Global Context-Based Value Prediction!

Tarun Nakra, Rajiv Gupta and Mary Lou Soffa
Department of Computer Science
University of Pittsburgh
{nakra,gupta,soffa}@cs.pitt.edu

Abstract

Various methods for value prediction have been pro-
posed to overcome the limits imposed by data dependen-
cies within programs. Using a value prediction scheme,
an instruction’s computed value is predicted during the
feteh stage and forwarded to all dependent instructions
to speed up execution. Value prediction schemes have
been based on a local context by predicting values us-
ing the values generated by the same instruction. This
paper presents techniques that predict values of an in-
struction based on a global context where the behav-
ior of other instructions is used in prediction. The
global context includes the path along which an instruc-
tion is executed and the values computed by other pre-
viously completed instructions. We present techniques
that augment conventional last value and stride predic-
tors with global context information. Erperiments per-
formed using path-based techniques with realistic table
sizes resulted in an increase in prediction of 6.4-8.4%
over the current prediction schemes. Prediction using
values computed by other instructions resulted in a fur-
ther improvement of 7.2% prediction accuracy over the
best path-based predictor.

1 Introduction

The efficiency of modern architectures is highly de-
pendent on the amount of parallelism extracted both
by the compiler and the hardware. The barriers to
parallelism are the dependencies that exist between in-
structions of a program. These dependencies are classi-
fied as 1) control dependencies, arising from conditional
branches in a program, and 2) data dependencies, aris-
ing from the flow of data between instructions.

To overcome the limitations imposed by control de-
pendencies, branch outcomes are predicted and in-

I Partially supported by National Science Foundation Grant
CCR-9808590 and a grant from Hewlett Packard to the Univer-
sity of Pittsburgh

structions are executed speculatively. Current branch
predictors have been shown to accurately predict more
than 98% of the branches [9].

Data dependencies existing between the instructions
are more prevalent than control dependencies. To over-
come these dependencies, it is possible to perform spec-
ulation on data as well. The data speculation could be
performed based on the storage addresses [5, 10] or
data values [7]. Recent studies on predicting data val-
ues have shown that the benefits of value prediction
have significant potential for performance improve-
ment [7, 12, 13]. Moreover, studies performed to ob-
serve the patterns of values computed by an instruc-
tion have found that instructions demonstrate locality
of data values [8]. The sequences that occur in certain
patterns are easier to predict than others. Typically,
the patterns of values include:

(1) Constant values - these are the easiest to predict
by always predicting the same constant value. Con-
stant values have been shown to occur often in bench-
mark programs [8].

(2) Values differing by a stride - these usually oc-
cur in case of loop induction variables or variables that
are dependent on induction variables.

(3) Other sequences - these include sequence of val-
ues that differ by non-constant strides. This category
is the hardest to predict.

The techniques that perform prediction based on a
local context of an instruction include last value pre-
diction in which the value predicted is the one that
was computed in the last execution of that instruc-
tion. Previous work using last value prediction indi-
cates successful prediction for 40-50% of the dynamic
instruction instances [7]. Another technique is stride
prediction, which predicts values to be the sum of
the last computed value of the same instruction and
a stride. Stride prediction has been compared with
last value prediction and shown to improve the predic-
tion performance significantly [4]. In other work, finite
context method (FCM) predictors are proposed that

predict values based on previously observed patterns of
values [12]. The recent history of values computed by
an instruction is matched with previous value history
of the instruction. The next value of the instruction is
predicted to be the next value in the previous pattern.
These predictors have been shown to improve the ac-
curacy of last value and stride predictors by as much as
20% . However, this is an upper bound since the study
uses unbounded history table sizes. Also, hybrid pre-
dictors [14] have been proposed that attempt to detect
sequences that are composition of stride and non-stride
sequences. Due to their complexity, the FCM predic-
tor and the proposed hybrid predictors do not have
efficient implementations.

This paper proposes techniques that associate a
more global context with an instruction to help pre-
dict its value. This global context association is anal-
ogous to branch prediction performed by correlating
with other branches [15] and has not been considered
for value prediction before. Two types of global con-
texts are considered.

e Path information (branch history): Differ-
ent values for an instruction are predicted along
different paths within a program. Branch his-
tory is used to separate the different paths. In
the work by Lipasti[6], branch history is used to
either select instructions for prediction, or pre-
dict input operands for estimating data depen-
dencies. However, branch history is not involved
in the actual prediction of computed values.

e Values produced by recently completed in-
structions: Values are predicted by using the
correlation between values produced by instruc-
tions close to each other within the dynamic in-
struction stream.

Consider the code sequence shown in Figure 1. In-
structions 8, 9 and 10 in block 5 compute three ad-
dress values from previously defined base and offset
values. Addr, depends on a base value that has either
the value Y or X, depending on whether the condition
Conditiony evaluates to true or false, while the offset
value is fixed at 10 for all loop iterations. Addr, uses
a base value that is fixed for all loop iterations and an
offset that is incremented by either 1 or 2, depending
on the outcome of Condition,. Finally, Addr. depends
on base and offset values, both of which are different
for the two paths within the loop.

Let us now consider the prediction of these values,
assuming the true, false, false sequence of outcomes for
Conditiony repeats itself. The conventional last value
and stride predictors would not work in this case. It

Block 1

Block 2 Sequence of values computed
Condition, | { T,F,F, T,F,F, T,F F..}

5: Offset, = Offset, + 1

Sequence of values computed
8 f’-\ddra =Basgt Offse(f {Y+10,X+10,X+10,Y +10,X+10,X+10...}
9: Addy, = Basg+ Offset | {A+2,A+3 A+4,A+6,A+7,A+8...}

10: Addr, = Basg+ Offset,, |{Y+2,X+3,X+4,Y+6X+7,X+8...}
Condition ,,

Block 5

Figure 1. Example

is possible to perform prediction using the FCM or the
hybrid predictor by maintaining the patterns of values.
However, new patterns of values would be generated
often and the number of patterns generated would be
large. Thus, frequent mispredictions can be expected.

It is possible to predict these values using control
flow information. Consider the sequence of values com-
puted by instruction 8 as shown in the figure. We
can predict the next value by looking at the most
recent outcome of Condition,. If Condition, eval-
uates to false/true, the next value will be the last
value of instruction 8 along the false/true branch (i.e.,
Y+10/X+10).

Consider the sequence of values computed by in-
struction 9. We notice that this sequence is similar
to a stride sequence. In case the true branch is taken,
the stride is 2; otherwise it is 1. Thus, the next value
can be predicted from the stride pattern of the offset
occurring along a path.

Finally, the computed value of instruction 10 de-
pends on base and offset values, both of which depend
on the control path taken from block 2 to block 5. In
this case, it is possible to perform prediction by remem-
bering both the last value and the stride values for each
incoming path.

In all the above cases, we can perform the prediction
for any arbitrary sequence of branch outcomes. Values
of an instruction along different paths are stored sepa-
rately and branch history is used to predict the value
on the current path. In this example, a branch his-
tory composed of the last two branches is sufficient for
correct prediction. In general, outcomes from several
branches may be required.

Let us modify basic block 5 in the example as shown

Basg, = Mem[Addr]
Addra = Base+ Offset,
Addy = Base+ Offset,
Addr, = Basg+ Offset,,
Condition ,

Block 5

Figure 2. Modified block 5 of example

in Figure 2. The assignment to base value Base, is
moved from blocks 3 and 4 to block 5. This value is now
loaded from a memory location whose address, Addr,,
may be different for different iterations of the loop. In
this case, the value of Addr, may not be predictable
using path information since a different value can be
produced for separate iterations of the loop along the
same path. However, this value can be predicted as
the sum of the loaded value of Base, and Of fsety.
This implies that we can predict the value of Addr,
by correlating it with the value loaded by a previous
instruction. Essentially, we need to capture the de-
pendence occurring between the instruction comput-
ing Base, and the one using this value. Notice that
the values that were predicted using path information
could also be predicted using value correlation. For ex-
ample, values of Addr, and Addr. can be predicted by
correlating them with the value of instruction comput-
ing Of fset,.

In this paper, we present prediction techniques that
combine the use of branch history with last value and
stride predictors. Also, a technique that predicts values
based on the correlations between instructions is devel-
oped. The predictors resulting from these techniques
were experimentally evaluated and compared with con-
ventional predictors.

The rest of the paper is organized as follows. Sec-
tions 2 and 3 present the new prediction schemes based
on path information. Section 4 presents a predic-
tion scheme that uses correlation between instructions.
Each prediction scheme is evaluated by doing a per-
formance comparison with the conventional prediction
schemes. The conclusions are presented in Section 5.

2 Path-based Last Value Prediction

Our first scheme, Path-based Last Value (PLV) Pre-
diction, extends the last value predictor by storing the
most recent values of an instruction for different branch
histories. The history of recent branch outcomes is
maintained and used, along with the instruction ad-
dress, to predict the next value of the instruction. For
the example in Figure 1, two different values of Addr,
are stored and then, based on the path followed, the

appropriate value computed on that path is predicted.

Program Counter
Branch

E History Register

<Usage Counter>

<Address> <Last>
<Tag> <Vaue> H

Hash Fn. Generator

Value used for prediction

Value Prediction
History Table

Figure 3. Per path Last value Predictor Mi-
croarchitecture

The implementation of this predictor is depicted in
Figure 3. The components of the predictor are as fol-
lows:

Branch History Register (BHR): This register is
similar to the history registers used in branch predic-
tion techniques [9]. The register stores the most re-
cent branch outcomes. After each branch is evaluated,
the entire history contents are shifted left by one bit
and the least significant bit is set/reset depending on
whether the branch was taken/not taken. The number
of paths that can be represented is limited by the size
of the register.
Value Prediction History Table (VPHT): This
table stores the values of instructions for different
branch histories. It differs from the value prediction ta-
ble proposed in [7] in that this table may store several
values computed by an instruction for different branch
histories. The table is set-associative and accessed us-
ing the instruction address and BHR bits. Each en-
try stores the predicted value and a usage counter for
performing replacement. The counter is a saturating
counter incremented after every correct prediction and
decremented upon a misprediction. Whenever an entry
needs to be replaced, the one with the lowest counter
value is selected for replacement.
Hash Function Generator : The VPHT is accessed
using both the address of the instruction and the his-
tory register. This unit performs the hashing of the
two for indexing into the VPHT. For instruction ¢ and
BHR’s value b, the function used is

£1(i,b) = ((Addr(i) << Size(BHR))+b) mod Size(VPHT)

where Addr(i) denotes the address value of instruction
i, Size(BHR) and Size(VPHT) give the total number of
distinct entries in buffer BHR and VPHT respectively.
This function maps an instruction within a segment of

Benchmark | Input set | Instrns. analyzed
Uniz Utilities

diff 4K C files 5.4M

gawk parse 250K input 6.9M

grep search 1.28M file 20.9M
SPEC INT 95 programs

i train.lsp 125.3M

perl primes.in 10.3M

ijpeg vigo.ppm 1282.4M

go 2stone9.in 397.1M
SPEC FP 95 programs

applu applu.in 147.1M

fpppp natoms.in 112.5M

swim swim.in 176.8M

waveb wave5.in 934.5M

Table 1. Description of benchmarks

the VPHT of size 2°72¢(BHE) = Within each segment,
different branch histories for the same instruction are
mapped to different entries of the table. This function
is easy to implement in hardware and all experimen-
tal results presented in this paper are based upon this
function.

For each instruction, the predictor computes the in-
dex in the VPHT by hashing the instruction’s address
bits with the current branch history contents. If the
index maps to a valid entry, the corresponding value
is used for prediction. After execution, the computed
value is compared with the predicted one. Upon a mis-
prediction, the instruction using the predicted value is
squashed and re-issued with the correct value. Upon
the instruction’s completion, its last value information
for the current branch history is updated in the VPHT.

The performance of the PLV predictor was ana-
lyzed using trace-driven simulations and instrumenting
the code to perform the prediction. The experimen-
tal framework consisted of an instruction-set simula-
tor SHADE [2], a code instrumentation tool from SUN
Microsystems, which simulates the SPARC (Versions 8
and 9) instruction sets. The instructions of the bench-
marks were instrumented to record the instruction val-
Performance was analyzed
by executing the traces generated by the instrumented
code over the PLV predictor’s simulated microarchi-
tecture on a 64-bit SPARC Ultra-2 processor running
SunOS 5.5.1. The benchmarks were compiled using
the SUN Workshop C Compiler, Version 4.2 with the
-O option, and run until completion. The data input
to the benchmarks is described in Table 1. Only the
integer instructions were analyzed in the benchmarks.
Since previous work [7] shows that floating point in-
structions exhibit value prediction patterns similar to
those of integer instructions, similar performance is ex-
pected for floating point instructions.

ues and branch histories.

We implemented the PLV predictor and compared

its performance with the performance of the last value
predictor and the FCM predictor. The FCM predictor
was implemented as a two-level table, with tables of
both levels having the same size. The first level table
entries consisted of an address tag and partial values
from the last three instances of the instruction. The
address tag along with the stored values are hashed to
a second table storing predicted values for the instruc-
tion. The hashing function used performs exclusive-OR
on the most significant bits of the stored values.
Usage
Tju‘me(Bits per line of VPHT =92

Set associativity of VPHT = 4

VPHT Size (Number of Entries) = 11.5KB (256),
23KB (512), 46K B (1024), 92K B (4096)

VPHT entry Address Value

‘24 ‘ 64

Figure 4. Table entry line for PLV predictor

For each scheme, we performed experiments for dif-
ferent table sizes. The different sizes of the VPHT in
PLV predictor are shown in Figure 4. Each entry is
4-way set associative. Since it is possible that some
of the programs require only a small branch history
and others require greater path information, we ran our
experiments for three different branch history depths,
last 2, 4 and last 8 branches. It was observed that for
smaller table sizes a small branch history performed
best since larger branch histories result in significant
aliasing. Overall the branch history size of 2 produced
the best results as compared with the other history
sizes and therefore we selected this number for all our
experiments.

Performance comparison of the PLV predictor with
the last value and the FCM predictors, for same num-
ber of entries per table, is shown in Figure 5. The
figure shows the percentage of analyzed instructions
that were successfully predicted. The first bar for each
benchmark shows the result of applying the FCM tech-
nique. The second and third bars show results of apply-
ing the last value technique and PLV prediction tech-
nique respectively. From the comparisons, it can be
seen that the FCM method did not match up to the
other techniques for realistic table sizes. This is due to
the large number of patterns that need to be stored,
resulting in frequent collisions within the tables. Also,
the PLV predictor outperforms the conventional pre-
dictors for most of the cases. For a 256 entry VPHT,
there is slight degradation in performance in cases of
ijpeg, swim and waved, as compared to last value pre-
diction. The degradation can be attributed to the alias-
ing problem, apparent for smaller table sizes, since we
need to store several values for different branch histo-
ries for an instruction. With an increase in the number
of entries, the aliasing is reduced and a considerable

Percentage of correct predictions

80.0
256 entries
> 512 entries
a 1024 entries
4096 entries
2
s H
e] f
60.0 -t
|
i
i
I i
ol .
II =I I
il
il II
II .. il
40.0 , ~ A I
=(=! |I
I i It i
I
=N
i
[m|
o
PIOIE | | B | (BB R R R — -An-H-
i-
O
gt
g
i
0.0
E X Q = T o O > Q £ v ()
S = o Q Q o & o = [} o))
g 5 s g § 2 5 3 ¢
=] = o f=3 n g o
<

Figure 5. Performance of FCM vs. Last value
vs. PLV Predictors in Percentage Predictions

performance improvement is observed. The average
performance improvement over last value prediction is
6.4% for the table size of 4096 entries. For larger ta-
ble sizes, this improvement is higher for larger branch
history but this is not apparent from the results shown
which use a fixed branch history size throughout.

In the above experiments, the branch history and
predictor table state are updated immediately after the
values are available. In a real machine, this update
may take a few cycles, in which case the instruction is
not allowed to execute immediately. In order to take
these extra cycles into account, we ran the benchmarks
using a delayed update of 2 cycles as an estimate of
the extra cycles needed for an update. This resulted
in reduction in prediction accuracy in the range of 2-
7% in case of both the conventional and new predic-
tion schemes. The reduction in accuracy is due to the
VPHT remaining inconsistent after executing an in-
struction for 2 cycles, when the table would be updated
by the instruction’s value. However, the average per-
formance improvement decreased only by a fraction of
a percentage indicating the improvement for the pro-

posed predictors was not impacted severely by delayed
updates.

3 Per-Path Stride Prediction

We also developed two prediction schemes that im-
prove stride prediction by incorporating path informa-
tion. The first of these two schemes, Per-Path Stride
(PS) prediction, stores different stride values for an in-
struction along different paths. The extension of stride
prediction is analogous to extending last value predic-
tion within the PLV predictor. Path information can
be useful for stride prediction when a loop variable
is updated by different amounts along different paths
within a loop. In the example of Figure 1, the vari-
able Of fset, demonstrates this characteristic. While
the strides are stored separately for different branch
histories, the last value is stored globally for all the
strides. The table storing the strides is accessed using
the instruction address and branch history bits.

Branch
Program Counter History Register
|
Hash Fn.
<tas> <Usage> Generator <Address> <Stridel> <Stride2>
<Vaue> <Counter> H <Tag> e Gount
< le Counter>
. Sag
Stride History
Value Prediction Table
History Table
+l
Value used for prediction

Figure 6. Per-path Stride Predictor Microar-
chitecture

The components of the predictor are shown in Fig-
ure 6. Besides using the components of the PLV pre-
dictor, this scheme makes use of an additional table,
the Stride History Table(SHT). The SHT stores
the stride values for different execution histories of an
instruction. It is accessed by hashing the address bits
and the branch history register value. The stride up-
date policy used here is the two-delta policy [3]. In
this policy, the stride gets updated only if the differ-
ence between the two most recent values of an instruc-
tion occurs twice in a row. To implement this policy,
two strides are stored for an instruction. The first one
stores the difference between the last two values com-

puted by the instruction while the other stride stores
the value being used for prediction. The latter value is
updated when the first stride has the same value twice
in a row.

For each analyzed instruction, the predictor uses its
lower (k bits) to map to the VPHT. The last value of
the instruction is obtained from this table. Simulta-
neously, the address bits are hashed with the branch
history to map to the SHT. This mapping accesses the
stride used for the instruction and current branch his-
tory. The sum of the two values is used to predict the
next value. Similar to the PLV scheme, the correctness
of the prediction is checked after execution of the in-
struction is completed, and the update of the last value
and stride is performed following completion.

The second path-based stride predictor scheme com-
bines the previous two proposed schemes by maintain-
ing a last value for each path, as well as a stride value
for each path. This scheme, Per-Path Stride Per-Path
Last Value (PS-PLV) prediction, is used to handle con-
ditions such as that of Addr. in the example of Fig-
ure 1, whose value depends on operands evaluated dif-
ferently along different paths. The implementation is
shown in Figure 7. It is similar to the PLV predictor
with the exception that each entry in the VPHT now
also contains a stride value.

Branch

Program Counter History Register

<Address> <Last> <Stride2>
<Tag> <Vaue> <Stride1>,/);UsageCounteD

Hash Fn.|Generator
Value
Prediction
History Table
—
+
Value used for prediction

Figure 7. Per-path Stride Per-path Value Pre-
dictor Microarchitecture

Each instruction is hashed to index the VPHT based
on its address and branch history. This table stores the
last value as well as the strides for each branch history.
A single access results in accessing both the values to
be used for prediction. These values get updated dur-
ing the completion stage of the instruction, as in the
previous methods.

(@ VPHT entry Address Value Usage Counter
I R O

Bits per lineof VPHT = 92
Set ity of VPHT = 4
Size of VPHT (Number of Entries) = 11.5KB (256)

Usage 23KB (512), 46KB (1024), 92K B (4096)
SHT entry Address Stridel Stride2 Counter
24 8 8 |a Bits per lineof SHT =44

Set y of SHT =4

Sizeof SHT (Number of Entries) = 5.5KB (256)
11KB (512), 22KB (1024), 44K B (4096)

Usage
Two Strides Counter
[e]e[

(b) VPHT entry Address Value
2 64

Bits per line of VPHT = 108

Set y of VPHT = 4

Size of VPHT (Number of Entries) = 13.5KB (256)
27KB (512), 54K B (1024), 108K B (4096)

Figure 8. Table entry lines for (a) PS predictor
(b) PS-PLV Predictor

The configurations of PS and PS-PLV predictors
that were used are shown in Figure 8. They were
implemented and compared with conventional stride
predictors. The performances of the PS and PS-PLV
predictors are shown in Figure 9. For each bench-
mark, the first bar shows the result of applying con-
ventional stride prediction. The second and third bars
show results of applying the PS and PS-PLV predic-
tion techniques respectively. The fourth bar shows the
result of applying a hybrid predictor that combines the
PS and PS-PLV prediction techniques. Details of this
hybrid predictor are provided below. Similar to the
study for the PLV predictor, we chose a branch his-
tory size of 2 for our analysis. From the figure, we
observe that the PS predictor almost always outper-
forms the conventional stride predictor (except for the
benchmark fpppp which has a marginal degradation in
performance). The PS-PLV predictor also gives a bet-
ter performance when compared to the conventional
stride predictor for most of the cases. However, the
performance improvement is less than with PS predic-
tor. Overall, the PS predictor shows an average im-
provement of 8.4% for 4096 entries while the PS-PLV
predictor improves performance by an average of 6.9%.

From the above results, we infer that the PS pre-
dictor improves conventional prediction significantly.
Notice that both PS and PS-PLV prediction schemes
would be able to capture different sets of prediction
cases (as illustrated by the example of Section 1).
Hence a hybrid predictor that uses both these predic-
tion schemes would potentially give an additive im-
provement in performance. Such a hybrid predictor
was implemented involving both the PS and PS-PLV
prediction mechanisms. The method used for predic-
tion was based on a confidence mechanism associated
with the instruction. The confidence mechanism used
was a 4-bit counter value that was updated depending
on which prediction mechanism performed correctly on
the instruction. The performance of such a predictor is
shown in Figure 9. The improvement in performance
over conventional stride prediction for 256 entries was

Percentage of correct predictions

100.0

256 entries
> 2 512 entries
a = 1024 entries
on E 4096 entries
m/
I
80.0 5 -
-_ = g I
'H =l=
i f H
mr i|i
60.0 -4 .
[od O
=" O l
I II 1 || il i 0
I I | al
I I II
i [
i '
so.0 ANEE-HREE ML TR """""""
i
LI (BRI R RRIERE]| —
Bl
i
0.0
E £ 58 %T & 8% 2 8 £ 8 &
o heet [=} =
&> 55 8 834 g §
2
Figure 9. Performance of Stride vs. PS vs.

PS-PLV vs. Hybrid Predictors in Percentage
Predictions

10.4% and was 2% over the best path-based stride pre-
dictor. The main issue to be explored in implementing
a hybrid predictor of this form is to select which pre-
dictor to use every time a prediction is to be made.

The performances of all the predictors were re-
duced by 3-8% when the the predictors were imple-
mented with a delayed update. However, the perfor-
mance improvements of the new predictors were re-
duced marginally.

4 Path and Instruction-based Value
Prediction

It is possible that information other than path in-
formation may be useful in predicting an instruction
value. This was demonstrated in the example when
Base, was moved to block 5 in Figure 2, and Addr,
could no longer be predicted using path history. A
scheme that performs prediction of the value of an in-
struction by correlating it with the value computed by
the previous instruction in the instruction sequence was

30.0
20.0
10.0

. ZUUUUOWWW

1 8 9 10
Distance between correlated instructions

Percentage predicted of total predicted instructions

Figure 10. Percentage predicted vs. Distance
between correlation

shown to predict Addr,. However, using simply the
last instruction will not allow us to predict Addr, and
Addr, in this case. In order to correlate with a previous
instruction value, we need to store values generated by
a number of previously completed instructions. The
correlation is detected by selecting an instruction from
these instructions and using its value to predict the cur-
rent instruction’s value. However, the issue here arises
as to which instruction to select out of the recently
completed instructions.

We performed experiments to observe the detectable
correlation with recently completed instructions, the
results of which are presented in Figure 10. From this
figure, we notice that 37% of the instructions are cor-

<Address>
<Tag> <Value>
Hash Fn.
Generator Branch
Program Counter History Register

H [I

I
) N <Usage> l j Hash Fn.
<Predicted> <Predicted> Cointer> Generator <Address> <Syidel> <Stride2>
<Vaue> <Vaue>) <Tag> Usage Count
<l >
p= sage Counter:
f | ~—~<Confidence> Stride Histor
\Va] id <Counlter> y
Bit Table
Value Prediction
History Table
Correlation
History Table i
-i
L -
Selector
Value used for prediction

Figure 11. Per-Stride Previous Instruction-
based Predictor Microarchitecture

Percentage of correct predictions

Usage Confidence

VPHT entry Address Vaue Counter Counter
IE o [+T4 Bits per line of VPHT = 96
Set associativity of VPHT =4
Size of VPHT (Number of Entries) = 12KB (256)
24KB (512), 48K B (1024), 96KB (4096)
SHT entry Address Stridel Stride2 Counter Bits per lineof SHT =44
2 =
n n Set associativity of SHT = 4
Sizeof SHT (Number of Entries) = 5.5KB (256)
vale vaid git L1KB (512), 22KB (1024), 44KB (409)
CHT entry Bits per line of Prediction Table = 65

\ Set associativity of SHT =1
1 Sizeof Prediction Table (Number of Entries) = 65KB (8192)

Figure 12. Table entry lines for PS-PI Predictor

rectly predictable due to their correlation with the im-
mediately preceding instruction appearing in the dy-
namic sequence. Therefore, to maintain simplicity of
the predictor we choose to correlate the instruction to
be predicted with the immediately preceding instruc-
tion.

Prediction using instruction correlation is able to
capture prediction cases that are independent of paths.
Hence, we implemented a hybrid predictor that per-
forms prediction using instruction correlation in con-
junction with the PS predictor. The PS predictor was
chosen as part of the hybrid predictor since it produced

100.0
256 entries
T 512 entries
& 1024 entries
o 4096 entries
n
a
80.0 H - =
o=
T
S~ og —l
g I. i i
B m|
60.0
= = En
I il
_ il
I
~ -
=] I i
400 r -2 — gl A A
200 - - R R
i
g
0.0
= x Q = = o O > Q £ [Te} [}
S = [9) [} Q [B o = [} o))
8 5 S 2 & 2 = 3z ¢
=) = © =3 7] i o
<

Figure 13. Performance of PS vs. PS-PI Pre-
dictors in Percentage Predictions

the best performance of the path based predictors. The
new predictor, Per-Path Stride Per-Instruction
(PS-PI), attempts to predict the instruction value us-
ing either path information or the previous instruc-
tion’s value. The prediction component that is se-
lected, each time an instruction is predicted, is based on
a confidence mechanism. Each entry of the VPHT has
a 4-bit confidence counter whose value is incremented
whenever the PS component makes a correct prediction
and decremented when the instruction-based compo-
nent predicts correctly. The value of this counter is
used to decide which prediction component to use for
predicting the next value of the instruction. In case the
instruction does not have an entry in the VPHT, the
instruction-based component is used for prediction.

The implementation of the PS-PI predictor is shown
in Figure 11. The left half of the figure depicts the
previous-instruction-based component of the predictor.
It uses a table, Correlation History Table (CHT),
which stores values that are predicted using correlation
with previously computed values. In order to perform
such correlation, the address and value computed by
the last instruction are always saved and used (along
with the program counter) to map to the entry storing
the predicted value in the table. The right half of the
figure shows the PS component described in the last
section. The selector chooses one of the two values
predicted based on the confidence counter value in the
VPHT.

The size of the CHT was fixed at 8K entries. We an-
alyzed the performance of previous-instruction-based
correlation by comparing the PS-PI predictor with the
PS predictor using the experimental design described
in Section 2.1. The results are depicted in Figure 13.
The first bar shows the result of applying the PS pre-
dictor and the second bar shows the result of applying
the PS-PI predictor. We observe that the improvement
is significant for all benchmarks. The average improve-
ment is 7.2% for table sizes of 256 entries and similar
performance for other table sizes.

When the predictor was modified to incorporate de-
layed update of branch history and tables as discussed
in the last two sections, the prediction accuracy of
all the predictors was reduced in the range of 2-8.5%.
However, the degradation in performance improvement
over PS predictor was less than 2%.

5 Conclusions

From our experiments, a number of conclusions can
be drawn.
(1) Path information is helpful in performing
prediction of data values of instructions. Three

novel schemes have been proposed for performing value
prediction sensitive to path information. The first
scheme, PLV predictor, improves the last value pre-
diction by as much as 15% for some benchmarks and
6.4% on average. The other two proposed predictors,
PS and PS-PLV, extend the stride predictors. The
PS prediction scheme shows an improvement exceed-
ing 15% for some benchmarks and 8.4% on average.
For PS-PLV prediction, the improvement exceeds 13%
for some benchmarks and 6.9% on average. The PS
and PS-PLV stride predictors are combined in a hy-
brid predictor, which improves prediction accuracy by
10.4% over convention stride prediction and by 2% over
the best path-based predictor.

(2) Prediction based on correlating instruc-
tion values can produce additional benefits over
path-based predictors. The proposed previous-
instruction-based prediction scheme is incorporated
within a hybrid predictor, PS-PI. Analysis of the PS-PI
predictor indicates that this method can capture sev-
eral cases of instruction values that are not predictable
by path-based predictors. The percentage of instruc-
tions of this kind exceeds 15% for some benchmarks
and 7.2% on an average.

(3) Significant performance improvement is at-
tainable with a simple hardware scheme and re-
alistic table sizes. The proposed prediction schemes
provide improvement over the conventional last value
and stride predictors for limited number of entries per
table. The FCM predictor does not match up to these
predictors for the table sizes under consideration. We
have shown that each of the proposed schemes would
require very simple hardware for implementation.

(4) Delaying update of information as is done
in real microarchitecture does not affect the
performance significantly. We performed experi-
ments by updating branch history a few cycles after
the branch outcome is available. In an attempt to give
a more realistic view of the performance, we performed
experiments by updating branch history 2 cycles after
the branch outcome is available. Results indicate that
the degradation in performance due to delayed update
is minimal.

References

[1] T. F. Chen and J. L. Baer. A performance study of
software and hardware data prefetching schemes. Pro-
ceedings of the 21st International Symposium on Com-
puter Architecture, pages 223-232, April 1994.

[2] R.F. Cmelik and D. Keppel. Shade: A fast instruction
set simulator for execution profiling. Tech. Rep. TR-
93-12, Sun Microsystems Laboratories, July 1993.

[3] R.J. Eickemeyer and S. Vassiliadis. A load instruction
unit for pipelined processors. IBM Journal of Research
and Development, pages 547-564, 1993.

[4] F. Gabbay and A. Mendelson. Speculative execution
based on value prediction. EF Department TR#1080,
Technion - Israel Institute of Technology, November
1996.

[5] D. M. Gallagher, W. Y. Chen, S. A. Mahalke, J. C.
Gyllenhaal, and W. W. Hwu. Dynamic memory dis-
ambiguation using the memory conflict buffer. Pro-
ceedings of the 6th International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 183-193, October 1994.

[6] M. H. Lipasti. Value locality and speculative exe-
cution. Ph.D. Thesis, Department of FElectrical and
Computer Fngineering, Carnegie Mellon University,
May 1997.

[7] M. H. Lipasti and J. P. Shen. Exceeding the dataflow
limit via value prediction. Proceedings of the 29th
Annual ACM/IEEE International Symposium on Mi-
croarchitecture, pages 226-237, December 1996.

[8] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value
locality and load value prediction. Proceedings of the
7th International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 138-147, October 1996.

[9] S. McFarling. Combining branch predictors. Tech.
Rep. DEC WRL TN-36, pages 281-290, June 1993.

[10] A. Moshovos and G. Sohi. Streamlining inter-
operation memory communication via data depen-
dence prediction. Proceedings of the 30th Annual
ACM/IEEE International Symposium on Microarchi-
tecture, pages 235245, December 1997.

[11] S. T. Pan, K. So, and J. T. Rahmeh. Improving the ac-
curacy of dynamic branch prediction using branch cor-
relation. Proceedings of the 5th International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 76-84, October
1992.

[12] Y. Sazeides and J. E. Smith. The predictabilty of data
values. Proceedings of the 30th Annual ACM/IEEE
International Symposium on Microarchitecture, pages
248-258, December 1997.

[13] Y. Sazeides, S. Vassiliadis, and J. E. Smith. The
performance potential of data dependence specula-
tion and collapsing. Proceedings of the 29th Annual
ACM/IEEE International Symposium on Microarchi-
tecture, pages 238-247, December 1996.

[14] K. Wang and M. Franklin. Highly accurate data value
prediction using hybrid predictors. Proceedings of the
30th Annual ACM/IEEE International Symposium on
Microarchitecture, pages 281-290, December 1997.

[15] T.Y. Yeh and Y. N. Patt. Alternate implementation
of two-level adaptive branch prediction. Proceedings of
the 19th International Symposium on Computer Archi-
tecture, pages 124-134, May 1992.

