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Abstract

When compiling for instruction level parallelism �ILP�� the
integration of the optimization phases can lead to an im�
provement in the quality of code generated� However� since
several di�erent representations of a program are used in the
various phases� only a partial integration has been achieved
to date� We present a program representation that combines
resource requirements and availability information with con�
trol and data dependence information� The representation
enables the integration of several optimizing phases� in�
cluding transformations� register allocation� and instruction
scheduling� The basis of this integration is the simultane�
ous allocation of di�erent types of resources� We de�ne the
representation and show how it is constructed� We then for�
mulate several optimization phases to use the representation
to achieve better integration�

� Introduction

Recent research has proposed several methods to integrate
back�end phases of instruction level parallelism �ILP� com�
pilers in an e�ort to take into account the interactions among
the phases and improve the quality of code generated� How�
ever� the primary phases of interest� register allocation and
instruction scheduling� use di�erent representations� thus re�
stricting the degree of integration� As a result� little work
has examined complex interactions such as performing code
transformations with the foreknowledge of their impact on
register allocation�

In this paper we present a representation� GURRR� that
augments the control and data dependence information of a
Program Dependence Graph �PDG� with resource require�
ments and availability to enable better integration of allo�
cating registers and scheduling instructions �allocating func�
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tional units�� The allocation of registers and functional units
is made while considering the impact of the allocation deci�
sions on the overall execution time of the program� We show
how this representation can also be used by other phases to
determine their impact on register allocation and instruction
scheduling and thus� their impact on the overall execution
time of the program�

Register allocation is traditionally performed by creating
an interference graph to represent con	icts between values
that can be alive simultaneously� The nodes in the graph are
then colored with colors indicating the register assigned to
a node
s live value� Recent techniques have been developed
to compute the additional interferences that can occur due
to parallel instruction execution and instruction reordering
�Pin�� NP��� However� the interference graph does not
provide precise information to indicate the e�ect of an allo�
cation decision on the execution time of the program�

Instruction scheduling is typically performed on a de�
pendence DAG using some variant of list scheduling� While
the dependence DAG can be used to compute the live range
interferences� it is not appropriate for making register allo�
cation decisions� The DAG represents a collection of seman�
tically correct schedules rather than a single schedule� and
so it does not precisely indicate when each live range will
begin and end�

Instruction scheduling and register allocation have a fun�
damental interaction related to the order in which they are
performed� If instruction scheduling is performed �rst it
may produce a schedule that will require values in registers
to be spilled� The instructions for performing the spilling
must be inserted into the schedule� usually requiring a sec�
ond scheduling phase� If register allocation is performed
�rst it can reduce the amount of parallelism available for
scheduling due to the introduction of false dependencies on
registers� Recent works have developed methods to incor�
porate some information from one phase into the other� but
are unable to fully represent register allocation and instruc�
tion scheduling in a single representation and thus do not
achieve the full integration of allocating functional units and
registers simultaneously �GH��� NP���

Little work has been done on integrating other back�end
phases as well� Typically other back�end phases� such as
global code motion� code optimizations� and loop transfor�
mations are performed without considering their impact on
register allocation� In addition� little consideration is given
to selecting transformations that expose a level of paral�
lelism appropriate for the architecture� Instead� transforma�
tions are applied to expose as much parallelism as possible�
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which is then scheduled� The result is that too much par�
allelism may be exposed and then must be removed by the
scheduler� Region Scheduling does attempt to expose an ap�
propriate amount of parallelism� but uses coarse estimates
that do not consider register demands �GS���� The special
case of exposing parallelism through software pipelining has
received attention for scheduling the resulting parallelism�
�Lam��� AN��b� and more recent work has also considered
register allocation �RLTS��� NG���

To address the interactions between register allocation
and instruction scheduling phases� we present a new repre�
sentation that incorporates resource requirements and avail�
ability� This representation permits the impact of each deci�
sion in a phase to be determined from several key indicators
of program execution� The most important indicator is an
estimate of execution time� The execution time is directly
a�ected by the capability to e�ectively allocate the archi�
tecture
s resources� e�g�� registers and functional units� To
enable e�ective resource allocation without increasing the
execution time� our representation indicates how many of
each resource type are required by the code segment of in�
terest� as well as the number of each resource type available
at that location� In addition� the integration of transforma�
tions with resource allocation requires the representation to
be incrementally updateable as transformations are applied
and resources are allocated�

We de�ne GURRR in section � and describe its construc�
tion in section � Section � demonstrates how several phases
of an ILP compiler can be integrated by formulating them
in terms of GURRR� In section � we show how GURRR can
be incrementally updated� Section � compares GURRR to
related intermediate representations� Finally� we summarize
the work in section ��

� Integrated Resource Allocation Representation

��� Integrated Resource Allocation Properties

The goal of this work is to develop an intermediate repre�
sentation that allows the compiler back�end to fully inte�
grate phases that allocate and schedule di�erent types of
resources� such as registers and functional units� A single
representation enables such integration by indicating where
and how all resources of interest are used and available� as
well as information on factors that a�ect the execution time
of the program� such as critical path lengths and execution
counts of regions� We refer to the capability to allocate mul�
tiple types of resources simultaneously as uni�ed resource
allocation�

Algorithms that integrate resource allocation need re�
source usage information to make e�ective allocation deci�
sions which have a minimal impact on the execution time of
the program� Resource allocation decisions only need to be
made when there are locations in a program segment that
require more instances of a resource than are available� Ad�
vanced resource allocation algorithms� such as those based
on the Measure and Reduce paradigm �BGS�� and to some
extent global schedulers� move instructions from locations
where there are insu�cient instances of a resource to loca�
tions where extra resource instances are available� Thus�
the resource usage information must indicate all locations
where resources are either over�utilized or under�utilized�
Since the architectures targeted in this work exploit ILP� a
representation must take into account the ability to schedule
instructions in parallel�

We identify the following set of properties that an in�
termediate representation should satisfy to support uni�ed
resource allocation� We refer to these properties as the Uni�
�ed Representation Properties�

Property � �Uni�ed Representation� The representa�

tion can be used to determine the impact of a resource allo�
cation or set of resource allocations on all resource demands

in all segments and the execution time of the program�

Property � �Measurability� The representation enables
measurement of all segments� demands for all resources� A

resource measurement is precise if it indicates the mini�
mum number of copies of the resource needed to exploit all

parallelism uncovered in each program segment�

Property � �Resource Usage� The representation iden�

ti�es all locations in each segment where resources are either
over�utilized or under�utilized�

Property � �Executability� The representation indi�

cates if each program segment in its current state can be
executed using the available resources� A program segment

is executable if and only if for each resource the number
of copies required is less than or equal to the number of

copies available� A program is executable if and only if all
segments are executable�

Ideally� the representation should supply precise resource
measurements� In previous work we have shown that com�
puting precise register measurements for parallel architec�
tures or when code reordering is considered is NP�complete
�BGS��� Thus� there is a trade�o� between the precision
of the measurements and the time taken to compute them�
We have developed fast heuristics for measuring register re�
quirements that are demonstrably precise�

The measurability of the representation allows resource
usage information for all resources to be computed� An in�
termediate representation that provides resource usage in�
formation for all resources enables uni�ed resource alloca�
tion�

��� GURRR

GURRR is an intermediate representation that meets the
uni�ed representation properties and is used to investigate
uni�ed resource allocation algorithms� To support a variety
of parallelization techniques� including powerful code mo�
tions� GURRR is based on a modi�ed form of the Program
Dependence Graph �PDG��

We introduce the Instruction Program Dependence
Graph to represent instruction level parallelism not explic�
itly expressed in the traditional statement level PDG� Since
a single program statement may result in several intermedi�
ate code statements� representing the program at the inter�
mediate code level permits access to more ILP� To support
a wider range of code motions we convert the representation
to Static Single Assignment form �SSA�� Special instruction
nodes can be added to carry loop and array access informa�
tion to enable the exploitation of medium grain parallelism
as well� Compilers using PDG based representations per�
form resource allocations on a region by region basis� Thus�
regions correspond to the program segments mentioned in
the uni�ed representation properties�

The Instruction PDG �IPDG� is a graph G � �N�E�� in
which the set of nodes� N � is a union of the following node
types�
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�� Instruction nodes� I� are similar to statement nodes
found in traditional PDGs� but represent intermediate
opcodes�

�� Region nodes� R� in the PDG identify a unique set of
execution conditions or control dependencies�

The set of edges� E� is a union of the following edges
types�

�� Control dependence edges� C � fI�Rg�fR�Ig� con�
nect the region node to the instruction and subregion
nodes that execute under the conditions that it identi�
�es� Control edges are also added from the instruction
nodes specifying those conditions to the region node�

�� Data dependence edges� D � fI�Rg�fI�Rg� connect
the instruction nodes and represent the dependence of
the instruction nodes on data values computed by ear�
lier instruction nodes� In addition� data dependence
edges are added from the instruction nodes de�ning
values to the region nodes containing uses of the values
to summarize the dependence of the region as a whole
on data values computed by earlier instructions�

� Transitive data dependence edges� DT � fI�Rg�fI�
Rg� indicate indirect dependencies between nodes due
to a sequence of data dependencies� The addition of
these edges simpli�es the computation of the ordering
of nodes within a region�

GURRR extends the IPDG to include the resource us�
age information required to meet the uni�ed representation
properties� In addition to summarizing control dependence
information� region nodes in GURRR are used to summarize
resource usage information� Since the regions are organized
in a hierarchical manner� the summary for a region must
include resource usage information for both the instructions
and subregions that it contains� Regions in GURRR also
store execution counts� indicating how many times the re�
gion is expected to be executed during a run of the program�
This information enables the allocation algorithms to make
better decisions on how many resources to allocate in each
region�

The Measure and Reduce allocation scheme used in our
work explicitly decides which instructions should be delayed
until all resources that it requires are available� To support
these scheduling decisions GURRR must represent addi�
tional constraints placed on the ordering of nodes� GURRR
must also contain information used to measure the resource
requirements� A part of this information is identifying which
instructions can share an instance of a resource� The follow�
ing additions are made to the IPDG
s nodes and edges to
meet these requirements and obtain GURRR�

�� Resource hole nodes� H� represent locations in the pro�
gram where resources are under�utilized� Each hole
node is annotated with the resource availability char�
acteristics�

�� Temporal dependence edges� T � N � N � are used
to represent sequential dependencies� These edges are
used to supply additional ordering constraints on the
nodes� such as placement of hole nodes� and instruction
and region node scheduling�

� Reuse edges� U � fI�Rg�fI�Rg� connect nodes that
can temporally share an instance of a resource under
any schedule allowed by all of the dependencies in a

region� A separate set of reuse edges is used for each
resource type�

The stipulation that Reuse edges are added only when a
resource can be shared under all semantically correct sched�
ules allows for parallel execution and code reordering� An
allocation algorithm� such as Measure and Reduce� can se�
lect any allowable schedule and determine the worst case re�
source requirements� When only a single schedule� such as
the original order of the sequential source code� is used the
resource requirements measurements are less precise� since
fewer overlaps of uses of resources are accounted for�

Reuse edges are the basis of the resource requirements
measurement algorithm� The measurement algorithm uses
these edges to �nd as many instructions as possible that can
share a single copy of a resource� The resource requirements
measurements for a region consist of two pieces of informa�
tion� allocation chains and excessive sets�

De�nition � An allocation chain for resource R is a set
of nodes that are fully ordered by the reuse edges for resource

R� Thus� by de�nition all nodes in an allocation chain can
temporally share one instance of resource R�

De�nition � An excessive set for resource R is a set of
nodes that can execute in parallel and together require more

instances of resource R than are available�

Proper computation of allocation chains indicates the to�
tal number of instances of a resource required� Examination
of the allocation chains allows all locations where a resource
is either over�utilized or under�utilized to be identi�ed� Ex�
cessive sets are the nodes in the locations where a resource
is over�utilized�

The resource requirements of a region are measured by
�nding the minimum number of disjoint allocation chains
that contain all instruction and subregion nodes in a region
�BGS��� The reuse edges composing allocation chains are
marked as such� The allocation chains in a region are used to
locate the two indicators of resource usage levels� excessive
sets and resource holes� Excessive sets are annotated in
the region node� Resource hole nodes are placed on the
allocation chains to indicate the location and characteristics
of the resources holes�

Figures ��a� and ��b� show a simple program and the cor�
responding GURRR� The target architecture has three func�
tional units and three registers� Control� data� and temporal
dependencies� and reuse edges are indicated by bold� normal�
dashed� and dotted lines� respectively� To improve readabil�
ity only the reuse edges for registers have been drawn� The
selection of the nodes that can reuse the registers used by
instructions A and B is described elsewhere �BGS���

To be considered useful for uni�ed resource allocation
GURRR must satisfy the uni�ed representation properties�
GURRR satis�es the Measurability property by using the
reuse edges and allocation chains to compute each region
s
requirements for all resources� As discussed in section � the
resource measurements are precise for functional units and
usually precise for registers� GURRR provides resource us�
age information for all resources on the IPDG� All types of
dependencies are represented by the various types of edges in
GURRR� allowing the execution time of a region to be com�
puted� The combination of all of this information on a region
by region basis and in hierarchical summaries satis�es the
Uni�ed Representation property� In each region the exces�
sive sets and resource hole nodes identify all locations that
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Figure �� Example of GURRR

over�utilize and under�utilize resources� respectively� satis�
fying the Resource Usage property� Finally� the number of
instances of a resource required by a region is stored in the
region node� This number can be compared to the number
of instances of the resource available for allocation to the
region to determine if the region is executable� Due to the
hierarchical nature of GURRR� the program is executable
if the root region is executable� satisfying the Executability
property�

At times during the measurement of resource require�
ments and use of GURRR by the compiler back�end� it is
convenient to consider only subsets of the information pro�
vided by GURRR� We identify four combinations of subsets
of nodes and edges commonly used� Each combination is a
subgraph composed of selected subsets of nodes and edges�

De�nition � Given a graph G � �N�E�� the subgraph of G

induced by N � � N with respect to �E � E is the graph

G� � �N �� E��� where E� � f�u� v� � �E � u� v � N �g

�� The Control Dependence Graph� CDG� is the
graph induced by I �R with respect to C�

�� The Data Dependence Graph� DDG� is the graph
induced by I �R with respect to D�

� The Region DAG for a region R� RegionR DAG� is
the graph induced by fnjn � I�R�H and �R� n� � Cg
with respect to D�DT �T � This graph provides all of
the information needed to allocate all resources in the
region�

�� The Reuse DAG for a region R and resource R�
ReuseR DAG� is the graph induced by fnjn � I �
R and �R� n� � Cg with respect to U and is used to com�
pute a region
s requirements� the excessive sets� and
resource holes for resource R�

The CDG and DDG are the same as those found the in
IPDG� The Region DAG contains all dependence and re�
source usage information required for performing local uni�
�ed resource allocation� The CDG and Region DAGs for
other regions may be used when performing various types
of integrated global resource allocations� The Reuse DAG
is typically used only by the resource usage computation
algorithms� These algorithms measure the resource require�
ments� compute the excessive sets� and add the resource hole
nodes�

As an example of the various subgraphs� consider the
code segment of an if�then in Figure ��a� and assume that
the target architecture has a single type of functional unit
resource and a single type of register resource� In the sub�
sequent �gures edges representing redundant ordering infor�
mation are removed to aid readability� The control and data
dependence subgraphs are shown in Figures ��b� and ��c�
respectively� The functional unit and register Reuse DAGs
are shown in Figures �a� and �b� respectively� The region
� node� R�� does not occur in the functional unit Reuse

DAG since its instructions are not executed in parallel with
region �
s instructions� The R� node occurs in the register
Reuse DAG since the values it computes can be alive si�
multaneously with some of the values computed in region ��
Since the two values D� and D� share a register� the R� node
represents the register demand of instruction t� The brlt
predicate node does not occur in the register Reuse DAG
since it does not write to a register� The functional unit
Reuse DAG for region � can be covered by the four alloca�
tion chains fC� brltg� fA� D�� F� Hg� fB� Eg� and fGg�
indicating a maximum requirement of four functional units
to exploit all parallelism in the region� The register Reuse
DAG can be covered by the six allocation chains fC� Fg�
fA� D�� Hg� fBg� fEg� fR�g� and fGg� indicating that it
is possible for six values to be simultaneously alive�

Figure �c� shows the partial schedule for functional
units in region � imposed by the data and temporal depen�
dencies� Each column represents an allocation chain� There
are resource holes before C� after both brlt and E� and be�
fore and after G� Since the functional unit is unused for the
entire duration of these holes� they are called free holes� In�
structions D�� E� and G have slack time in when they can
be scheduled� Since the functional units are not needed for
the entire time� these nodes exist in slack holes� Figure �d�
shows the region DAG for region � with only the functional
unit hole nodes� Free and slack hole nodes are marked with
FH and SH respectively� A transitive data dependence edge
has been added from node C to node F to indicate the tran�
sitive dependence caused by nodes t and D�� which are not
in region �� The largest set of instructions that can be exe�
cuted in parallel is fC� D�� E� Gg� which would be excessive
if the target architecture provided fewer than four functional
units�

The partial schedule for registers is shown in Figure �e��
The allocation chain containing R� does not have any in�
structions from region � and consists of two free holes sepa�
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Figure �� Sample Code and GURRR Dependence Subgraphs

rated by the node R�� Figure �f� shows the region � DAG
without the functional unit holes�

� Construction of GURRR

The construction of GURRR begins with an IPDG and is
performed in a hierarchical manner on the DAG of region
nodes resulting from the forward control dependencies� The
regions are visited one at a time in a bottom up order and
the local components are constructed� A summary of the
resource requirements of subregions is used during the con�
struction in the parent region� The resulting global resource
requirements are contained in the root region�

Special processing occurs when there are mutually ex�
clusive subregions� such as the then and else subregions
of an if statement� In this case� the region containing the
if statement is only concerned with the maximum require�
ments of the set of mutually exclusive subregions� The sub�
regions nodes are marked as mutually exclusive and the con�
struction takes the maximum of the requirements for each
resource�

The steps in the construction of GURRR for each region
are performed in the following order�

Add transitive data dependence edges	 Transitive
data dependence edges are added between all instruction
and region nodes� The computation of the transitive data
dependence edges can be done in graph linear time� In the
worst case O�N�� edges are added� These edges are required
for the proper computation of the Reuse DAGs�

Build Reuse DAGs	 The ReuseR DAG is the instan�
tiation of the relation CanReuseR for resource R� The
CanReuseR relation identi�es the nodes in a region that
can safely temporally share an instance of resource R� For
nodes A� B� and C in the Data Dependence subgraph� the
ordered node pair �A�B� � CanReuseR if and only if there
is a node C that ends A
s use of an instance of R and
C � Ancestors�B��fBg� Thus �A�B� � CanReuseR if and
only if B can safely reuse A
s instance of R under any sched�
ule allowed by the data dependencies in the data dependence
DAG� The ReuseR DAG is constructed by adding an edge
from node A to node B for each �A�B� � CanReuseR� when
both A and B use resource R�

The sets of nodes whose resource can be reused by node n
are computed in a forward topological traversal of the DAG
using the equation

CanReuseR�n� � avail�n�
�

P�predecessors�n�

CanReuseR�P ��

Avail�n� is at most all of n
s immediate predecessors whose
instances of R can be safely reused by n� The computation
of avail�n� is dependent on how each resource is used� There
are two classi�cations of resources based on the duration of
a use of the resource� A resource is a spanning resource
if its use begins during the execution of one instruction�
the de�ning instruction� and ends during the execution of a
later instruction� the killing instruction� A resource is a non�
spanning resource if its use always begins and ends during
the execution of a single instruction� Registers are spanning
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Figure � GURRR Resource Usage Information

resources� while functional units are non�spanning resources�
For non�spanning resources� avail�n� is the set of n
s clos�
est ancestors that use R� Computing avail�n� for spanning
resources requires a special component analysis� The identi�
�cation and analysis of most components can be performed
in graph linear time� However� for a few components the
analysis is NP�Complete �BGS��� We formulate the com�
ponent analysis as a minimal set covering problem and use
a graph linear greedy heuristic that has a ratio bound of
lnjXj��� where X is the number of nodes in the component
�CLR����� The computation of avail�n� and CanReuse are
graph linear and the resulting Reuse DAGs contain O�N��
reuse edges�

�In our limited experimentation the components requiring the
heuristic had six or fewer nodes� The heuristic always found a precise
answer�

Find allocation chains	 Allocation chains are chains
on the partial order represented by the CanReuseR rela�
tion� The capability of measuring the resource requirements
is based on a result by Dilworth� which states that the max�
imum number of independent elements in a partial order is
equal to the number of chains in a minimum decomposition
�Dil���� Thus� the maximum resource requirements of Reuse
DAG can be computed by �nding the minimum number of
allocation chains that cover the Reuse DAG�

Ford and Fulkerson have shown that computing a mini�
mum chain decomposition can be performed using bipartite
matching �FF���� in O�

p
NE� time �HK��� In practice the

matching is performed on the ReuseR DAG� The matching
edges are labeled as such with one in�coming and one out�
going matching edge per instance of R used by the node�

The number of allocation chains for each resource is
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type size EAT LAT
Free LSTn� � EFTn� EFTn� LSTn�
Slack slack ESTsn� LFTsnl

Table �� Computation of hole properties

recorded in the parent region
s node� Once the requirements
have been measured� the allocation chains are used to com�
pute excessive sets and resource holes�

Find excessive sets	 Excessive sets are identi�ed by
�nding sets of independent instructions whose cardinality is
greater than the number of instances of the resource avail�
able� Let jRj be the number of instances of resource R avail�
able� An excessive set is grown using a working list� Each
node in the working list is added to excessive set if it is inde�
pendent of at least jRj nodes on di�erent allocation chains
for R� All unexamined nodes that are independent of the
excessive node are then added to the working list� The ini�
tial node of the work list is located by scanning all nodes
until one that meets the excessive test is found� The lists of
excessive sets are stored in the region node for use by the
allocation phase� This growing process is graph linear in
time�

Find resource holes and add hole nodes	 Resource
holes are found by scanning individual allocation chains and
identifying locations where one of two cases exist�

�� A Free hole occurs when there are consecutive nodes on
the chain where there is a positive amount of time be�
tween the Latest Finish Time �LFT� of the �rst instruc�
tion and the Earliest Start Time �EST� of the second�
In this case� the resource instance is completely unused
for a period of time between the two instructions�

�� A Slack hole occurs when a set of consecutive instruc�
tions on an allocation chain is not on a critical path
through the region� i�e�� the instructions have slack time
for scheduling� The slack hole contains these instruc�
tions�

Free hole nodes are added between the consecutive nodes
surrounding the hole� Slack hole nodes are added between
the predecessor of the �rst instruction or region node in the
hole and the successor of the last node in the hole�

Several properties must be computed for each hole found�
These properties indicate how the hole can be used to hold
instructions� The size of the hole indicates how many cycles
the resource is unused� The availability indicates when the
resource is unused� and is represented by the bounds Earliest
Available Time �EAT� and Latest Available Time �LAT��

The computation of both the size and the availability
of a hole depends on the type of hole and is summarized
in Table �� Nodes n� and n� surround a free hole� and
nodes sn� and snl are the �rst and last nodes in a slack
hole� LST and EFT are the latest start time and earliest �nish
time of a node� respectively� Slack is the slack time of each
node in the hole� The hole nodes are annotated with these
characteristics� The computation of the LST and EFT for the
instruction and region nodes is graph linear� The location
of the holes requires O�N� time� and the worst case number
of holes found is �N � where N is the number of instruction
and region nodes in the region�

� Applications of GURRR

In this section we describe the use of GURRR for integrat�
ing several back�end compiler phases� We �rst present a
technique for integrating global register allocation and in�
struction scheduling within regions� Next� we examine the
integration of global code motions and register allocation�
Finally� we integrate parallelizing transformations with re�
source allocation�

��� Global Register Allocation and Instruction Scheduling

Hierarchical register allocation on the Control Flow Graph
has been suggested by Callahan and Kennedy �CK���� and
on the PDG by Norris and Pollock �NP���� GURRR sup�
ports full integration of hierarchical register allocation and
instruction scheduling� The allocations are performed on a
region by region basis during a bottom�up traversal of the
forward control dependencies�

Because allocation of resources is only di�cult when the
requirements exceed the availability� our allocation scheme
uses a Measure and Reduce paradigm� In this paradigm the
register and functional unit requirements are measured and
the excessive requirements are removed by transformations
that introduce additional sequentialization� The measure�
ment process computes the resource usage information found
in GURRR� The reduction process selects sets of nodes from
an excessive set and attempts to �nd holes for all resources
that it excessively demands� By �nding holes for all re�
sources needed� uni�ed allocation is achieved� In the case
of register holes� additional instructions may need to be in�
serted with the selected node to perform spilling� There are
several cases when di�erent sets of spill instructions need to
be inserted� depending on whether the spanning hole is a
Free or Slack hole and where the uses of the value�s� com�
puted by the selected nodes occur� Details are given else�
where �BGS����

The goal during the selection of holes is to minimize in�
creasing the execution time of the region� Thus� the holes
selected should meet two requirements� First� the available
time of the holes should overlap with each other� and with
the execution range of the node selected from the excessive
set� Second� the size of the holes should be large enough
for all instructions selected� including any spill code needed�
No increase in the critical path length will result if and only
if these conditions are met� When the conditions cannot
be met Wedged Insertion is performed� Wedged Insertion
increases the critical path length by stretching the region�
and in the process� making holes large enough for the in�
structions to be inserted� The holes may either be existing
holes that were too small or new holes� The location for
inserting the wedge is selected to minimize the increase the
increase in the critical path length� The selection of the lo�
cation considers the type of existing and new holes� which
a�ect how much spill code must be inserted to use them�

As an example� consider the region DAG in Figure ��a��
Assume that the region node R requires two registers and
that the architecture provides two functional units and four
registers� Node G excessively uses a functional unit� It is
forced to use the functional unit hole above C by adding a
temporal dependence edge from G to C� Node H excessively
uses both a functional unit and a register� The register hole
following B and the functional unit hole following D overlap
and can be used by H� so temporal dependencies are added to
force H to follow D� Node I is also inserted in the functional
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Figure �� Example of Global Resource Allocation

unit hole following D� To prevent R from using a register
excessively while G
s value is still alive� R is given the same
temporal dependencies as H� The resulting graph is shown
in Figure ��b��

��� Global Code Motion

The goal of performing global code motions is to reduce the
execution time of the program by exploiting inter�basic block
parallelism� Therefore� instructions should not be moved if
there are not su�cient resources available at their destina�
tion� since no decrease in execution time would result� The
control dependence information provided in GURRR nat�
urally allows inter�block motion for blocks with the same
control dependencies� However� code motions between re�
gions with di�erent control dependencies are also possible�
Some motions can be performed using code duplication or
safe speculative execution without hardware support� Other
motions require predicated or speculative hardware support�
We assume that the code motion algorithm is provided with
the sets of instructions that can be moved according to the
semantics and hardware support available�

To give priority for resources to the instructions intrinsic
to each region� uni�ed register allocation and instruction
scheduling is performed �rst� Global code motion then uses
the remaining resource holes for instructions that it elects
to move� With the exception of code duplication� wedged
insertion is not performed during global code motion�

The code motion algorithm must �nd overlapping re�
source holes for all resources that each moved instruction
uses� There are several possible strategies for performing
global code motion� �� instructions can be moved individu�
ally� �� instructions can be moved in sets that each decrease
the critical path of the source region� or � a single set of
instructions to be moved can be selected by measuring their
requirements and estimating their hole usage� It is generally
advantageous to move large sets of instructions� so that the
amount of spill code generated is minimized� In the �rst case
each instruction is treated as a node selected from an exces�
sive set� Holes are found for all of its required resources�
The other cases are handled by placing the set of instruc�
tions in the destination region and using the Measure and
Reduce paradigm�

The di�erence between the second and third approaches
is in the selection of sets and the method of termination� In
the second approach� successive sets are selected and moved

until moving a set would cause an increase in the destina�
tion region
s execution time� In the third approach only one
set of instructions is selected and moved� based on resource
usage estimates� The total requirements of the selected in�
structions can be determined simply by counting the number
of allocation chains that they are on� The total size of holes
required for each subchain is also directly available� The es�
timates consider how many instructions can be inserted into
each hole while preserving dependencies�

As an example� consider the region DAG in Figure ��a��
The Gi nodes represent groups of instruction nodes� Assume
that the architecture has two functional units and four regis�
ters� and that group G� uses all resources� The region DAGs
for R� and R� are shown in Figures ��b� and ��c�� respec�
tively� Nodes from the parent region are added to show the
inter�region data dependencies� Global code motion can be
performed on either the critical sets fR� Sg and fT� Ug in
region � or the critical sets fM� Ng and fOg in region �� The
critical set fR� Sg in region � can share one functional unit�
but requires two registers� There are insu�cient registers to
also move the critical set fT� Ug� The critical sets in region
� can share one functional unit and require two registers�
The critical sets from region � are moved up because they
result in a larger decrease in critical path length� The re�
sulting region DAG is shown in Figure ��d�� A temporal
dependence is added from O to G� to ensure that a register
is freed by O in time for G� to use it� Even if su�cient regis�
ters were available for both of region �
s critical set� it is not
advantageous to move it because functional unit availability
only allows one instruction from the second critical to be
moved� at no additional improvement�

��� Transformation Requirements Prediction

The resource requirements of a program can be used to esti�
mate the impact of potential transformations� When several
code transformations are available� it is advantageous to se�
lect the one that exposes just enough parallelism� If too
much parallelism is exposed the compiler must remove the
excess during scheduling and register allocation� Heuristics
can be developed that given a transformation� use the num�
ber of allocation chains covering the portions of the program
transformed to estimate what the new resource requirements
would be� A second approach is to use incremental updating
of GURRR to compute the resource requirements resulting
from the transformations�
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Figure �� Example of Global Code Motion

As an example� consider the body of a loop shown in Fig�
ure ��a�� and assume an architecture with four functional
units� The loop requires two functional units� Loop un�
rolling is a parallelizing transformation that allows overlap�
ping of successive iterations� It is desirable to perform only
as much unrolling as will expose parallelism that can be ex�
ploited by the target architecture� The unrolling process is
repeatly performed until there is no more decrease in the
number of cycles required to execute the unrolled iterations�
If the current resource requirements were used in a heuristic
that considered the data dependencies� i�e�� two functional
units� two iterations could be overlapped without exceed�
ing the four available functional units� The result would be
the �rst two diamonds in Figure ��b�� The length of the
resulting block would be � cycles� an improvement over �
cycles required for iterations that were not overlapped� If
another iteration is unrolled and overlapped with the ear�
lier iterations and the resource requirements were updated�
three iterations can be overlapped for further improvement�
The resulting set of instructions B�� T��� T��� and A� can be
used as the kernel of a software pipeline �Lam��� AN��b��

� Incremental Updating of GURRR

GURRR is able to re	ect changes in resource requirements
resulting from the transformations applied to the program�
The brute force approach is to recompute all information
from scratch after each transformation is applied� This can
be a costly approach� and it does not provide any support
for predicting the impact of a transformation� It would be
useful to be able to estimate the impact of a possible trans�
formation on the resource requirements� In this section we
sketch techniques for incrementally updating GURRR�

In previous work on specifying transformations a basic
set of program edits to describe the transformations has been
used �WS��� Dow���� We de�ne the following set of Standard
Edit Functions �SEFs�� which apply a transformation to the
elements of a PDG�

Addelement Create a new element

Deleteelement Delete an element

Copyelement Create a new element and copy label infor�
mation of an existing element
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Figure �� Loop candidate for unrolling

Moveelement Delete and recreate an element� preserving
label information

Modifyelement Change the label information

There are two sets of the above operations� one for nodes and
one for edges� giving a total of ten SEFs� Since nodes will
never be added without corresponding edges� and the edge
SEFs can be viewed as combinations of adding and deleting
edges� we consider only the AddEdge and DeleteEdge SEFs�

The computation of the CanReuse relation is graph lin�
ear� The updating of avail�n� information is limited to the
nodes a�ected by the AddEdge and DeleteEdge SEFs� The
updated information is then propagated through the region
DAG� The Reuse DAG is updated by adding and deleting
edges corresponding to the nodes inserted and removed in
the CanReuse relation�

The matching algorithm used to compute allocation
chains is incremental by nature� each matching is a par�
tial solution and new matchings are added by �nding aug�
menting paths� Thus� the modi�ed Reuse DAG with edges
deleted and added can be used as partial solution� The com�
plexity for this solution is O�

p
mE�� where m is the number

of chains in the initial partial solution� An alternative ap�
proach can �nd only unit length augmenting paths in graph
linear time� possibly introducing some imprecision�

Updating of the excessive sets is performed in two steps�
First� the nodes in the existing excessive sets are tested to
see if they are still in parallel with an excessive number of
other nodes� This step can be limited to the nodes that
have had edges added to them� Second� nodes not in the
excessive sets are tested to see if they now should be� The
initial set of nodes considered in this step can be limited to
those that have had edges removed�

Transformations can a�ect holes by creating new ones�
removing existing ones� and by changing their characteris�
tics� All of these changes can be found by examining each
node whose EST and�or LFT has changed� However� the na�
ture of the matching algorithm used to �nd the allocation
chains can cause unchanged holes to migrate between allo�
cation chains� The sequential edges used to place the hole
nodes in the region DAGs can be updated to re	ect the mi�
grations in linear time in the number of hole nodes�

� Related Representations

Traditionally� compilers have used the Control Flow Graph
�CFG� as the intermediate representation of the program�

The CFG is used to collect a variety of information� includ�
ing data	ow dependencies and live value ranges �ASU����
Extensions to the CFG such as Traces �Fis��� and Super
Blocks �HMC��� have been developed in an e�ort to sup�
port global code motion� The CFG is also traditionally used
to construct register interference graphs�

The Program Dependence Graph �PDG� combines Con�
trol and Data dependence information to simplify many
transformations �FOW���� Control dependencies are used to
identify regions of instructions that execute under the same
conditions� Regions support more powerful global code mo�
tion techniques than are possible on the CFG �GS��� BR����

Static Single Assignment �SSA� form uniquely assigns
names to each de�nition of a variable �RWZ���� The use
of unique names simpli�es constant propagation and other
analyses �AWZ���� SSA was originally formulated on the
CFG but has been incorporated in PDG based representa�
tions �BMO����

The Program Structure Tree �PST� is a hierarchical rep�
resentation that can be used by divide�and�conquer algo�
rithms to speedup data	ow analysis and computation of
SSA� The PST does not directly identify the control depen�
dencies used by region based global code motion algorithms�

A number of representations allowing direct interpre�
tation have been proposed� including the Dependence
Flow Graph �PBJ���� JP�� and Value Dependence Graph
�WCES���� but do not contain control dependence informa�
tion� The Program Dependence Web �BMO��� is an inter�
pretable representation that places a variation of SSA form
on the PDG� Our current research has not examined uses
requiring an interpretable representation and has concen�
trated on global code motion algorithms that exploit control
dependence information�

None of the representations mentioned satisfactorily
meet the uni�ed representation properties� Register de�
mands are traditionally handled separately from functional
units� Thus� the representations do not satisfy the Uni�
�ed Representation property� Since these representations
are based on some form of a data dependence graph� which is
quite similar to the ReuseFU DAG� they can be considered
to satisfy the Measurability property for functional units�
However� actual measurements� resource usage levels� and
executability are not computed�

Typically� a graph coloring approach is used to address
register demands� The Register Interference Graph is con�
structed to indicate which variables compete for registers�
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The PDG can be used to build a register interference graph
that more accurately re	ects overlapping live ranges in par�
allel programs �Pin�� NP�� AEBK����

The interference graph provides a method for measur�
ing register demands� In practice� an inaccurate measure
of demands is computed by counting the number of other
values that a given value interferes with� A more accurate
method could �nd cliques in the interference graph� Us�
ing this measurement� a limited form of register usage levels
could be computed� as well as executability� However� since
the interference graph is not integrated with functional unit
demands� it does not indicate the impact of allocation de�
cisions on the parallelism of a program or the length of the
critical path� Without some form of resource usage infor�
mation the Executability property cannot be satis�ed

GURRR uses results from our earlier work� In the Uni�
�ed ReSource Allocator �URSA� we developed the Measure
and Reduce paradigm and the algorithms to measure re�
source requirements� i�e�� allocation chains� and �nd exces�
sive sets �BGS��� URSA was designed to operate on large
basic blocks� such as those resulting from Trace Scheduling�
Simple transformations were used to reduce the excessive re�
source requirements by introducing temporal dependencies
to sequentialize the excessive demands� Resource Spack�
ling introduced the notion of resource holes and used the
resource usage information to develop reduction transfor�
mations that moved excessive resource demands to resource
holes �BGS���� These reduction transformations are used for
local scheduling and global code motion� Resource Spack�
ling was designed to be a framework that could combine the
resource usage information with several global code motion
mechanisms and their corresponding representations� The
representations and mechanisms include the PDG using Re�
gion Scheduling �GS��� and the Control Flow Graph using
either Trace Scheduling �Fis��� or Percolation Scheduling
�AN��a�� The resource usage information computed did not
include hierarchical resource requirements�

	 Summary

We have presented the Global Uni�ed Resource Require�
ments Representation �GURRR� for use in integrating
phases of a compiler for instruction level parallelism�
GURRR is a collection of resource usage information super�
imposed on a instruction level PDG �IPDG�� The additional
information consists of new types of nodes� edges� and anno�
tations� Two new subgraphs are introduced to view useful
combinations of information� The resource Reuse DAGs in�
dicate which instructions can temporally share instances of
a resource� and are used to compute each regions
 require�
ments for each resource� These resource requirements mea�
surements are used to identify locations where resources are
over� and under�utilized� called Excessive Sets and Resource
Holes� respectively� Node annotations include indication of
any excessive sets that a node is a member of� descriptions of
holes that the node identi�es� and holes that the node may
use� Region nodes also contain summaries of the resource re�
quirements� excessive sets� and resource holes for the nodes
in its region� Region DAGs provide all information needed
to perform uni�ed resource allocation in a region�

We outline the computation of all information in
GURRR and demonstrate its usefulness in three areas of
integration� Register allocation and instruction scheduling
are fully integrated in a hierarchical allocator� The integra�

tion is achieved by simultaneously allocating registers and
functional units to each instruction� Allocation decisions for
registers and functional units are based on their impact on
the resulting length of the critical path� This technique is
then used in a global code motion algorithm to move instruc�
tions only if all resources they require are available� ensuring
that the execution time is reduced� We discuss predicting
the impact of transformations on a program
s resource re�
quirements� This capability allows the compiler to select
which transformations to apply so that it does not have to
remove excess requirements that some transformations may
introduce� Finally� we show how GURRR can be incremen�
tally updated to re	ect changes in resource usage due to
allocation decisions or program transformations�

We have implemented GURRR in the University of Pitts�
burgh
s experimental compiler tool� pdgcc� Pdgcc is a C
compiler front�end which performs dependence analysis and
generates intermediate code in the form of PDGs� We are
currently implementing the applications in section ��
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