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Abstract. As compilers increasingly rely on optimizations to achieve
high performance, the effectiveness of source level debuggers for opti-
mized code continues to falter. Even if values of source variables are
computed in the execution of the optimized code, source level debuggers
of optimized code are unable to always report the expected values of
source variables at breakpoints.
In this paper, we present FULLDOC, a debugger that can report all of
the expected values of source variables that are computed in the opti-
mized code. FULLDOC uses statically computed information to guide
the gathering of dynamic information that enables full reporting. FULL-
DOC can report expected values at breakpoints when reportability is
affected because values have been overwritten early, due to code hoisting
or register reuse, or written late, due to code sinking. Our debugger can
also report values that are path sensitive in that a value may be com-
puted only along one path or the location of the value may be different
along different paths. We implemented FULLDOC for C programs, and
experimentally evaluated the effectiveness of reporting expected values.
Our experimental results indicate that FULLDOC can report 31% more
values than are reportable using only statically computed information.
We also show improvements of at least 26% over existing schemes that
use limited dynamic information.

1 Introduction

Ever since optimizations were introduced into compilers more than 30 years ago,
the difficulty of debugging optimized code has been recognized. This difficulty
has grown with the development of increasingly more complex code optimiza-
tions, such as path sensitive optimizations, code speculation, and aggressive reg-
ister allocation. The importance of debugging optimized code has also increased
over the years as almost all production compilers apply optimizations.
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Two problems surface when trying to debug optimized code from the view-
point of the source code. The code location problem relates to determining the
position of a breakpoint in the optimized code that corresponds to the breakpoint
in the source code. The data value problem is the problem of reporting the values
of the source variables that a user expects to see at a breakpoint in the source
code, even though the optimizer may have reordered or deleted the statements
computing the values, or overwritten the values by register allocation.

Techniques have been developed that tackle both the code location and data
value problems with the goal of reporting expected values when they can be
determined from the optimized code but also reporting when an expected value
cannot be determined. Progress has been made in the development of debuggers
that report more and more expected values. The early techniques focused on
determining expected values using information computed statically [8,4,3,15,1].
Recent techniques have proposed using information collected during execution,
along with the static information, to improve the reportability of values [5,16].
Dhamdhere et al. [5] time stamp basic blocks to obtain part of the execution path
of the optimized code, which is used to dynamically determine currency (whether
the actual values of source variables during the optimized code execution are
the expected values) at breakpoints. Wu et al. [16] selectively take control of the
optimized program execution and then emulate instructions in the optimized
code in the order that mimics the execution of the unoptimized program. This
execution reordering enables the reporting of some of the expected values of
source variables where they occur in the source. Despite all the progress, none
of the techniques are able to report all possible expected values of variables at
all breakpoints in the source program.

In this paper, we present FULLDOC, a FULL reporting Debugger of Opti-
mized Code that reports all expected values that are computed in the optimized
program. We call this level of reporting “full reporting.” That is, the only values
we cannot report are those that are deleted; however in these cases, we report the
value has been deleted. It should be noted that techniques exist for recovering
some of these values in certain circumstances [8]. For example, if a statement
is deleted due to copy propagation, it is sometimes possible to report the value
if the copy is available. Since these recovery techniques can be incorporated
into all debuggers, regardless of what else they do, we choose not to include
these techniques, knowing that they can improve the results of all debuggers
of optimized code, including FULLDOC. As illustrated in Figure 1, FULLDOC
can report more expected values that are computed in the optimized code than
Wu et al. [16] and Dhamdhere et al. [5]. Our technique is non-invasive in that
the code that executes is the code that the optimizer generated. Also, unlike the
emulation technique [16], we do not execute instructions in a different order and
thus avoid the problem of masking user and optimizer errors. FULLDOC works
on programs written in C, syntactically mapping breakpoints in the source code
to the corresponding positions in the optimized code.

FULLDOC extends the class of reportable expected values by judiciously
using both static and dynamic information. The overall strategy of our technique
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Fig. 1. Reportability of debugger strategies

is to determine by static program analysis those values that the optimizer has
placed in a precarious position in that their values may not be reportable. The
reportability of these values may depend on run time and debugging information,
including the placement of the breakpoints and the paths taken in a program’s
execution. Thus, during execution, our strategy employs invisible breakpoints [17]
to gather dynamic information that aids in the reporting of precariously placed
values. We employ three schemes, all transparent to the user during a debugging
session, to enable full reporting. To report values that are overwritten early
with respect to a breakpoint either because of code motion or register reuse,
FULLDOC saves the values before they are overwritten and deletes them as soon
as they are no longer needed for reporting. FULLDOC only saves the values if
they are indeed the expected values at the breakpoint. To report values that are
written late with respect to a breakpoint because of code sinking, FULLDOC
prematurely executes the optimized program until it can report the value, saving
the values overwritten by the roll ahead execution so that they can be reported
at subsequent breakpoints. When reportability of a variable at a breakpoint is
dependent on the execution path of the optimized code, FULLDOC dynamically
records information to indicate the impact of the path on the reportability of
a value, and thus is able to report values that are path sensitive either because
the computation of the value or the location is dependent on the path.

We implemented our technique and demonstrate its effectiveness and practi-
cality through experimentation. We also show that the technique is practical in
terms of the run time overhead.

The capabilities of FULLDOC are as follows.

– Every value of a source level variable that is computed in the optimized pro-
gram execution is reportable at all breakpoints in the source code where the
value of the variable should be reportable. Therefore, we can report more
expected values that are computed in the optimized program execution than
any existing technique. Values that are not computed in the optimized pro-
gram execution are the only values that we do not report. However, FULL-
DOC can incorporate existing techniques that recover some of these values.

– Run time overhead is minimized by performing all analysis during compila-
tion. FULLDOC utilizes debugging information generated during compila-
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tion to determine the impact of reportability of values at user breakpoints
and to determine the invisible breakpoints that must be inserted to report
affected values.

– Our techniques are transparent to the user. If a user inserts a breakpoint
where the reportability of values is affected at the breakpoint or a potential
future breakpoint, FULLDOC automatically inserts invisible breakpoints to
gather dynamic information to report the expected values.

– Errors in the optimized code are not masked.
– User breakpoints can be placed between any two source level statements,

regardless of the optimizations applied.
– The optimized program is not modified except for setting breakpoints.
– Statement level optimizations that hoist and sink code are supported, in-

cluding speculative code motion, path sensitive optimizations (e.g., partial
redundancy elimination), and register allocation.

This paper is organized by Section 2 describing the challenges of reporting
expected values using examples. Section 3 describes our approach and imple-
mentation. Section 4 presents experimental results. Related work is discussed in
Section 5, and concluding remarks are given in Section 6.

2 Challenges of Reporting Expected Values

The reportability of a variable’s value involved in an optimization is affected
by 1) register reuse, code reordering, and code deletion, 2) the execution path,
including loop iterations, and 3) the placement of breakpoints. In this section,
we consider the effect of optimizations that can cause a value of a variable to be
overwritten early, written late, or deleted. Within each of these cases, we consider
the impact of the path and the placement of breakpoints. We demonstrate how
our approach handles these cases. In the figures, the paths highlighted are the
regions in which reportability is affected; reportability is not affected in the other
regions.

2.1 Overwritten Early in the Optimized Program

A value val of a variable v is overwritten early in the optimized program if val′

prematurely overwrites v’s value. The application of a code hoisting optimization
and register reuse can cause values to be overwritten early. For example, consider
the unoptimized program and its optimized version in Figure 2(a), where Xn

refers to the nth definition of X . X2 has been speculatively hoisted, and as a
result, the reportability of X is affected. Regardless of the execution path of
the optimized code, a debugger cannot report the expected value of X at a
breakpoint b along region 1❥ by simply displaying the actual contents of X .
The expected value of X at b is the value of X1, but since X2 is computed early,
causing the previous value (i.e., X1) to be overwritten early, the actual value
of X at b is X2.
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Fig. 2. Overwritten early example

The path can also affect reportability. Assume now that a breakpoint b is
placed in region 2❥. The expected value of X at b is either X2 , if the true
path is taken, or X1 , if only the false path is taken within each loop iteration.
However, since X2 is computed before the branch, the actual value of X at b
in the optimized code is X2. Thus, when execution follows the true path, the
expected value of X at b can be reported, but when only the false path is taken,
its value cannot be reported.

The number of loop iterations can also affect reportability. The expected
value of X at a breakpoint b along region 3❥depends not only on whether the
true path was taken but also on the current loop iteration. During the first loop
iteration, the expected value is X1 . On subsequent loop iterations, the expected
value is either X2 (if the true path is taken) or X1 (if only the false path is taken
on prior loop iterations). However, since X2 is computed before the loop, the
actual value of X at b in the optimized code is X2. When execution follows the
true path, the debugger can report the expected value of X at b on subsequent
loop iterations; otherwise, the debugger cannot report the expected value of X .

Using only dynamic currency determination [5], the expected value of X at
breakpoints along region 1❥ cannot be reported because the value has been
overwritten. The emulation technique [16] can report the expected value of X
along region 1❥and along the true path of region 3❥, but since the technique is
not path sensitive, the expected value cannot be reported along region 2❥and
along the false path of region 3❥due to iterations.

FULLDOC can report all of these expected values. During the execution of
the optimized code, if a value is overwritten early with respect to a break-
point, FULLDOC saves the value in a value pool. FULLDOC only saves what
is necessary and discards values when they are no longer needed for report-
ing. Figure 2(b) illustrates FULLDOC’s strategy when the optimized program
in Figure 2(a) executes along the true path, assuming the loop executes one
time. FULLDOC saves X1 before the assignment to X2 and reports the saved
value X1 at breakpoints along regions 1❥and 3❥. FULLDOC discards the saved
value when execution reaches the original position of X2 . At breakpoints along
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the non-highlighted path and region 2❥, FULLDOC reports the current value
of X . Notice that values are saved only as long as they could be reportable in
the source program, and thus, our save/discard mechanism automatically disam-
biguates which value to report at breakpoints along region 2❥. If X1 is currently
saved at the breakpoint, then only the false path was executed and the saved
value is reported. Otherwise if X1 is not currently saved, then the true path was
executed and the current value of X is reported. Notice that this saving strategy,
as well as the other strategies, are performed with respect to user breakpoints.
In other words, if a user does not insert breakpoints along the regions where the
reportability of X is affected, then FULLDOC does not save the value of X .

2.2 Written Late in the Optimized Program

A value val of a variable v is written late in the optimized program if the com-
putation of val is delayed due to, for example, code sinking and partial dead
code elimination. In Figure 3(a), suppose X2 is partially dead along the false
path and moved to the true branch. As a result, the expected value of X at a
breakpoint b along regions 1❥and 2❥is not reportable in the optimized code.

Consider a breakpoint b placed in region 3❥. The expected value of X at b
is X2 . However, the actual value of X at b in the optimized code is either X2

(if the true path is taken) or X1 (if the false path is taken). Thus, only when
execution follows the true path, can the expected value of X at b be reported.
Reportability can also be affected by loop iterations, which has the same effect
as for the overwritten early case.

Using only dynamic currency determination [5], the expected value of X at
breakpoints along region 3❥ can be reported provided the true path is taken
but not along regions 1❥and 2❥. Since the emulation technique [16] is not path
sensitive, the expected value of X along region 3❥cannot be reported. We can
report values in 1❥and 3❥provided the true path is taken. Note that values in
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regions 1❥, 2❥, and 3❥could possibly be reported by all schemes if recovery
techniques are employed.

If a requested value is written late with respect to a breakpoint, FULL-
DOC prematurely executes the optimized code, saving previously computed val-
ues before they are overwritten (so that they can be reported at subsequent
breakpoints). Figure 3(b) illustrates FULLDOC’s strategy when the optimized
program in Figure 3(a) executes along the true path. At breakpoints along re-
gion 1❦, FULLDOC reports the expected value of X by further executing the
optimized code, saving previously computed values before they are overwrit-
ten. The roll ahead execution stops once X2 executes. At breakpoints along the
non-highlighted path and region 3❥, FULLDOC reports X2 .

2.3 Computed in the Unoptimized Program but not in the
Optimized Program

Finally, we consider the case where a statement is deleted and thus its value is
not computed in the optimized code. For example, in Figure 4(a), suppose Y 2

is dead in the unoptimized program and deleted. The expected value of Y at a
breakpoint b along region 1❥is Y 2 , which cannot be reported in the optimized
code.

Now consider placing a breakpoint at region 2❥. The expected value of Y
at b along region 2❥is either Y 1 (if the true path is taken) or Y 2 (if the false
path is taken). However, since Y 2 was deleted, the actual value of Y at b in the
optimized code is Y 1 . Thus, along the true path, the actual value is the expected
value and can be reported, but along the false path, the expected value cannot
be reported.

The emulation technique [16] cannot report the expected value of Y along
region 2❥because it is not path sensitive. Dynamic currency determination [5]
as well as our technique can report the expected value of Y at breakpoints along
region 2❥if the true path is taken.
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Figure 4(b) illustrates FULLDOC’s strategy when the optimized program
in Figure 4(a) executes along the false path. At a breakpoint along the non-
highlighted paths, FULLDOC reports the current value of Y . When execution
reaches the original position of Y 2 , FULLDOC knows Y is not reportable along
regions 1❥and 2❥, and reports the expected value of Y is not computed. When
execution reaches Y 3 , FULLDOC disregards the non-reportability information
of Y .

3 FULLDOC’s Approach and Implementation

FULLDOC uses three sources of debug information for its debugging capabil-
ities. First, as optimizations are applied, a code location mapping is generated
between the source and optimized code. Second, after code is optimized and
generated by the compiler, static analysis is applied to gather information about
the reportability of expected values. This reportability debug information is used
when user breakpoints are inserted, special program points are reached in the
program execution, and when a user breakpoint is reached. Third, during execu-
tion, dynamic debug information indicating that these special points have been
reached is used as well as the position of the user breakpoints to enable full
reporting.

Figure 5 illustrates FULLDOC’s strategy with respect to a user inserting
breakpoints. When the user inserts breakpoints either before the program exe-
cutes or during program execution, FULLDOC uses the code location mapping
to determine the corresponding breakpoints in the optimized code. FULLDOC
uses the reportability debug information to determine the impact on reportabil-
ity at the breakpoints and potential future breakpoints:

• If a value is overwritten early with respect to a breakpoint, FULLDOC in-
serts invisible breakpoints [17] to save the value during execution as long as the
value should be reportable and discard the value when it is no longer needed.

• If the reportability of a variable with respect to a breakpoint is path sen-
sitive, FULLDOC inserts invisible breakpoints to update the dynamic debug
information regarding the reportability of the value.

Figure 6 illustrates FULLDOC’s strategy when a breakpoint is reached. If a
user breakpoint is reached, FULLDOC informs the user. FULLDOC responds to
user queries by using both static and dynamic information. For invisible break-
points, FULLDOC performs the following actions. For a value that is overwritten

source
program

breakpoints?
user inserts
breakpoints breakpoints 

invisible
yes, set 

code
optimized

set corresponding breakpoints
FULLDOC

code location mapping
reportability debug info

Static information

reportability
affected at 
breakpoints
or future

Fig. 5. FULLDOC’s strategy with respect to user inserting breakpoints
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early, FULLDOC saves the value in a value pool and discards the value when it
is no longer needed for reporting. For a value that is path sensitive, FULLDOC
updates the path sensitive info regarding the reportability of the value depending
on the execution path taken.

When execution reaches a user breakpoint and the user requests the value
of a variable, FULLDOC uses the reportability debug information and dynamic
debug information to determine the reportability of the value. If the value is
available at the location (in memory or register) of the variable or in the value
pool, FULLDOC reports the value. If the requested value is written late with re-
spect to the breakpoint, FULLDOC uses the reportability debug information to
roll ahead with the execution of the optimized code, saving previously computed
values before they are overwritten. It stops execution once the value is computed
and reports the value to the user if it is computed. If the value is not computed
in the execution, FULLDOC informs the user that the value is not reportable.

3.1 Code Location Mapping

The code location mapping captures the correspondence between the optimized
code and the source code. This code location mapping is used by FULLDOC to
map between user breakpoints in the source code and corresponding breakpoints
in the optimized code. This mapping is also used to compute the reportability
debug information, described in the next section. For each statement in the
source code, the code location mapping associates the statement with (1) its
original position in the optimized code, that is, the position in the control flow
graph Gopt prior to the application of optimizations and (2) its corresponding
statement(s) in the optimized code. Initially the optimized code starts as an
identical copy of the source program with mappings between original positions
and corresponding statements in the two programs. As optimizations are applied,
the code location mapping is maintained between the source and optimized code.

3.2 Reportability Debug Information

We now describe the reportability debug information computed through static
analysis of the optimized code that is provided to FULLDOC as well as how
FULLDOC employs this information at run time and collects dynamic debug
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information in response to the user setting breakpoints and requesting values of
variables at these breakpoints.

Simply Reportable

AvailAtBkpts[b,v] = {l} or {(d1,l1), (d2,l2), ...}
If the value of variable v is always reportable at breakpoint b, then AvailAt-

Bkpts[b,v] provides the location (memory location or register name) where the
value of v can be found. In case the value can always be found at the same
location, no matter what execution path is taken, l provides the location.

However, it is possible that the location of v depends on the path taken during
execution because b is reachable by multiple definitions of v, each of which stores
the value of v in a different location (e.g., a different register). In this case, the
execution path taken determines the latest definition of v that is encountered
and hence the location where the value of v can be found. Each of the potential
definition-location pairs ((di,li)) are provided by AvailAtBkpts[b,v] in this
case. When a breakpoint is set at b, the debugger activates the recording of
the definition of v that is encountered from among (d1, d2, ...) by inserting
invisible breakpoints at each of these points. When an invisible breakpoint is
hit during execution, the debugger records the latest definition encountered by
overwriting the previously recorded definition.

Overwritten Early

EarlyAtBkpts[b] = {es: es overwrites early w.r.t. breakpoint b}
SaveDiscardPoints[es] = (save, {discard1, discard2, ...})

If the user sets a breakpoint at b, then for each statement es that over-
writes early in EarlyAtBkpts[b], we activate the save and discard points in
SaveDiscardPoints[es] by inserting invisible breakpoints. This ensures that
the values of variables overwritten early with respect to breakpoint b will be
saved and available for reporting at b from the value pool in case they are re-
quested by the user. Note that the save and discard points must be activated
immediately when a breakpoint is set by the user so that all values that may be
requested by the user, when the breakpoint is hit, are saved. If a discard point
is reached along a path and nothing is currently saved because a save point was
not reached along the same path, the debugger simply ignores the discard point.
The example in Figure 2, where X is overwritten early, is handled by this case.

Written Late
LateAtBkpts[b] = {ls: ls writes late w.r.t. breakpoint b}
StopPoints[ls] = {stop1, stop2, ...}

Assume the user sets a breakpoint at b. Then for each statement ls ∈
LateAtBkpts[b], we must first determine if ls is written late with respect to
the next instance of the breakpoint b. If the original position of ls is reached
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during execution but the current position of ls is not reached (before the break-
point b is hit), then ls is written late. We determine this information as follows.
For each statement ls that is written late, we insert invisible breakpoints at
the original and current positions of ls and record if the original position of
ls is encountered during execution. When the current position of ls is reached
during execution, the recorded information is discarded. Now, suppose execu-
tion reaches b, and the user requests the value of a variable v such that v is
written late by a statement ls in LateAtBkpts[b]. If the original position of
ls is currently recorded, then v is late at the current instance of the breakpoint
b and the execution of the program rolls ahead until one of the stop points in
StopPoints[ls] is encountered. At a stop point, either the value of v has just
been computed or it is known that it will definitely not be computed (recall that
sinking of partially dead code can cause such situations to arise). Unlike the
overwritten early case where the save and discard points were activated when a
breakpoint was set, here the stop points are activated when the breakpoint is hit
and a request for a value that is written late is made. The example in Figure 3,
where the reportability of X along region 1❥is affected, is handled by this case.

Never Reportable because Deleted Along a Path
NotRepDelAtBkpts[b] = {v: v is never reportable at b (deleted)}
NotRepLateAtBkpts[b] = {v: v is never reportable at b (late)}

When (partial) dead code removal is performed, the value of a variable de-
fined by the deleted statement becomes unreportable. For each breakpoint b, the
variables whose values are never reportable at b, no matter what execution path
is taken, are recorded in NotRepDelAtBkpts[b] and NotRepLateAtBkpts[b],
for statements removed from paths by dead code elimination and partial dead
code elimination, respectively. When the user requests the value of a variable v
at breakpoint b, if v is in NotRepDelAtBkpts[b] or NotRepLateAtBkpts[b], we
report to the user that the value is not reportable because the statement that
computes it has been deleted along the execution path. The example in Figure 4,
where the reportability of Y is affected along region 1❥, is handled by this case.
Also, the example in Figure 3, where the reportability of X is affected along
region 2❥is handled by this case.

Path Sensitive Nonreportability/Reportability when Deleted

MaybeDelAtBkpts[b] = {ds: ds may be deleted w.r.t. breakpoint b}
EndDelPoints[ds] = {EndDel1, EndDel2, ...}
PotFutBkptsDel[b] = {ds: ds may be deleted at later breakpoints}

A value may be deleted on one path (in which case it is not reportable) and
not deleted on another path (in which case it is reportable). In this path sensitive
case, the reportability information must be updated during execution, based on
the paths that are actually executed (i.e., program points reached).

If a user sets a breakpoint at b, invisible breakpoints are set at each of the
original positions of any deleted statement ds in MaybeDelAtBkpts[b] to record
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if one of these positions is encountered during execution. Invisible breakpoints
are also set at the end of the definition range of ds, stored in EndDelPoints[ds].
When EndDeli in EndDelPoints[ds] is reached during execution, the recorded
information is discarded. Now consider the case when breakpoint b is reached,
and the user requests the value of variable v defined by some statement ds in
MaybeDelAtBkpts[b]. If the dynamically recorded information shows that the
original position of ds was encountered, the debugger reports that the value of v
was not computed as ds was deleted. Otherwise the debugger reports the current
value of v. The example in Figure 4, where the reportability of Y along region
2❥is path sensitive, is handled by this case.

We use the same strategy for each deleted statement in PotFutBkptsDel[b],
which prevents FULLDOC from setting invisible breakpoints too late. PotFut-
BkptsDel[b] holds the deleted statements where reportability could be affected
at potential future breakpoints even though reportability is not necessarily af-
fected at b, and invisible breakpoints must now be set so that during the execu-
tion to breakpoint b, FULLDOC gathers the appropriate dynamic information
for the potential future breakpoints.

Path Sensitive Nonreportability/Reportability when Written Late

MaybeLateAtBkpts[b] = {ls: ls may be late w.r.t. breakpoint b}
EndLatePoints[ls] = {EndLate1, EndLate2, ...}
PotFutBkptsLate[b] = {ls: ls may be late at later breakpoints}

Sinking code can also involve path sensitive reporting, because a statement
may be sunk on one path and not another. This case is opposite to the previous
one in that if a late statement is encountered, it is reportable. If the user sets
a breakpoint at b, the debugger initiates the recording of the late statements
in MaybeLateAtBkpts[b] by setting invisible breakpoints at the new positions
of the late statements. The debugger will discard the recorded information of
a late statement ls when a EndLatei in EndLatePoints[ls] is encountered
(EndLatePoints[ls] holds the end of the definition range of ls). Now consider
the case when breakpoint b is reached, and the user requests the value of variable
v defined by some statement ls in MaybeLateAtBkpts[b]. If the dynamically
recorded information shows that the late statement ls was encountered, the
debugger reports the current value of v. Otherwise the debugger reports that the
value of v is not reportable. The example in Figure 3, where the reportability
of X along region 3❥is path sensitive, is handled by this case.

The same strategy applies for each late statement ds in PotFutBkpts-
Late[b], which prevents FULLDOC from setting invisible breakpoints too late.

3.3 Computing the Reportability Debug Information

The code location mapping is used to compute the reportability debug informa-
tion. The algorithm in Figure 7 gives an overview of how this debug information
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1 For each source definition Dv

2 If Dv overwrites x early then
3 Let discard1, discard2, ... = the corresponding positions of original

definitions of x that are reachable from ARHead(Dv) in the optimized code
4 SaveDiscardPoints [Dv ] = (ARHead(Dv), {discard1, discard2,...} )
5 For each breakpoint B along a path from Dv to discard1, discard2,...,
6 EarlyAtBkpts[B] = EarlyAtBkpts[B] ∪ { Dv }
7 Else If Dv writes late in the optimized code then
8 StopPoints [Dv] = {ARHead(Dv)} ∪ {p : p is an earliest possible program

point along paths from ORHead(Dv) where Dv will not execute}
9 For each breakpoint B along paths ORHead(Dv) to p ∈ StopPoints [Dv ],
10 LateAtBkpts[B] = LateAtBkpts[B] ∪ { Dv }
11 Compute AvailAtBkpts[,], NotRepDelAtBkpts[], and NotRepLateAtBkpts[]

by comparing ranges using ORHead(Dv) and ARHead(Dv)
12 Compute MaybeDelAtBkpts[] and MaybeLateAtBkpts[] by determining when

deleted and late statements occur on one path and not another
13 Compute EndDelPoints[], EndLatePoints[], PotFutBkptsDel[], and

PotFutBkptsLate[] by using reachability

Fig. 7. Algorithm to compute the reportability debug information

is computed. Lines 2− 6 determine what values are overwritten early and com-
pute the SaveDiscardPoints[] and EarlyAtBkpts[] information. Lines 7−10
determine what values are written late and compute the StopPoints[] and
LateAtBkpts[]. Lines 11-13 determine the rest of the debug information by
using data flow analysis. More details about the particular steps follow.

Determining Statements that Overwrite Early or Write Late. We de-
termine where values are overwritten early due to register reuse. Suppose Dx

is a definition of a variable x and the location of x is in register r in the opti-
mized code. If Dx reaches an assignment to r in which r is reassigned to another
variable or temporary, then x is overwritten early at the reassignment.

To determine where values of variables are overwritten early due to code
hoisting optimizations, we compare, using Gopt, the original positions of the def-
initions and their actual positions in the optimized program. Let ARHead(Dv)
denote the actual position of a definition Dv and let ORHead(Dv) denote the
corresponding original position of Dv. We determine the existence of a path P
from ARHead(Dv) to ORHead(Dv) such that P does not include backedges of
loops enclosing both ARHead(Dv) and ORHead(Dv). The backedge restriction
on P ensures that we only consider the positions of the same instance of Dv

before and after optimization. This restricted notion of a path is captured by
the SimplePath predicate.

Definition. The predicate SimplePath(x, y) is true if ∃ path P from program
point x to program point y in Gopt and P does not include backedges of loops
enclosing both x and y.
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If SimplePath(ARHead(Dv), ORHead(Dv)) is true and the location of v at the
program point before ARHead(Dv) is the same location that is used to hold
the value of Dv, then v is overwritten early at Dv in the optimized code. For
example, in Figure 2, SimplePath(ARHead(X2), ORHead(X2 )) is true, and
thus, X is overwritten early at X2 .

To determine where values of variables are written late in the optimized pro-
gram, we similarly compare, using Gopt, the original positions of the definitions
and their actual positions in the optimized program. That is, for a definition Dv,
we determine the existence of a path P from ORHead(Dv) to ARHead(Dv)
such that P does not include backedges enclosing both points. Thus, if Simple-
Path(ORHead(Dv), ARHead(Dv)) is true, then definition Dv is written late in
the optimized code. For example, in Figure 3, X is written late at X2 because
SimplePath(ORHead(X2), ARHead(X2 )) is true.

Computing SaveDiscardPoints[] and EarlyAtBkpts[]. If a value of x is
overwritten early at Dv in the optimized code, then a save point is associated at
the position of Dv in the optimized code, and discard points are associated at the
corresponding positions of original definitions of x that are reachable from Dv

in the optimized code. Data flow analysis is used to determine reachable original
definitions, which is similar to the reachable definitions problem. After the save
and discard points of Dv are computed, we determine the breakpoints where
reportability is affected by Dv. Dv ∈ EarlyAtBkpts[b] if b lies along paths from
save to corresponding discard points of Dv. EarlyAtBkpts[] is easily computed
by solving the following data flow equation on Gopt:

EarlyAt(B) =
⋃

N∈pred(B)

Genea(N) ∪ (EarlyAt(N)− Killea(N))

where
Genea(B) = {Dv : Dv overwrites early and a save point of Dv is at B} and
Killea(B) = {Dv : Dv overwrites early and a discard point of Dv is at B}.

Then Dv ∈ EarlyAtBkpts[B] if Dv ∈ EarlyAt(B). For example, in Figure 2,
SaveDiscardPoints[X2] = (ARHead(X2 ), {ORHead(X2 ), ORHead(X3 )}).
For a breakpoint b along regions 1❥, 2❥, and 3❥, EarlyAtBkpts[b] = {X2}.

Computing StopPoints[] and LateAtBkpts[]. For a definition Dv that is
written late, StopPoints [Dv] are the earliest points at which execution can
stop because either (1) the late value is computed or (2) a point is reached such
that it is known the value will not be computed in the execution. A stop point
of Dv is associated at the ARHead(Dv). Stop points are also associated with the
earliest points along paths from ORHead(Dv) where the appropriate instance
of Dv does not execute. That is, p ∈ StopPoint(Dv) if

p = ARHead(Dv) ∨ (1)
(Dv 	∈ ReachableLate(p)∧ (2)

	 ∃ p′(SimplePath(p′, p) ∧ p′ ∈ StopPoint(Dv))). (3)
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Condition 1 ensures a stop point is placed at Dv. Condition 2 ensures the rest of
the stop points are not placed at program points where the appropriate instance
of the late statement would execute. Condition 3 ensures stop points are placed
at the earliest points. ReachableLate(p) is the set of statements written late that
are reachable at p. ReachableLate() is easily computed by solving the following
data flow equation on Gopt:

ReachableLate(B) =
⋂

N∈succ(B)

Genrl(N) ∪ (ReachableLate(N)− Killrl(N))

where
Genrl(B) = {Dv : ARHead(Dv) = B} and
Killrl(B) = {Dv : ORHead(Dv) = B}.

Consider the example in Figure 3. StopPoints [X2 ] = {ARHead(X2 ), pro-
gram point at the beginning of the false path}. After the stop points of Dv are
computed, we determine the breakpoints where reportability is affected by Dv.
Dv ∈ LateAtBkpts[b] if b lies along paths from ORHead(Dv) to the stop points
of Dv. LateAtBkpts[b] is easily computed using data flow analysis.

Computing AvailAtBkpts[,]. The code location mapping is used to construct
program ranges of a variable’s value which correspond to the unoptimized code
(real range) and the optimized code (actual range). By comparing the two ranges,
we can identify program ranges in the optimized code corresponding to regions
where the value of the variable is always available for reporting. If breakpointB is
in this program range for a variable v then AvailAtBkpts[B,v] is computed by
performing data flow analysis to propagate the locations (memory and registers)
of variables within these program ranges.

Computing NotRepDelAtBkpts[] and NotRepLateAtBkpts[]. To determine
the values of variables that are not reportable along a breakpoint because of
the application of dead code elimination, we propagate the deleted statements
where reportability is affected (regardless of the execution path taken) through
the optimized control flow graph Gopt by solving the data flow equation:

NonRepDel(B) =
⋂

N∈pred(B)

Gennrd(N) ∪ (NonRepDel(N)− Killnrd(N))

where
Gennrd(B) = {Dv : ORHead(Dv) = {B} ∧ Dv is deleted} and
Killnrd(B) = {Dv : ORHead(D′

v) = {B} ∧ D′
v is a definition of v}.

Then for each breakpoint B, v ∈ NotRepDelAtBkpts[B] if ∃ Dv such that Dv ∈
NonRepDel(B). For example, in Figure 4(a), for a breakpoint B along region
1❥, Y ∈ NotRepDelAtBkpts[B]. NotRepLateAtBkpts[] is computed similarly.

Computing MaybeDelAtBkpts[] and MaybeLateAtBkpts[]. To determine
the values of variables that may not be reportable along a path when deleted,
we first compute the data flow equation on Gopt:
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MaybeDel(B) =
⋃

N∈pred(B)

Genmd(N) ∪ (MaybeDel(N)− Killmd(N))

where
Genmd(B) = {Dv : ORHead(Dv) = {B} ∧ Dv is deleted} and
Killmd(B) = {Dv : ORHead(D′

v) = {B} ∧ D′
v is a definition of v}.

Then v ∈ MaybeDelAtBkpts[B] if ∃ Dv such that Dv ∈ MaybeDel(B) ∧ Dv 	∈
NonRepDel(B). For example, in Figure 4(a), for a breakpoint B along region 2❥,
Y ∈ MaybeDelAtBkpts[B] because Y 2 ∈ MaybeDel(B)∧Y 2 	∈ NonRepDel(B).
MaybeLateAtBkpts[] is computed similarly.

Computing EndDelPoints[] and EndLatePoints[]. For a variable v of a
deleted statement ds ∈ MaybeDelAtBkpts[], EndDelPoints[ds] are the cor-
responding positions of original definitions of v that are reachable from OR-
Head(ds) in Gopt. For example, in Figure 4(a), EndDelPoints[Y]= the original
position of Y 3 , which is ORHead(Y 3 ). Similarly, for a variable v of a late state-
ment ls ∈ MaybeLateAtBkpts[], EndLatePoints[ls] are the corresponding
positions of original definitions of v that are reachable from ORHead(ls).

Computing PotFutBkptsDel[] and PotFutBkptsLate[]. For each deleted
statement Dv in MaybeDelAtBkpts[], Dv ∈ PotFutBkptsDel[b] if b lies along
paths from the ORHead(Dv) to the corresponding positions of original defini-
tions of v that are reachable from ORHead(Dv) in the optimized code. PotFut-
BkptsLate[] is computed similarly.

4 Experiments

We implemented FULLDOC by first extending LCC [6], a compiler for C pro-
grams, with a set of optimizations, including (coloring) register allocation, loop
invariant code motion, dead code elimination, partial dead code elimination, par-
tial redundancy elimination, copy propagation, and constant propagation and
folding. We also extended LCC to perform the analyses needed to provide the
debug information to FULLDOC, given in the previous section. We then imple-
mented FULLDOC, using the debug information generated by LCC, and fast
breakpoints [11] for the implementation of invisible breakpoints.

We performed experiments to measure the improvement in the reportability
of expected values for a suite of programs, namely YACC and some SPEC95
benchmarks. Rather than randomly generate user breakpoints, we placed a user
breakpoint at every source statement and determined the improvement in re-
portability of FULLDOC over a technique that uses only static information. We
also report for each breakpoint, the reasons why reportability is affected, and
thus we can compare the improvement of our technique over techniques that
cannot report overwritten values or path sensitive values.
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Table 1 shows for each benchmark, the percentage of values that could not be
reported by (1) using only statically computed information and (2) FULLDOC.
The first row gives the percentages of values that were deleted along all paths,
and are thus not reportable in FULLDOC (as noted, FULLDOC could recover
some of these values, as other debuggers can [8]). The next two rows give the
percentages of values whose reportability is affected because they are overwritten
early, either because of code hoisting (row 2) or a register being overwritten
early (row 3). If a debugger does not include some mechanism for ”saving”
values overwritten early, it would not be able to report these values. The next
three rows give the percentages of values whose reportability is affected because
the statements that computed the values were affected by partial dead code
elimination. Row 4 indicates the percentages of values that are not reportable
along paths before the sunk values. Row 5 indicates the percentages of values
that are not reportable along paths where the sunk values are never computed.
Row 6 indicates the percentages of values that are not reportable along paths
because the reportability of the values sunk is path sensitive. If a debugger does
not include some mechanism to “roll ahead” the execution of the optimized
program, it would not be able to report these values. The next two rows give the
results when reportability is affected by path sensitive information. The seventh
row gives the percentages that were not reportable for path sensitive deletes. In
this case, the values may have been deleted on paths that were executed. The
eighth row gives the results when the location of a value is path sensitive. A
technique that does not include path sensitive information would fail to report
these values. The last row gives the total percentages that could not be reported.
On average, FULLDOC cannot report 8% of the local variables at a source
breakpoint while a debugger using only static information cannot report 30%,
which means FULLDOC can report 31% more values than techniques using only
statically computed information. From these numbers, FULLDOC can report at
least 28% more values than the emulation technique [16] since neither path
sensitivity nor register overwrites were handled. FULLDOC can report at least

Table 1. Percentage of local variables per breakpoint that are not reportable

Problems yacc compress go m88ksim ijpeg
static FULL static FULL static FULL static FULL static FULL
info DOC info DOC info DOC info DOC info DOC

deleted-all paths 0.96 0.96 15.03 15.03 0.75 0.75 1.87 1.87 10.42 10.42
code hoisting 0.19 0.00 0.34 0.00 0.30 0.00 0.14 0.00 4.15 0.00
reg overwrite 42.65 0.00 17.24 0.00 9.44 0.00 1.83 0.00 15.87 0.00
code sinking (rf) 0.19 0.00 0.64 0.09 1.40 0.39 0.57 0.07 1.79 0.09
del on path 0.00 0.00 0.02 0.02 0.10 0.10 0.06 0.06 0.28 0.28
path sens late 0.00 0.00 0.18 0.09 0.51 0.18 0.41 0.37 0.58 0.39
path sens delete 8.27 6.07 0.18 0.00 2.25 0.74 0.00 0.00 2.36 1.20
path sens location 3.95 0.00 0.07 0.00 1.14 0.00 0.32 0.00 1.43 0.00

total 56.21 7.03 33.70 15.23 15.89 2.16 5.20 2.37 36.88 12.38
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Table 2. Static statistics

yacc compress go m88ksim ijpeg

no. source statements 168 354 10876 5778 8214

% statements affected 85 57 59 52 56

number code hoisting 10 77 1502 987 2374
of table reg overwrite 517 234 11819 3961 9655
entries code sinking (rf) 13 177 5355 1839 3745

path sens late 0 117 2912 1203 1833
path sens delete 66 37 1785 397 1452

path sens location 48 59 1937 301 1447

% increase compile time 12.1 8.8 11.0 9.6 13.1

26% more values than dynamic currency determination technique [5] since early
overwrites were not preserved and no roll ahead mechanism is employed.

In Table 2, we present statistics from the static analysis for FULLDOC.
The first two rows show the number of source statements and the percentage of
source statements whose reportability is affected by optimizations. The next 6
rows give the number of entries in each of the tables generated for use at run
time. It should be noted that the largest table is for register overwrites. The
last row shows that the increase in compilation for computing all the debug
information averaged only 10.9%.

In Table 3, we show the average number of invisible breakpoints per source
code statement that was encountered during execution. These numbers are
shown for each of the various types of invisible breakpoints. These numbers in-
dicate that not much overhead is incurred at run time for invisible breakpoints.
The last three rows display the overhead imposed by the roll ahead execution of
the optimized program. On average, 9.7% of the source assignment statements
were executed during the roll aheads. The maximum number of statements exe-
cuted during a roll forward ranges from 5 to 4102 values, which means at most
5 to 4102 number of values are saved from the roll ahead at any given moment.
The average roll ahead of source assignment statements ranges from 2 to 7 state-
ments. The size of the value pool holding values that are overwritten early was
small with the maximum size ranging from 8 entries to 77 entries, indicating
that optimizations are not moving code very far.

Thus, our experiments show that the table sizes required to hold the debug
information and the increase in compile time to compute debug information are
both quite modest. The run time cost of our technique, which is a maximum of
less than one fast breakpoint per source level statement if all possible values are
requested by the user at all possible breakpoints, is also reasonable. The payoff
of our technique is substantial since it reports at least 26% more values than the
best previously known techniques.

The presence of pointer assignments in a source program can increase our
overheads because our strategies rely on determining the ranges in which the
reportability of variables are affected. For control equivalent code motion (as-
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Table 3. Runtime statistics
yacc compress go m88ksim ijpeg

% breakpoints where
reportability affected 94 95 67 21 92

avg. no. code hoisting 0.12 0.03 0.04 0.05 0.35
invisible reg overwrite 1.03 0.13 0.26 0.02 0.35
breakpoints code sinking (rf) 0.03 0.03 0.07 0.03 0.12
per source path sens late 0.10 0.05 0.13 0.04 0.23
statement path sens delete 0.09 0.00 0.03 0.01 0.23

path sens location 0.07 0.02 0.02 0.00 0.05
overall 1.44 0.26 0.56 0.18 1.37

(duplicates removed) overall 0.56 0.14 0.37 0.17 0.43

% source assignments executed for roll forwards 1.33 4.11 17.39 6.01 19.8
maximum roll forward length 5 60 314 4102 1482
average roll forward length 2 4 7 5 4

signments are not introduced into new paths nor removed from paths), we can
statically determine the ranges in which reportability of values are affected even
in the presence of pointer assignments. For the case when the reportability of
a value of a variable is affected and the end of its reportable range is possibly
at a pointer assignment (because of code deletion and non-control equivalent
code motion), our strategy has to dynamically track the range in which the
reportability of the value of the variable is affected.

5 Related Work

The difficulty of debugging optimized code has long been recognized [8], with
most work focusing on the development of source level debuggers of optimized
code [8,17,13,4,7,9,2,12,3,15,1] that use static analysis techniques to determine
whether expected values of source level variables are reportable at breakpoints.
Recent work on source level debuggers of optimized code utilizes some dynamic
information to provide more expected values. By emulating (at certain program
points) the optimized code in an order that mimics the execution of the unop-
timized program, some values of variables that are otherwise not reportable by
other debuggers can be reported in [16]. However, as pointed out in [16], alter-
ing the execution of the optimized program masks certain user and optimizer
errors. Also, the emulation technique does not track paths and cannot report
values whose reportability is path sensitive. The dynamic currency determina-
tion technique proposed in [5] can also report some values of variables that are
not reportable by other debuggers by time stamping basic blocks to obtain a
partial history of the execution path, which is used to precisely determine what
variables are reportable at breakpoints; but values that are overwritten early by
either code hoisting or register reuses are not always reportable. Recovery tech-
niques [8], which can be incorporated into all debuggers including FULLDOC,
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are employed in [16] and [5] to recompute some of the nonreportable values in
certain circumstances.

Instead of reporting expected values with respect to a source program, the
Optdbx debugger [14] reports values with respect to an optimized source program
version. Also, Optdbx uses invisible breakpoints to recover evicted variables.

Another approach to debugging optimized code is COP [10], a comparison
checker for optimized code, which verifies that given an input, the semantic
behaviors of both the unoptimized and optimized code versions are the same.
This can be incorporated into a debugger to report all values, including deleted
values. However, this technique requires the execution of both the unoptimized
and optimized programs.

6 Conclusions

This paper presents FULLDOC, a FULL reporting Debugger of Optimized
Code that reports all expected values that are computed in the optimized pro-
gram. That is, every value of a source level variable that is computed in the
optimized program execution is reportable at all breakpoints in the source code
where the value of the variable should be reportable. Experimental results show
that FULLDOC can report 31% more values than techniques relying on static
information and at least 26% more over existing techniques that limit the dy-
namic information used. FULLDOC’s improvement over existing techniques is
achieved by statically computing information to guide the gathering of dynamic
information that enables full reporting. The only values that FULLDOC cannot
reported are those that are not computed in the optimized program execution.
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