this is to implement a framework which can generate a new 
binary-editing utility library and all the new stub functions based 
on the specifications (e.g., instruction format) of that architecture 
and language. 

Finally, the current Dimension does not capture the high-level 
context of both binaries, such as finding an arbitrary local variable 
in a Java bytecode method. By capturing these contexts, 
Dimension’s power will be increased to implement much more 
complex program analysis tools.          
 

8. RELATED WORK 
At the highest level, binary instrumentation can be classified into 
two categories: static binary instrumentation rewrites the program 
before it executes while dynamic binary instrumentation inserts 
extra code on demand during program execution. 

Static binary instrumentation systems were pioneered by 
ATOM [22]. They have inherent drawbacks in dealing with 
mixing code and data, indirect branches, shared libraries, 
dynamically-generated code and self-modifying code.  

Dynamic binary instrumentation systems can overcome the 
above limitations by identifying code at runtime.  Many systems 
use the probe-based approach [4, 5, 21], which works by 
dynamically replacing instructions in the original program with 
jumps to the instrumentation code. This technique is based on the 
fast breakpoint technique proposed by [11].  Many other systems 
use the jit-based approach [15, 16, 18], which translates the 
program on-the-fly to directly add the instrumentation code in. 

Some VEEs have been manually extended to provide 
instrumentation. Jazz [17] is a program testing tool which builds 
instrumentation functionality in Jikes RVM for structural testing. 
DynamoRIO [3] was extended from a dynamic optimization 
system, with the addition of a set of instrumentation APIs for 
building customized program analysis tools. Both Jazz and 
DynamoRIO provide customized instrumentation by extending 
the original translation-based VEE. However, designs and 
implementations are for one particular system, which lacks the 
portability to a wide variety of different translation-based VEEs. 

Our work is highly motivated by FIST [13], which is a binary 
instrumentation toolkit that is portable to different translation-
based VEEs.  However, FIST neither tries to minimize the 
modification to the VEE nor shows convincing evidence that the 
built-on instrumentation can be both effective and efficient. 

Several techniques have been used by previous probe-based 
instrumentation systems to deal with variable-length instruction 
sets. DTrace replaces each instrumented instruction with an OS-
trap, which is the shortest instruction in some architectures (e.g., 
x86) [5].  Though only one instruction needs to be relocated every 
time, frequent traps to the operating system prevents a reasonable 
performance. Vulcan creates a larger basic block and copies the 
instrumented code there if it cannot fit into the original place [21]. 
The head of the old basic block is replaced by a jump to the new 
one. Such a mechanism relocates the whole basic block, which 
has a large memory overhead. FIST does not relocate any 
instruction, but copies the replaced instructions (which may be 
incomplete) back to the original place for execution [13]. The 
extra copy-back action may cause a significant performance 
overhead. 

Many binary instrumentation systems do instrumentation 
optimizations. Among them, probe coalescing is specially 



 

designed for probe-based instrumentation (first proposed by INS-
OP [12]). We implement their algorithm in Dimension and get the 
similar result as their work. 

Inlining has been adopted by many instrumentation systems to 
reduce the performance overhead. Several systems employ partial 
inlining that inlines the frequently executed part while leaving the 
other part as a normal analysis routine. INS-OP can use profiling 
information to employ partial inlining and Pin provides an API for 
a user to specify which part of the analysis routine she wants to 
inline [12, 15]. 

 

9. CONCLUSION 
As interest in translation-based VEEs has been growing, it is 
important to build a wide variety of customized program analysis 
tools for both the source and target binaries that can serve diverse 
VEEs. We develop Dimension, an instrumentation tool that is 
specially designed for use in VEEs. The design of Dimension 
identifies the few components interfacing with VEEs and 
develops simple communication interfaces between the VEE and 
Dimension. With the two case studies, we demonstrate the 
flexibility of using Dimension.  From experimental results, we 
show the effectiveness of optimization techniques applied in 
Dimension, the negligible effect introduced by flexibility of 
Dimension on performance, and the reasonable slowdown caused 
by Dimension compared with other instrumentation systems. We 
conclude that Dimension is a well-designed flexible, 
comprehensive, easy-to-use, and efficient instrumentation tool for 
programs in VEEs. Moreover, its use domain can easily extend to 
traditional execution environments. 
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