GURRR: A Global Unified Resource Requirements Representation*

David A. Berson
berson@cs.pitt.edu

Rajiv Gupta
gupta@cs.pitt.edu

Mary Lou Soffa
soffa@cs.pitt.edu

Computer Science Department
University of Pittsburgh

Pittsburgh, Pa. 15260
Fax: (412) 624-5249

Abstract

When compiling for instruction level parallelism (ILP), the
integration of the optimization phases can lead to an im-
provement in the quality of code generated. However, since
several different representations of a program are used in the
various phases, only a partial integration has been achieved
to date. We present a program representation that combines
resource requirements and availability information with con-
trol and data dependence information. The representation
enables the integration of several optimizing phases, in-
cluding transformations, register allocation, and instruction
scheduling. The basis of this integration is the simultane-
ous allocation of different types of resources. We define the
representation and show how it is constructed. We then for-
mulate several optimization phases to use the representation
to achieve better integration.

1 Introduction

Recent research has proposed several methods to integrate
back-end phases of instruction level parallelism (ILP) com-
pilers in an effort to take into account the interactions among
the phases and improve the quality of code generated. How-
ever, the primary phases of interest, register allocation and
instruction scheduling, use different representations, thus re-
stricting the degree of integration. As a result, little work
has examined complex interactions such as performing code
transformations with the foreknowledge of their impact on
register allocation.

In this paper we present a representation, GURRR, that
augments the control and data dependence information of a
Program Dependence Graph (PDG) with resource require-
ments and availability to enable better integration of allo-
cating registers and scheduling instructions (allocating func-

*Partially supported by National Science Foundation Presidential
Young Investigator Award CCR-9157371 and Grant CCR-91090809
to the University of Pittsburgh

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

IR'95 San Francisco, California USA
© 1995 ACM

23

tional units). The allocation of registers and functional units
is made while considering the impact of the allocation deci-
sions on the overall execution time of the program. We show
how this representation can also be used by other phases to
determine their impact on register allocation and instruction
scheduling and thus, their impact on the overall execution
time of the program.

Register allocation is traditionally performed by creating
an interference graph to represent conflicts between values
that can be alive simultaneously. The nodes in the graph are
then colored with colors indicating the register assigned to
a node’s live value. Recent techniques have been developed
to compute the additional interferences that can occur due
to parallel instruction execution and instruction reordering
[Pin93, NP93]. However, the interference graph does not
provide precise information to indicate the effect of an allo-
cation decision on the execution time of the program.

Instruction scheduling is typically performed on a de-
pendence DAG using some variant of list scheduling. While
the dependence DAG can be used to compute the live range
interferences, it is not appropriate for making register allo-
cation decisions. The DAG represents a collection of seman-
tically correct schedules rather than a single schedule, and
so it does not precisely indicate when each live range will
begin and end.

Instruction scheduling and register allocation have a fun-
damental interaction related to the order in which they are
performed. If instruction scheduling is performed first it
may produce a schedule that will require values in registers
to be spilled. The instructions for performing the spilling
must be inserted into the schedule, usually requiring a sec-
ond scheduling phase. If register allocation is performed
first it can reduce the amount of parallelism available for
scheduling due to the introduction of false dependencies on
registers. Recent works have developed methods to incor-
porate some information from one phase into the other, but
are unable to fully represent register allocation and instruc-
tion scheduling in a single representation and thus do not
achieve the full integration of allocating functional units and
registers simultaneously [GH88, NP93].

Little work has been done on integrating other back-end
phases as well. Typically other back-end phases, such as
global code motion, code optimizations, and loop transfor-
mations are performed without considering their impact on
register allocation. In addition, little consideration is given
to selecting transformations that expose a level of paral-
lelism appropriate for the architecture. Instead, transforma-
tions are applied to expose as much parallelism as possible,

which is then scheduled. The result is that too much par-
allelism may be exposed and then must be removed by the
scheduler. Region Scheduling does attempt to expose an ap-
propriate amount of parallelism, but uses coarse estimates
that do not consider register demands [GS90]. The special
case of exposing parallelism through software pipelining has
received attention for scheduling the resulting parallelism,
[Lam88, AN88b] and more recent work has also considered
register allocation [RLTS92, NG93].

To address the interactions between register allocation
and instruction scheduling phases, we present a new repre-
sentation that incorporates resource requirements and avail-
ability. This representation permits the impact of each deci-
sion in a phase to be determined from several key indicators
of program execution. The most important indicator is an
estimate of execution time. The execution time is directly
affected by the capability to effectively allocate the archi-
tecture’s resources, e.g., registers and functional units. To
enable effective resource allocation without increasing the
execution time, our representation indicates how many of
each resource type are required by the code segment of in-
terest, as well as the number of each resource type available
at that location. In addition, the integration of transforma-
tions with resource allocation requires the representation to
be incrementally updateable as transformations are applied
and resources are allocated.

We define GURRR in section 2 and describe its construc-
tion in section 3. Section 4 demonstrates how several phases
of an ILP compiler can be integrated by formulating them
in terms of GURRR. In section 5 we show how GURRR can
be incrementally updated. Section 6 compares GURRR to
related intermediate representations. Finally, we summarize
the work in section 7.

2 Integrated Resource Allocation Representation

2.1 Integrated Resource Allocation Properties

The goal of this work is to develop an intermediate repre-
sentation that allows the compiler back-end to fully inte-
grate phases that allocate and schedule different types of
resources, such as registers and functional units. A single
representation enables such integration by indicating where
and how all resources of interest are used and available, as
well as information on factors that affect the execution time
of the program, such as critical path lengths and execution
counts of regions. We refer to the capability to allocate mul-
tiple types of resources simultaneously as unified resource
allocation.

Algorithms that integrate resource allocation need re-
source usage information to make effective allocation deci-
sions which have a minimal impact on the execution time of
the program. Resource allocation decisions only need to be
made when there are locations in a program segment that
require more instances of a resource than are available. Ad-
vanced resource allocation algorithms, such as those based
on the Measure and Reduce paradigm [BGS93] and to some
extent global schedulers, move instructions from locations
where there are insufficient instances of a resource to loca-
tions where extra resource instances are available. Thus,
the resource usage information must indicate all locations
where resources are either over-utilized or under-utilized.
Since the architectures targeted in this work exploit ILP, a
representation must take into account the ability to schedule
instructions in parallel.

24

We identify the following set of properties that an in-
termediate representation should satisfy to support unified
resource allocation. We refer to these properties as the Unz-
fied Representation Properties.

Property 1 (Unified Representation) The representa-
tion can be used to determine the impact of a resource allo-
cation or set of resource allocations on all resource demands
in all segments and the execution time of the program.

Property 2 (Measurability) The representation enables
measurement of all segments’ demands for all resources. A
resource measurement is precise if it indicates the mini-
mum number of copies of the resource needed to exploit all
parallelism uncovered in each program segment.

Property 3 (Resource Usage) The representation iden-
tifies all locations in each segment where resources are either
over-utilized or under-utilized.

Property 4 (Executability) The representation indi-
cates if each program segment in its current state can be
executed using the available resources. A program segment
18 executable if and only if for each resource the number
of copies required s less than or equal to the number of
copies avatlable. A program is executable if and only iof all
segments are executable.

Ideally, the representation should supply precise resource
measurements. In previous work we have shown that com-
puting precise register measurements for parallel architec-
tures or when code reordering is considered is NP-complete
[BGS93]. Thus, there is a trade-off between the precision
of the measurements and the time taken to compute them.
We have developed fast heuristics for measuring register re-
quirements that are demonstrably precise.

The measurability of the representation allows resource
usage information for all resources to be computed. An in-
termediate representation that provides resource usage in-
formation for all resources enables unified resource alloca-
tion.

2.2 GURRR

GURRR is an intermediate representation that meets the
unified representation properties and is used to investigate
unified resource allocation algorithms. To support a variety
of parallelization techniques, including powerful code mo-
tions, GURRR is based on a modified form of the Program
Dependence Graph (PDG).

We introduce the Instruction Program Dependence
Graph to represent instruction level parallelism not explic-
itly expressed in the traditional statement level PDG. Since
a single program statement may result in several intermedi-
ate code statements, representing the program at the inter-
mediate code level permits access to more ILP. To support
a wider range of code motions we convert the representation
to Static Single Assignment form (SSA). Special instruction
nodes can be added to carry loop and array access informa-
tion to enable the exploitation of medium grain parallelism
as well. Compilers using PDG based representations per-
form resource allocations on a region by region basis. Thus,
regions correspond to the program segments mentioned in
the unified representation properties.

The Instruction PDG (IPDG) is a graph G = (N, E), in
which the set of nodes, N, is a union of the following node
types.

1. Instruction nodes, 7, are similar to statement nodes
found in traditional PDGs, but represent intermediate
opcodes.

2. Region nodes, R, in the PDG identify a unique set of
execution conditions or control dependencies.

The set of edges, F, is a union of the following edges
types.

1. Control dependence edges, C C {Z x R}U{R x I}, con-
nect the region node to the instruction and subregion
nodes that execute under the conditions that it identi-
fies. Control edges are also added from the instruction
nodes specifying those conditions to the region node.

2. Data dependence edges, D C {ZUR}x{ZUR}, connect
the instruction nodes and represent the dependence of
the instruction nodes on data values computed by ear-
lier instruction nodes. In addition, data dependence
edges are added from the instruction nodes defining
values to the region nodes containing uses of the values
to summarize the dependence of the region as a whole
on data values computed by earlier instructions.

3. Transitive data dependence edges, Dy C {ZUR} x{ZU
R}, indicate indirect dependencies between nodes due
to a sequence of data dependencies. The addition of
these edges simplifies the computation of the ordering
of nodes within a region.

GURRR extends the IPDG to include the resource us-
age information required to meet the unified representation
properties. In addition to summarizing control dependence
information, region nodes in GURRR are used to summarize
resource usage information. Since the regions are organized
in a hierarchical manner, the summary for a region must
include resource usage information for both the instructions
and subregions that it contains. Regions in GURRR also
store execution counts, indicating how many times the re-
gion is expected to be executed during a run of the program.
This information enables the allocation algorithms to make
better decisions on how many resources to allocate in each
region.

The Measure and Reduce allocation scheme used in our
work explicitly decides which instructions should be delayed
until all resources that it requires are available. To support
these scheduling decisions GURRR must represent addi-
tional constraints placed on the ordering of nodes. GURRR
must also contain information used to measure the resource
requirements. A part of this information is identifying which
instructions can share an instance of a resource. The follow-
ing additions are made to the IPDG’s nodes and edges to
meet these requirements and obtain GURRR.

1. Resource hole nodes, H, represent locations in the pro-
gram where resources are under-utilized. FEach hole
node is annotated with the resource availability char-
acteristics.

2. Temporal dependence edges, 7 C N x N, are used
to represent sequential dependencies. These edges are
used to supply additional ordering constraints on the
nodes, such as placement of hole nodes, and instruction
and region node scheduling.

3. Reuse edges, Y C {ZUR} x{ZUR}, connect nodes that
can temporally share an instance of a resource under
any schedule allowed by all of the dependencies in a

25

region. A separate set of reuse edges is used for each
resource type.

The stipulation that Reuse edges are added only when a
resource can be shared under all semantically correct sched-
ules allows for parallel execution and code reordering. An
allocation algorithm, such as Measure and Reduce, can se-
lect any allowable schedule and determine the worst case re-
source requirements. When only a single schedule, such as
the original order of the sequential source code, is used the
resource requirements measurements are less precise, since
fewer overlaps of uses of resources are accounted for.

Reuse edges are the basis of the resource requirements
measurement algorithm. The measurement algorithm uses
these edges to find as many instructions as possible that can
share a single copy of a resource. The resource requirements
measurements for a region consist of two pieces of informa-
tion: allocation chains and excessive sets.

Definition 1 An allocation chain for resource R is a set
of nodes that are fully ordered by the reuse edges for resource
R. Thus, by definition all nodes in an allocation chain can
temporally share one instance of resource R.

Definition 2 An excessive set for resource R is a set of
nodes that can execute in parallel and together require more
instances of resource R than are available.

Proper computation of allocation chains indicates the to-
tal number of instances of a resource required. Examination
of the allocation chains allows all locations where a resource
is either over-utilized or under-utilized to be identified. Ex-
cessive sets are the nodes in the locations where a resource
is over-utilized.

The resource requirements of a region are measured by
finding the minimum number of disjoint allocation chains
that contain all instruction and subregion nodes in a region
[BGS93]. The reuse edges composing allocation chains are
marked as such. The allocation chains in a region are used to
locate the two indicators of resource usage levels: excessive
sets and resource holes. FExcessive sets are annotated in
the region node. Resource hole nodes are placed on the
allocation chains to indicate the location and characteristics
of the resources holes.

Figures 1(a) and 1(b) show a simple program and the cor-
responding GURRR. The target architecture has three func-
tional units and three registers. Control, data, and temporal
dependencies, and reuse edges are indicated by bold, normal,
dashed, and dotted lines, respectively. To improve readabil-
ity only the reuse edges for registers have been drawn. The
selection of the nodes that can reuse the registers used by
instructions A and B is described elsewhere [BGS93].

To be considered useful for unified resource allocation
GURRR must satisfy the unified representation properties.
GURRR satisfies the Measurability property by using the
reuse edges and allocation chains to compute each region’s
requirements for all resources. As discussed in section 3, the
resource measurements are precise for functional units and
usually precise for registers. GURRR provides resource us-
age information for all resources on the IPDG. All types of
dependencies are represented by the various types of edges in
GURRR, allowing the execution time of a region to be com-
puted. The combination of all of this information on a region
by region basis and in hierarchical summaries satisfies the
Unified Representation property. In each region the exces-
sive sets and resource hole nodes identify all locations that

load A
load B
=A-10
A x B
B + 12
D/GC

O Ul W N =
mm o Q
non

(a) Code segment

Control Dependence

Data Dependence
Transative Data Dependence
Temporal Dependence

Reuse

Figure 1: Example of GURRR

over-utilize and under-utilize resources, respectively, satis-
fying the Resource Usage property. Finally, the number of
instances of a resource required by a region is stored in the
region node. This number can be compared to the number
of instances of the resource available for allocation to the
region to determine if the region is executable. Due to the
hierarchical nature of GURRR, the program is executable
if the root region is executable, satisfying the Executability
property.

At times during the measurement of resource require-
ments and use of GURRR by the compiler back-end, it is
convenient to consider only subsets of the information pro-
vided by GURRR. We identify four combinations of subsets
of nodes and edges commonly used. Each combination is a
subgraph composed of selected subsets of nodes and edges.

Definition 3 Given a graph G = (N, E), the subgraph of G

induced by N’ C N with respect to £ C E is the graph
G' = (N, E"), where B! = {(u,v) € £ :u,v € N'}

1. The Control Dependence Graph, CDG, is the
graph induced by Z U R with respect to C.

2. The Data Dependence Graph, DDG, is the graph
induced by Z U R with respect to D.

3. The Region DAG for a region R, Regiony DAG, is
the graph induced by {n|n € ZURU®H and (R,n) € C}
with respect to DU Dy UT. This graph provides all of
the information needed to allocate all resources in the
region.

4. The Reuse DAG for a region R and resource R,
Reuser DAG, is the graph induced by {n|n € Z U
R and (R,n) € C} with respect to i and is used to com-
pute a region’s requirements, the excessive sets, and
resource holes for resource R.

The CDG and DDG are the same as those found the in
IPDG. The Region DAG contains all dependence and re-
source usage information required for performing local uni-
fied resource allocation. The CDG and Region DAGs for
other regions may be used when performing various types
of integrated global resource allocations. The Reuse DAG
is typically used only by the resource usage computation
algorithms. These algorithms measure the resource require-
ments, compute the excessive sets, and add the resource hole
nodes.

26

As an example of the various subgraphs, consider the
code segment of an if-then in Figure 2(a) and assume that
the target architecture has a single type of functional unit
resource and a single type of register resource. In the sub-
sequent figures edges representing redundant ordering infor-
mation are removed to aid readability. The control and data
dependence subgraphs are shown in Figures 2(b) and 2(c)
respectively. The functional unit and register Reuse DAGs
are shown in Figures 3(a) and 3(b) respectively. The region
2 node, R2, does not occur in the functional unit Reuse
DAG since its instructions are not executed in parallel with
region 1’s instructions. The R2 node occurs in the register
Reuse DAG since the values it computes can be alive si-
multaneously with some of the values computed in region 1.
Since the two values D; and D» share a register, the R2 node
represents the register demand of instruction t. The brlt
predicate node does not occur in the register Reuse DAG
since it does not write to a register. The functional unit
Reuse DAG for region 1 can be covered by the four alloca-
tion chains {C, brlt}, {A, D:, F, H}, {B, E}, and {G},
indicating a maximum requirement of four functional units
to exploit all parallelism in the region. The register Reuse
DAG can be covered by the six allocation chains {C, F},
{A, Dy, H}, {B}, {E}, {R2}, and {G}, indicating that it
is possible for six values to be simultaneously alive.

Figure 3(c) shows the partial schedule for functional
units in region 1 imposed by the data and temporal depen-
dencies. Each column represents an allocation chain. There
are resource holes before C, after both brlt and E, and be-
fore and after G. Since the functional unit is unused for the
entire duration of these holes, they are called free holes. In-
structions D;, E, and G have slack time in when they can
be scheduled. Since the functional units are not needed for
the entire time, these nodes exist in slack holes. Figure 3(d)
shows the region DAG for region 1 with only the functional
unit hole nodes. Free and slack hole nodes are marked with
FH and SH respectively. A transitive data dependence edge
has been added from node C to node F to indicate the tran-
sitive dependence caused by nodes t and Dz, which are not
in region 1. The largest set of instructions that can be exe-
cuted in parallel is {C, D1, E, G}, which would be excessive
if the target architecture provided fewer than four functional
units.

The partial schedule for registers is shown in Figure 3(e).
The allocation chain containing R2 does not have any in-
structions from region 1 and consists of two free holes sepa-

= O W©MNOU R WN R
o
R
=
o
Q
©

=

(b) Control Dependence Subgraph

(¢) Data Dependence Subgraph

Figure 2: Sample Code and GURRR Dependence Subgraphs

rated by the node R2. Figure 3(f) shows the region 1 DAG
without the functional unit holes.

3 Construction of GURRR

The construction of GURRR begins with an IPDG and is
performed in a hierarchical manner on the DAG of region
nodes resulting from the forward control dependencies. The
regions are visited one at a time in a bottom up order and
the local components are constructed. A summary of the
resource requirements of subregions is used during the con-
struction in the parent region. The resulting global resource
requirements are contained in the root region.

Special processing occurs when there are mutually ex-
clusive subregions, such as the then and else subregions
of an if statement. In this case, the region containing the
if statement is only concerned with the maximum require-
ments of the set of mutually exclusive subregions. The sub-
regions nodes are marked as mutually exclusive and the con-
struction takes the maximum of the requirements for each
resource.

The steps in the construction of GURRR for each region
are performed in the following order.

Add transitive data dependence edges: Transitive
data dependence edges are added between all instruction
and region nodes. The computation of the transitive data
dependence edges can be done in graph linear time. In the
worst case O(N?) edges are added. These edges are required
for the proper computation of the Reuse DAGs.

27

Build Reuse DAGs: The Reuser DAG is the instan-
tiation of the relation CanReuser for resource R. The
CanReuser relation identifies the nodes in a region that
can safely temporally share an instance of resource R. For
nodes A, B, and C in the Data Dependence subgraph, the
ordered node pair (A, B) € CanReuser if and only if there
is a node C that ends A’s use of an instance of R and
C € Ancestors(B)U{B}. Thus (A, B) € CanReuser if and
only if B can safely reuse A’s instance of R under any sched-
ule allowed by the data dependencies in the data dependence
DAG. The Reuser DAG is constructed by adding an edge
from node A to node B for each (A, B) € CanReuser, when
both A and B use resource R.

The sets of nodes whose resource can be reused by node n
are computed in a forward topological traversal of the DAG
using the equation

CanReuser[n] = avail[n] U CanReuser[P].

Pepredecessors(n)

Avail[n] is at most all of rn’s immediate predecessors whose
instances of R can be safely reused by n. The computation
of avail[n] is dependent on how each resource is used. There
are two classifications of resources based on the duration of
a use of the resource. A resource is a spanning resource
if its use begins during the execution of one instruction,
the defining instruction, and ends during the execution of a
later instruction, the killing instruction. A resource is a non-
spanning resource if its use always begins and ends during
the execution of a single instruction. Registers are spanning

(a) Region 1 Functional Unit Reuse DAG

A B
C
D: E
brlt G
F
H

(¢) Region 1 FU Schedule

A B
C D: E
R2 G
F
H

(e) Region 1 Register Schedule

CNONONOS =0

jot

(b) Region 1 Register Reuse DAG

(f) Region 1 DAG with Register Holes

Figure 3: GURRR Resource Usage Information

resources, while functional units are non-spanning resources.
For non-spanning resources, avail[n] is the set of n’s clos-
est ancestors that use R. Computing avail[n] for spanning
resources requires a special component analysis. The identi-
fication and analysis of most components can be performed
in graph linear time. However, for a few components the
analysis is NP-Complete [BGS93]. We formulate the com-
ponent analysis as a minimal set covering problem and use
a graph linear greedy heuristic that has a ratio bound of
In|X|+1, where X is the number of nodes in the component
[CLR90]'. The computation of avail[n] and CanReuse are
graph linear and the resulting Reuse DAGs contain O(N?)
reuse edges.

In our limited experimentation the components requiring the
heuristic had six or fewer nodes. The heuristic always found a precise
answer.

28

Find allocation chains: Allocation chains are chains
on the partial order represented by the CanReuser rela-
tion. The capability of measuring the resource requirements
is based on a result by Dilworth, which states that the max-
imum number of independent elements in a partial order is
equal to the number of chains in a minimum decomposition
[Dil50]. Thus, the maximum resource requirements of Reuse
DAG can be computed by finding the minimum number of
allocation chains that cover the Reuse DAG.

Ford and Fulkerson have shown that computing a mini-
mum chain decomposition can be performed using bipartite
matching [FF65], in O(v/NE) time [HK73]. In practice the
matching is performed on the Reuser DAG. The matching
edges are labeled as such with one in-coming and one out-
going matching edge per instance of R used by the node.

The number of allocation chains for each resource is

type size EAT LAT
Free | LST,, — EFT,, | EFT,, | LSTn,
Slack slack EST.n, LFT.pn,

Table 1: Computation of hole properties

recorded in the parent region’s node. Once the requirements
have been measured, the allocation chains are used to com-
pute excessive sets and resource holes.

Find excessive sets: Excessive sets are identified by
finding sets of independent instructions whose cardinality is
greater than the number of instances of the resource avail-
able. Let |R| be the number of instances of resource R avail-
able. An excessive set is grown using a working list. Each
node in the working list is added to excessive set if it is inde-
pendent of at least |R| nodes on different allocation chains
for R. All unexamined nodes that are independent of the
excessive node are then added to the working list. The ini-
tial node of the work list is located by scanning all nodes
until one that meets the excessive test is found. The lists of
excessive sets are stored in the region node for use by the
allocation phase. This growing process is graph linear in
time.

Find resource holes and add hole nodes: Resource
holes are found by scanning individual allocation chains and
identifying locations where one of two cases exist.

1. A Free hole occurs when there are consecutive nodes on
the chain where there is a positive amount of time be-
tween the Latest Finish Time (LFT) of the first instruc-
tion and the Earliest Start Time (EST) of the second.
In this case, the resource instance is completely unused
for a period of time between the two instructions.

2. A Slack hole occurs when a set of consecutive instruc-
tions on an allocation chain is not on a critical path
through the region, i.e., the instructions have slack time
for scheduling. The slack hole contains these instruc-
tions.

Free hole nodes are added between the consecutive nodes
surrounding the hole. Slack hole nodes are added between
the predecessor of the first instruction or region node in the
hole and the successor of the last node in the hole.

Several properties must be computed for each hole found.
These properties indicate how the hole can be used to hold
instructions. The size of the hole indicates how many cycles
the resource is unused. The availability indicates when the
resource is unused, and is represented by the bounds Earliest
Available Time (EAT) and Latest Available Time (LAT).

The computation of both the size and the availability
of a hole depends on the type of hole and is summarized
in Table 1. Nodes n; and n2 surround a free hole, and
nodes sn; and sn; are the first and last nodes in a slack
hole. LST and EFT are the latest start time and earliest finish
time of a node, respectively. Slack is the slack time of each
node in the hole. The hole nodes are annotated with these
characteristics. The computation of the LST and EFT for the
instruction and region nodes is graph linear. The location
of the holes requires O(N) time, and the worst case number
of holes found is 2N, where N is the number of instruction
and region nodes in the region.

29

4 Applications of GURRR

In this section we describe the use of GURRR for integrat-
ing several back-end compiler phases. We first present a
technique for integrating global register allocation and in-
struction scheduling within regions. Next, we examine the
integration of global code motions and register allocation.
Finally, we integrate parallelizing transformations with re-
source allocation.

4.1 Global Register Allocation and Instruction Scheduling

Hierarchical register allocation on the Control Flow Graph
has been suggested by Callahan and Kennedy [CK91], and
on the PDG by Norris and Pollock [NP94]. GURRR sup-
ports full integration of hierarchical register allocation and
instruction scheduling. The allocations are performed on a
region by region basis during a bottom-up traversal of the
forward control dependencies.

Because allocation of resources is only difficult when the
requirements exceed the availability, our allocation scheme
uses a Measure and Reduce paradigm. In this paradigm the
register and functional unit requirements are measured and
the excessive requirements are removed by transformations
that introduce additional sequentialization. The measure-
ment process computes the resource usage information found
in GURRR. The reduction process selects sets of nodes from
an excessive set and attempts to find holes for all resources
that it excessively demands. By finding holes for all re-
sources needed, unified allocation is achieved. In the case
of register holes, additional instructions may need to be in-
serted with the selected node to perform spilling. There are
several cases when different sets of spill instructions need to
be inserted, depending on whether the spanning hole is a
Free or Slack hole and where the uses of the value(s) com-
puted by the selected nodes occur. Details are given else-
where [BGS94].

The goal during the selection of holes is to minimize in-
creasing the execution time of the region. Thus, the holes
selected should meet two requirements. First, the available
time of the holes should overlap with each other, and with
the execution range of the node selected from the excessive
set. Second, the size of the holes should be large enough
for all instructions selected, including any spill code needed.
No increase in the critical path length will result if and only
if these conditions are met. When the conditions cannot
be met Wedged Insertion is performed, Wedged Insertion
increases the critical path length by stretching the region,
and in the process, making holes large enough for the in-
structions to be inserted. The holes may either be existing
holes that were too small or new holes. The location for
inserting the wedge is selected to minimize the increase the
increase in the critical path length. The selection of the lo-
cation considers the type of existing and new holes, which
affect how much spill code must be inserted to use them.

As an example, consider the region DAG in Figure 4(a).
Assume that the region node R requires two registers and
that the architecture provides two functional units and four
registers. Node G excessively uses a functional unit. It is
forced to use the functional unit hole above C by adding a
temporal dependence edge from G to C. Node H excessively
uses both a functional unit and a register. The register hole
following B and the functional unit hole following D overlap
and can be used by H, so temporal dependencies are added to
force H to follow D. Node I is also inserted in the functional

(a) Region DAG with excessive requirements

(b) Reduced Region DAG

Figure 4: Example of Global Resource Allocation

unit hole following D. To prevent R from using a register
excessively while G’s value 1s still alive, R is given the same
temporal dependencies as H. The resulting graph is shown
in Figure 4(b).

4.2 Global Code Motion

The goal of performing global code motions is to reduce the
execution time of the program by exploiting inter-basic block
parallelism. Therefore, instructions should not be moved if
there are not sufficient resources available at their destina-
tion, since no decrease in execution time would result. The
control dependence information provided in GURRR nat-
urally allows inter-block motion for blocks with the same
control dependencies. However, code motions between re-
gions with different control dependencies are also possible.
Some motions can be performed using code duplication or
safe speculative execution without hardware support. Other
motions require predicated or speculative hardware support.
We assume that the code motion algorithm is provided with
the sets of instructions that can be moved according to the
semantics and hardware support available.

To give priority for resources to the instructions intrinsic
to each region, unified register allocation and instruction
scheduling is performed first. Global code motion then uses
the remaining resource holes for instructions that it elects
to move. With the exception of code duplication, wedged
insertion is not performed during global code motion.

The code motion algorithm must find overlapping re-
source holes for all resources that each moved instruction
uses. There are several possible strategies for performing
global code motion: 1) instructions can be moved individu-
ally, 2) instructions can be moved in sets that each decrease
the critical path of the source region, or 3) a single set of
instructions to be moved can be selected by measuring their
requirements and estimating their hole usage. It is generally
advantageous to move large sets of instructions, so that the
amount of spill code generated is minimized. In the first case
each instruction is treated as a node selected from an exces-
sive set. Holes are found for all of its required resources.
The other cases are handled by placing the set of instruc-
tions in the destination region and using the Measure and
Reduce paradigm.

The difference between the second and third approaches
is in the selection of sets and the method of termination. In
the second approach, successive sets are selected and moved

30

until moving a set would cause an increase in the destina-
tion region’s execution time. In the third approach only one
set of instructions is selected and moved, based on resource
usage estimates. The total requirements of the selected in-
structions can be determined simply by counting the number
of allocation chains that they are on. The total size of holes
required for each subchain is also directly available. The es-
timates consider how many instructions can be inserted into
each hole while preserving dependencies.

As an example, consider the region DAG in Figure 5(a).
The G; nodes represent groups of instruction nodes. Assume
that the architecture has two functional units and four regis-
ters, and that group G; uses all resources. The region DAGs
for R1 and R2 are shown in Figures 5(b) and 5(c), respec-
tively. Nodes from the parent region are added to show the
inter-region data dependencies. Global code motion can be
performed on either the critical sets {R, S} and {T, U} in
region 1 or the critical sets {M, N} and {0} in region 2. The
critical set {R, 8} in region 1 can share one functional unit,
but requires two registers. There are insufficient registers to
also move the critical set {T, U}. The critical sets in region
2 can share one functional unit and require two registers.
The critical sets from region 2 are moved up because they
result in a larger decrease in critical path length. The re-
sulting region DAG is shown in Figure 5(d). A temporal
dependence is added from 0 to G; to ensure that a register
is freed by 0 in time for G; to use it. Even if sufficient regis-
ters were available for both of region 1’s critical set, it is not
advantageous to move it because functional unit availability
only allows one instruction from the second critical to be
moved, at no additional improvement.

4.3 Transformation Requirements Prediction

The resource requirements of a program can be used to esti-
mate the impact of potential transformations. When several
code transformations are available, it is advantageous to se-
lect the one that exposes just enough parallelism. If too
much parallelism is exposed the compiler must remove the
excess during scheduling and register allocation. Heuristics
can be developed that given a transformation, use the num-
ber of allocation chains covering the portions of the program
transformed to estimate what the new resource requirements
would be. A second approach is to use incremental updating
of GURRR to compute the resource requirements resulting
from the transformations.

Region 2

(c) Region 2 DAG

Region 1

(d) Resulting Region DAG

Figure 5: Example of Global Code Motion

As an example, consider the body of a loop shown in Fig-
ure 6(a), and assume an architecture with four functional
units. The loop requires two functional units. Loop un-
rolling is a parallelizing transformation that allows overlap-
ping of successive iterations. It is desirable to perform only
as much unrolling as will expose parallelism that can be ex-
ploited by the target architecture. The unrolling process is
repeatly performed until there is no more decrease in the
number of cycles required to execute the unrolled iterations.
If the current resource requirements were used in a heuristic
that considered the data dependencies, i.e., two functional
units, two iterations could be overlapped without exceed-
ing the four available functional units. The result would be
the first two diamonds in Figure 6(b). The length of the
resulting block would be 4 cycles, an improvement over 6
cycles required for iterations that were not overlapped. If
another iteration is unrolled and overlapped with the ear-
lier iterations and the resource requirements were updated,
three iterations can be overlapped for further improvement.
The resulting set of instructions By, T1lz, T22, and As can be
used as the kernel of a software pipeline [Lam88, AN&8b].

31

5 Incremental Updating of GURRR

GURRR is able to reflect changes in resource requirements
resulting from the transformations applied to the program.
The brute force approach is to recompute all information
from scratch after each transformation is applied. This can
be a costly approach, and it does not provide any support
for predicting the impact of a transformation. It would be
useful to be able to estimate the impact of a possible trans-
formation on the resource requirements. In this section we
sketch techniques for incrementally updating GURRR.

In previous work on specifying transformations a basic
set of program edits to describe the transformations has been
used [WS391, Dow94]. We define the following set of Standard
Edit Functions (SEFs), which apply a transformation to the
elements of a PDG.

Addelement Create a new element
Deleteelement Delete an element

Create a new element and copy label infor-
mation of an existing element

Copyelement

DO i =2 to 10
1: A[i] = A[i-11 + 10

2: T1 = A[i] - 1
3: T2 = A[i] + 1
4: B[i] = T1 * T2
ENDDO

(a) Loop Body

(b) DAG

Figure 6: Loop candidate for unrolling

Moveelement Delete and recreate an element, preserving

label information
Modifyelement Change the label information

There are two sets of the above operations, one for nodes and
one for edges, giving a total of ten SEFs. Since nodes will
never be added without corresponding edges, and the edge
SEFs can be viewed as combinations of adding and deleting
edges, we consider only the AddEdge and DeleteEdge SELs.

The computation of the CanReuse relation is graph lin-
ear. The updating of avail[n] information is limited to the
nodes affected by the AddEdge and DeleteEdge SEFs. The
updated information is then propagated through the region
DAG. The Reuse DAG is updated by adding and deleting
edges corresponding to the nodes inserted and removed in
the CanReuse relation.

The matching algorithm used to compute allocation
chains is incremental by nature; each matching is a par-
tial solution and new matchings are added by finding aug-
menting paths. Thus, the modified Reuse DAG with edges
deleted and added can be used as partial solution. The com-
plexity for this solution is O(y/mFE), where m is the number
of chains in the initial partial solution. An alternative ap-
proach can find only unit length augmenting paths in graph
linear time, possibly introducing some imprecision.

Updating of the excessive sets is performed in two steps.
First, the nodes in the existing excessive sets are tested to
see if they are still in parallel with an excessive number of
other nodes. This step can be limited to the nodes that
have had edges added to them. Second, nodes not in the
excessive sets are tested to see if they now should be. The
initial set of nodes considered in this step can be limited to
those that have had edges removed.

Transformations can affect holes by creating new ones,
removing existing ones, and by changing their characteris-
tics. All of these changes can be found by examining each
node whose EST and/or LFT has changed. However, the na-
ture of the matching algorithm used to find the allocation
chains can cause unchanged holes to migrate between allo-
cation chains. The sequential edges used to place the hole
nodes in the region DAGs can be updated to reflect the mi-
grations in linear time in the number of hole nodes.

6 Related Representations

Traditionally, compilers have used the Control Flow Graph
(CFQ) as the intermediate representation of the program.

32

The CFG is used to collect a variety of information, includ-
ing dataflow dependencies and live value ranges [ASUS6].
Extensions to the CFG such as Traces [Fis81] and Super
Blocks [HMC*93] have been developed in an effort to sup-
port global code motion. The CFG is also traditionally used
to construct register interference graphs.

The Program Dependence Graph (PDG) combines Con-
trol and Data dependence information to simplify many
transformations [FOW87]. Control dependencies are used to
identify regions of instructions that execute under the same
conditions. Regions support more powerful global code mo-
tion techniques than are possible on the CFG [GS90, BR91].

Static Single Assignment (SSA) form uniquely assigns
names to each definition of a variable [RWZ88]. The use
of unique names simplifies constant propagation and other
analyses [AWZ88]. SSA was originally formulated on the
CFG but has been incorporated in PDG based representa-
tions [BMO90].

The Program Structure Tree (PST) is a hierarchical rep-
resentation that can be used by divide-and-conquer algo-
rithms to speedup dataflow analysis and computation of
SSA. The PST does not directly identify the control depen-
dencies used by region based global code motion algorithms.

A number of representations allowing direct interpre-
tation have been proposed, including the Dependence
Flow Graph [PBJ*91, JP93] and Value Dependence Graph
[WCES94], but do not contain control dependence informa-
tion. The Program Dependence Web [BMO90] is an inter-
pretable representation that places a variation of SSA form
on the PDG. Our current research has not examined uses
requiring an interpretable representation and has concen-
trated on global code motion algorithms that exploit control
dependence information.

None of the representations mentioned satisfactorily
meet the unified representation properties. Register de-
mands are traditionally handled separately from functional
units. Thus, the representations do not satisfy the Uni-
fied Representation property. Since these representations
are based on some form of a data dependence graph, which is
quite similar to the Reusepy DAG, they can be considered
to satisfy the Measurability property for functional units.
However, actual measurements, resource usage levels, and
executability are not computed.

Typically, a graph coloring approach is used to address
register demands. The Register Interference Graph is con-
structed to indicate which variables compete for registers.

The PDG can be used to build a register interference graph
that more accurately reflects overlapping live ranges in par-
allel programs [Pin93, NP93, AEBK94].

The interference graph provides a method for measur-
ing register demands. In practice, an inaccurate measure
of demands is computed by counting the number of other
values that a given value interferes with. A more accurate
method could find cliques in the interference graph. Us-
ing this measurement, a limited form of register usage levels
could be computed, as well as executability. However, since
the interference graph is not integrated with functional unit
demands, it does not indicate the impact of allocation de-
cisions on the parallelism of a program or the length of the
critical path. Without some form of resource usage infor-
mation the Executability property cannot be satisfied

GURRR uses results from our earlier work. In the Uni-
fied ReSource Allocator (URSA) we developed the Measure
and Reduce paradigm and the algorithms to measure re-
source requirements, 1.e., allocation chains, and find exces-
sive sets [BGS93]. URSA was designed to operate on large
basic blocks, such as those resulting from Trace Scheduling.
Simple transformations were used to reduce the excessive re-
source requirements by introducing temporal dependencies
to sequentialize the excessive demands. Resource Spack-
ling introduced the notion of resource holes and used the
resource usage information to develop reduction transfor-
mations that moved excessive resource demands to resource
holes [BGS94]. These reduction transformations are used for
local scheduling and global code motion. Resource Spack-
ling was designed to be a framework that could combine the
resource usage information with several global code motion
mechanisms and their corresponding representations. The
representations and mechanisms include the PDG using Re-
gion Scheduling [GS90] and the Control Flow Graph using
either Trace Scheduling [Fis81] or Percolation Scheduling
[AN88a]. The resource usage information computed did not
include hierarchical resource requirements.

7 Summary

We have presented the Global Unified Resource Require-
ments Representation (GURRR) for use in integrating
phases of a compiler for instruction level parallelism.
GURRR is a collection of resource usage information super-
imposed on a instruction level PDG (IPDG). The additional
information consists of new types of nodes, edges, and anno-
tations. Two new subgraphs are introduced to view useful
combinations of information. The resource Reuse DAGs in-
dicate which instructions can temporally share instances of
a resource, and are used to compute each regions’ require-
ments for each resource. These resource requirements mea-
surements are used to identify locations where resources are
over- and under-utilized, called Excessive Sets and Resource
Holes, respectively. Node annotations include indication of
any excessive sets that a node is a member of, descriptions of
holes that the node identifies, and holes that the node may
use. Region nodes also contain summaries of the resource re-
quirements, excessive sets, and resource holes for the nodes
in its region. Region DAGs provide all information needed
to perform unified resource allocation in a region.

We outline the computation of all information in
GURRR and demonstrate its usefulness in three areas of
integration. Register allocation and instruction scheduling
are fully integrated in a hierarchical allocator. The integra-

33

tion is achieved by simultaneously allocating registers and
functional units to each instruction. Allocation decisions for
registers and functional units are based on their impact on
the resulting length of the critical path. This technique is
then used in a global code motion algorithm to move instruc-
tions only if all resources they require are available, ensuring
that the execution time is reduced. We discuss predicting
the impact of transformations on a program’s resource re-
quirements. This capability allows the compiler to select
which transformations to apply so that it does not have to
remove excess requirements that some transformations may
introduce. Finally, we show how GURRR can be incremen-
tally updated to reflect changes in resource usage due to
allocation decisions or program transformations.

We have implemented GURRR in the University of Pitts-
burgh’s experimental compiler tool, pdgcc. Pdgcc is a C
compiler front-end which performs dependence analysis and
generates intermediate code in the form of PDGs. We are
currently implementing the applications in section 4.

References

[AEBK94] Wolfgang Ambrosch, M. Anton Ertl, Felix
Beer, and Andreas Krall. Dependence-conscious
global register allocation. In Jirg Gutknecht,
editor, Programming Languages and Systems
Architecture, pages 125-136, Zurich, April 1994.

Springer LNCS 782.
Alexander Aiken and Alexandru Nicolau. A

development environment for horizontal mi-
crocode. TEFEFE Trans. on Software Engineering,
14(5):584-594, 1988.

[ANS&3a]

Alexander Aiken and Alexandru Nicolau. Op-
timal loop parallelization. In Proc. of Sigplan
88 Conf. on Programming Language Design and
Implementation , ACM Sigplan Notices, vol-
ume 23, pages 308-317, 1988.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers, Principles, Techniques, and
Tools. Addison Wesley, Reading, Massachusetts,
1986.

B. Alpern, M. N. Wegman, and F. K. Zadeck.
Detecting equality of values in programs. In
Conf. Rec. 15th ACM Symp. on Prin. of Pro-
gramming Languages, pages 1-11, 1988.

[ANSSD]

[ASUS6]

[AWZ8S]

[BGS93] David A. Berson, Rajiv Gupta, and Mary Lou
Soffa. URSA: A Unified ReSource Allocator for
registers and functional units in VLIW architec-
tures. In Proc. of IFIP WG 10.3 Working Con-
ference on Architectures and Compliation Tech-
niques for Fine and Medium Grain Parallelism,
pages 243-254, 1993. (also available as Uni-
versity of Pittsburgh Computer Science Depart-
ment Technical Report 92-21).

[BGS94] David A. Berson, Rajiv Gupta, and Mary Lou
Soffa. Resource Spackling: A framework for in-
tegrating register allocation in local and global
schedulers. In Proc. of IFIP WG 10.3 Working

Conference on Parallel Architectures and Com-
pilation Techniques, pages 135-146, 1994. (also

[BMO90]

[BRO1]

[CK91]

[CLR9O]

[Dil50]

[Dow94]

[FF65]

[Fis&1]

[FOWS7]

[GHSS]

[GS90]

[HK73]

[HMC 193]

available as University of Pittsburgh Computer
Science Department Technical Report 94-09).

Robert A. Ballance, Arthur B. Maccabe, and
Karl J. Ottenstein. The program dependence
web: A representation supporting control-,
data-, and demand-driven interpretation of im-
perative languages. In Proc. of Sigplan '90 Conf.
on Programming Language Design and Imple-
mentation, pages 257-271, 1990.

David Bernstein and Michael Rodeh. Global in-
struction scheduling for superscalar machines.
In Proc. of Sigplan 91 Conf. on Programming
Language Design and Implementation, pages
241-255, 1991.

David Callahan and Brain Koblenz. Register
allocation via hierachical graph coloring. In
Proc. of Sigplan "91 Conf. on Programming Lan-
guage Design and Implementation, pages 192—
203, 1991.

Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. [Introduction to Algorithms.
MIT Press, Cambridge, Mass., 1990.

R. P. Dilworth. A decomposition theorem for
partially ordered sets. Annuals of Mathematics,
51:161-166, 1950.

Chyi-Ren Dow. Pivot: A program paralleliza-
tion and visualization environment. Technical
Report Technical Report 94-22, Ph.D. Disser-
tation, University of Pittsburgh, Computer Sci-
ence Department, 1994.

L. R. Ford and D. R. Fulkerson. Flows in Net-
works. Princeton University Press, Princeton,
N.J., 1965.

Joseph A. Fisher. Trace scheduling: A technique
for global microcode compaction. [FEF Trans.
on Computers, C-30(7):478-490, 1981.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D.
Warren. The program dependence graph and its
use in optimization. ACM Trans. Prog. Lang.
and Systems, 9(3):319-349, 1987.

James R. Goodman and Wie-Chung Hsu. Code
scheduling and register allocation in large basic
blocks. In Proc. of ACM Supercomputing Conf.,
pages 442-452, 1988.

Rajiv Gupta and Mary Lou Soffa. Region
scheduling: An approach for detecting and re-
distributing parallelism. [TEEE Trans. on Soft-
ware Engineering, 16(4):421-431, 1990.

John E. Hopcroft and Richard M. Karp. An
NO/? algorithm for maximum matchings in bi-
partite graphs. STAM JOURNAL of Computing,
2(4), 1973.

Wen-Me1 W. Hwu, Scott A. Mahlke, William Y.
Chen, Pohua P. Chang, Nancy J. Warter,
Roger A. Bringmann, Roland G. Ouellette,

34

[TP93]

[Lam88]

[NG93]

[NP93]

[NP94]

[PBJ*91]

[Pin93]

[RLTS92]

[RWZ8S]

[WCES94]

[WSo1]

Richard E. Hank, Tokuzo Kiyohara, Grant E.
Haab, John G. Holm, and Daniel M. Lavery. The
Superblock: An effective technique for VLIW
and superscalar compliation. In The Journal
of Supercomputing, volume A, pages 229-248,
1993.

Richard Johnson and Keshav Pingali.
Dependence-based program analysis. In
Proc. of Sigplan ’93 Conf. on Programming
Language Design and Implementation, pages
78-89, 1993.

Monica Lam. Software pipelining: An effective
scheduling technique for VLIW machines. In
Proc. of Sigplan '88 Conf. on Programming Lan-
guage Design and Implementation , ACM Sig-
plan Notices, volume 23, pages 318-328, 1988.

Qi Ning and Guang R. Gao. A novel framework
of register allocation for software pipelining. In
Conf. Rec. 20th ACM Symp. on Prin. of Pro-
gramming Languages, pages 29-42, 1993.

Cindy Norris and Lori Pollock. A scheduler-
sensitive global register allocator. In Proc. of
Supercomputing '93, pages 804-813, 1993.

Cindy Norris and Lori L. Pollock. Register allo-
cation over the program dependence graph. In
Proc. of Sigplan "94 Conf. on Programming Lan-

guage Design and Implementation, pages 266—
277, 1994.

K. Pingali, M. Beck, R. Johnson, M. Moudgill,
and P. Stodghill. Dependence flow graphs: An
algebraic approach to program dependencies. In
Conf. Rec. 18th ACM Symp. on Prin. of Pro-
gramming Languages, pages 67-78, 1991.

Shlomit S. Pinter. Register allocation with
instruction scheduling: A new approach. In
Proc. of Sigplan "98 Conf. on Programming Lan-
guage Design and Implementation, pages 248—
257, 1993.

B. R. Rau, M. Lee, P.P. Tirumalai, and M. S.
Schlansker. Register allocation for software
pipelined loops. In Proc. of Sigplan '92 Conf.
on Programming Language Design and Imple-
mentation, pages 283-299, 1992.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Global value numbers and redundant computa-
tions. In Conf. Rec. 15th ACM Symp. on Prin.
of Programming Languages, pages 12—27, 1988.

Daniel Weise, Roger F. Crew, Michael Ernst,
and Bjarne Steensgaard. Value dependence
graphs: Representation without taxation. In
Conf. Rec. 21st ACM Symp. on Prin. of Pro-
gramming Languages, pages 297-310, 1994.

Deborah Whitfield and Mary Lou Soffa. Au-
tomatic generation of global optimizers. In
Proc. of Sigplan "91 Conf. on Programming Lan-
guage Design and Implementation, pages 120-
129, 1991.

