
Global Context�Based Value Prediction�

Tarun Nakra� Rajiv Gupta and Mary Lou So�a

Department of Computer Science

University of Pittsburgh

fnakra�gupta�so�ag�cs�pitt�edu

Abstract

Various methods for value prediction have been pro�
posed to overcome the limits imposed by data dependen�
cies within programs� Using a value prediction scheme�
an instruction�s computed value is predicted during the
fetch stage and forwarded to all dependent instructions
to speed up execution� Value prediction schemes have
been based on a local context by predicting values us�
ing the values generated by the same instruction� This
paper presents techniques that predict values of an in�
struction based on a global context where the behav�
ior of other instructions is used in prediction� The
global context includes the path along which an instruc�
tion is executed and the values computed by other pre�
viously completed instructions� We present techniques
that augment conventional last value and stride predic�
tors with global context information� Experiments per�
formed using path�based techniques with realistic table
sizes resulted in an increase in prediction of �������	
over the current prediction schemes� Prediction using
values computed by other instructions resulted in a fur�
ther improvement of
��	 prediction accuracy over the
best path�based predictor�

� Introduction

The e�ciency of modern architectures is highly de�
pendent on the amount of parallelism extracted both
by the compiler and the hardware� The barriers to
parallelism are the dependencies that exist between in�
structions of a program� These dependencies are classi�
�ed as �� control dependencies� arising from conditional
branches in a program� and �� data dependencies� aris�
ing from the 	ow of data between instructions�

To overcome the limitations imposed by control de�
pendencies� branch outcomes are predicted and in�

�Partially supported by National Science Foundation Grant
CCR�������� and a grant from Hewlett Packard to the Univer�
sity of Pittsburgh

structions are executed speculatively� Current branch
predictors have been shown to accurately predict more
than
�� of the branches
��

Data dependencies existing between the instructions
are more prevalent than control dependencies� To over�
come these dependencies� it is possible to perform spec�
ulation on data as well� The data speculation could be
performed based on the storage addresses �� ��� or
data values ��� Recent studies on predicting data val�
ues have shown that the bene�ts of value prediction
have signi�cant potential for performance improve�
ment �� ��� ���� Moreover� studies performed to ob�
serve the patterns of values computed by an instruc�
tion have found that instructions demonstrate locality
of data values ��� The sequences that occur in certain
patterns are easier to predict than others� Typically�
the patterns of values include�

��� Constant values � these are the easiest to predict
by always predicting the same constant value� Con�
stant values have been shown to occur often in bench�
mark programs ���

��� Values di�ering by a stride � these usually oc�
cur in case of loop induction variables or variables that
are dependent on induction variables�

��� Other sequences � these include sequence of val�
ues that di�er by non�constant strides� This category
is the hardest to predict�

The techniques that perform prediction based on a
local context of an instruction include last value pre�
diction in which the value predicted is the one that
was computed in the last execution of that instruc�
tion� Previous work using last value prediction indi�
cates successful prediction for ������ of the dynamic
instruction instances ��� Another technique is stride
prediction� which predicts values to be the sum of
the last computed value of the same instruction and
a stride� Stride prediction has been compared with
last value prediction and shown to improve the predic�
tion performance signi�cantly ��� In other work� 	nite
context method �FCM� predictors are proposed that

predict values based on previously observed patterns of
values ���� The recent history of values computed by
an instruction is matched with previous value history
of the instruction� The next value of the instruction is
predicted to be the next value in the previous pattern�
These predictors have been shown to improve the ac�
curacy of last value and stride predictors by as much as
��� � However� this is an upper bound since the study
uses unbounded history table sizes� Also� hybrid pre�
dictors ��� have been proposed that attempt to detect
sequences that are composition of stride and non�stride
sequences� Due to their complexity� the FCM predic�
tor and the proposed hybrid predictors do not have
e�cient implementations�

This paper proposes techniques that associate a
more global context with an instruction to help pre�
dict its value� This global context association is anal�
ogous to branch prediction performed by correlating
with other branches ��� and has not been considered
for value prediction before� Two types of global con�
texts are considered�

� Path information �branch history�
 Di�er�
ent values for an instruction are predicted along
di�erent paths within a program� Branch his�
tory is used to separate the di�erent paths� In
the work by Lipasti��� branch history is used to
either select instructions for prediction� or pre�
dict input operands for estimating data depen�
dencies� However� branch history is not involved
in the actual prediction of computed values�

� Values produced by recently completed in�
structions
 Values are predicted by using the
correlation between values produced by instruc�
tions close to each other within the dynamic in�
struction stream�

Consider the code sequence shown in Figure �� In�
structions ��
 and �� in block � compute three ad�
dress values from previously de�ned base and o�set
values� Addra depends on a base value that has either
the value Y or X� depending on whether the condition
Condition� evaluates to true or false� while the o�set
value is �xed at �� for all loop iterations� Addrb uses
a base value that is �xed for all loop iterations and an
o�set that is incremented by either � or �� depending
on the outcome of Condition�� Finally�Addrc depends
on base and o�set values� both of which are di�erent
for the two paths within the loop�

Let us now consider the prediction of these values�
assuming the true� false� false sequence of outcomes for
Condition� repeats itself� The conventional last value
and stride predictors would not work in this case� It

 Base = Af
Block 1

1:

2:

f3: = 10
v

Offset

Offset = 0

-
-

Condition1

 Block 2
{ T, F, F, T, F, F, T, F, F...}

Sequence of values computed

Basev = Y

v v

 Block 4

6:

7: Offset = Offset + 2
v = X

v v

Base

Block 3

 2

5:

 4:

Offset = Offset + 1

F T

Block 5
f v {A+2,A+3,A+4,A+6,A+7,A+8....}

v v {Y+2,X+3,X+4,Y+6,X+7,X+8....}
b

c

v fa

Sequence of values computed

8:

9:

10:

{Y+10,X+10,X+10,Y+10,X+10,X+10...}Addr = Base + Offset

Addr = Base + Offset

Addr = Base + Offset
Condition

Figure 1. Example

is possible to perform prediction using the FCM or the
hybrid predictor by maintaining the patterns of values�
However� new patterns of values would be generated
often and the number of patterns generated would be
large� Thus� frequent mispredictions can be expected�

It is possible to predict these values using control
	ow information� Consider the sequence of values com�
puted by instruction � as shown in the �gure� We
can predict the next value by looking at the most
recent outcome of Condition�� If Condition� eval�
uates to false�true� the next value will be the last
value of instruction � along the false�true branch �i�e��
Y���X����

Consider the sequence of values computed by in�
struction
� We notice that this sequence is similar
to a stride sequence� In case the true branch is taken�
the stride is �� otherwise it is �� Thus� the next value
can be predicted from the stride pattern of the o�set
occurring along a path�

Finally� the computed value of instruction �� de�
pends on base and o�set values� both of which depend
on the control path taken from block � to block �� In
this case� it is possible to perform prediction by remem�
bering both the last value and the stride values for each
incoming path�

In all the above cases� we can perform the prediction
for any arbitrary sequence of branch outcomes� Values
of an instruction along di�erent paths are stored sepa�
rately and branch history is used to predict the value
on the current path� In this example� a branch his�
tory composed of the last two branches is su�cient for
correct prediction� In general� outcomes from several
branches may be required�

Let us modify basic block � in the example as shown

c

f v

v v

b

v fa

 Base = Mem[Addr]

Addr = Base + Offset

Addr = Base + Offset

Addr = Base + Offset

Block 5

v v

Condition 2

Figure 2. Modified block 5 of example

in Figure �� The assignment to base value Basev is
moved from blocks � and � to block �� This value is now
loaded from a memory location whose address� Addrv�
may be di�erent for di�erent iterations of the loop� In
this case� the value of Addra may not be predictable
using path information since a di�erent value can be
produced for separate iterations of the loop along the
same path� However� this value can be predicted as
the sum of the loaded value of Basev and Offsetf �
This implies that we can predict the value of Addra
by correlating it with the value loaded by a previous
instruction� Essentially� we need to capture the de�
pendence occurring between the instruction comput�
ing Basev and the one using this value� Notice that
the values that were predicted using path information
could also be predicted using value correlation� For ex�
ample� values of Addrb and Addrc can be predicted by
correlating them with the value of instruction comput�
ing Offsetv �

In this paper� we present prediction techniques that
combine the use of branch history with last value and
stride predictors� Also� a technique that predicts values
based on the correlations between instructions is devel�
oped� The predictors resulting from these techniques
were experimentally evaluated and compared with con�
ventional predictors�

The rest of the paper is organized as follows� Sec�
tions � and � present the new prediction schemes based
on path information� Section � presents a predic�
tion scheme that uses correlation between instructions�
Each prediction scheme is evaluated by doing a per�
formance comparison with the conventional prediction
schemes� The conclusions are presented in Section ��

� Path�based Last Value Prediction

Our �rst scheme� Path�based Last Value �PLV� Pre�
diction� extends the last value predictor by storing the
most recent values of an instruction for di�erent branch
histories� The history of recent branch outcomes is
maintained and used� along with the instruction ad�
dress� to predict the next value of the instruction� For
the example in Figure �� two di�erent values of Addra
are stored and then� based on the path followed� the

appropriate value computed on that path is predicted�

<Usage Counter>

History Register

Program Counter

Value used for prediction

H

Branch

Hash Fn. Generator<Value><Tag>
<Address>

 Prediction
History Table
Value

<Last>

Figure 3. Per path Last value Predictor Mi-
croarchitecture

The implementation of this predictor is depicted in
Figure �� The components of the predictor are as fol�
lows�

Branch History Register �BHR�� This register is
similar to the history registers used in branch predic�
tion techniques
�� The register stores the most re�
cent branch outcomes� After each branch is evaluated�
the entire history contents are shifted left by one bit
and the least signi�cant bit is set�reset depending on
whether the branch was taken�not taken� The number
of paths that can be represented is limited by the size
of the register�
Value Prediction History Table �VPHT�� This
table stores the values of instructions for di�erent
branch histories� It di�ers from the value prediction ta�
ble proposed in �� in that this table may store several
values computed by an instruction for di�erent branch
histories� The table is set�associative and accessed us�
ing the instruction address and BHR bits� Each en�
try stores the predicted value and a usage counter for
performing replacement� The counter is a saturating
counter incremented after every correct prediction and
decremented upon a misprediction� Whenever an entry
needs to be replaced� the one with the lowest counter
value is selected for replacement�
Hash Function Generator � The VPHT is accessed
using both the address of the instruction and the his�
tory register� This unit performs the hashing of the
two for indexing into the VPHT� For instruction i and
BHR�s value b� the function used is

f��i� b� 	 ��Addr�i� �� Size�BHR��
 b� mod Size�V PHT �

where Addr�i� denotes the address value of instruction
i� Size�BHR� and Size�VPHT� give the total number of
distinct entries in bu�er BHR and VPHT respectively�
This function maps an instruction within a segment of

Benchmark Input set Instrns� analyzed

Unix Utilities

di� �K C les ���M
gawk parse ���K input ���M
grep search ����M le ����M

SPEC INT �� programs

li train�lsp �����M
perl primes�in ����M
ijpeg vigo�ppm ������M
go �stone��in �����M

SPEC FP �� programs

applu applu�in �����M
fpppp natoms�in �����M
swim swim�in �����M
wave� wave��in �����M

Table 1. Description of benchmarks

the VPHT of size �Size�BHR�� Within each segment�
di�erent branch histories for the same instruction are
mapped to di�erent entries of the table� This function
is easy to implement in hardware and all experimen�
tal results presented in this paper are based upon this
function�

For each instruction� the predictor computes the in�
dex in the VPHT by hashing the instruction�s address
bits with the current branch history contents� If the
index maps to a valid entry� the corresponding value
is used for prediction� After execution� the computed
value is compared with the predicted one� Upon a mis�
prediction� the instruction using the predicted value is
squashed and re�issued with the correct value� Upon
the instruction�s completion� its last value information
for the current branch history is updated in the VPHT�

The performance of the PLV predictor was ana�
lyzed using trace�driven simulations and instrumenting
the code to perform the prediction� The experimen�
tal framework consisted of an instruction�set simula�
tor SHADE ��� a code instrumentation tool from SUN
Microsystems� which simulates the SPARC �Versions �
and
� instruction sets� The instructions of the bench�
marks were instrumented to record the instruction val�
ues and branch histories� Performance was analyzed
by executing the traces generated by the instrumented
code over the PLV predictor�s simulated microarchi�
tecture on a ���bit SPARC Ultra�� processor running
SunOS ������ The benchmarks were compiled using
the SUN Workshop C Compiler� Version ��� with the
�O option� and run until completion� The data input
to the benchmarks is described in Table �� Only the
integer instructions were analyzed in the benchmarks�
Since previous work �� shows that 	oating point in�
structions exhibit value prediction patterns similar to
those of integer instructions� similar performance is ex�
pected for 	oating point instructions�

We implemented the PLV predictor and compared

its performance with the performance of the last value
predictor and the FCM predictor� The FCM predictor
was implemented as a two�level table� with tables of
both levels having the same size� The �rst level table
entries consisted of an address tag and partial values
from the last three instances of the instruction� The
address tag along with the stored values are hashed to
a second table storing predicted values for the instruc�
tion� The hashing function used performs exclusive�OR
on the most signi�cant bits of the stored values�

23KB (512), 46KB (1024), 92KB (4096)

VPHT Size (Number of Entries) = 11.5KB (256),
Set associativity of VPHT = 4
Bits per line of VPHT = 924

VPHT entry

6424

Address Value Counter
Usage

Figure 4. Table entry line for PLV predictor

For each scheme� we performed experiments for dif�
ferent table sizes� The di�erent sizes of the VPHT in
PLV predictor are shown in Figure �� Each entry is
��way set associative� Since it is possible that some
of the programs require only a small branch history
and others require greater path information� we ran our
experiments for three di�erent branch history depths�
last �� � and last � branches� It was observed that for
smaller table sizes a small branch history performed
best since larger branch histories result in signi�cant
aliasing� Overall the branch history size of � produced
the best results as compared with the other history
sizes and therefore we selected this number for all our
experiments�

Performance comparison of the PLV predictor with
the last value and the FCM predictors� for same num�
ber of entries per table� is shown in Figure �� The
�gure shows the percentage of analyzed instructions
that were successfully predicted� The �rst bar for each
benchmark shows the result of applying the FCM tech�
nique� The second and third bars show results of apply�
ing the last value technique and PLV prediction tech�
nique respectively� From the comparisons� it can be
seen that the FCM method did not match up to the
other techniques for realistic table sizes� This is due to
the large number of patterns that need to be stored�
resulting in frequent collisions within the tables� Also�
the PLV predictor outperforms the conventional pre�
dictors for most of the cases� For a ��� entry VPHT�
there is slight degradation in performance in cases of
ijpeg� swim and wave�� as compared to last value pre�
diction� The degradation can be attributed to the alias�
ing problem� apparent for smaller table sizes� since we
need to store several values for di�erent branch histo�
ries for an instruction� With an increase in the number
of entries� the aliasing is reduced and a considerable

di
ff

ga
w

k

gr
ep

li

pe
rl

ijp
eg go

ap
pl

u

fp
pp

p

sw
im

w
av

e5

A
ve

ra
ge

0.0

20.0

40.0

60.0

80.0

 P
er

ce
nt

ag
e

of
 c

or
re

ct
 p

re
di

ct
io

ns

256 entries
512 entries
1024 entries
4096 entries

F
C

M
LV

P
LV

Figure 5. Performance of FCM vs. Last value
vs. PLV Predictors in Percentage Predictions

performance improvement is observed� The average
performance improvement over last value prediction is
���� for the table size of ��
� entries� For larger ta�
ble sizes� this improvement is higher for larger branch
history but this is not apparent from the results shown
which use a �xed branch history size throughout�

In the above experiments� the branch history and
predictor table state are updated immediately after the
values are available� In a real machine� this update
may take a few cycles� in which case the instruction is
not allowed to execute immediately� In order to take
these extra cycles into account� we ran the benchmarks
using a delayed update of � cycles as an estimate of
the extra cycles needed for an update� This resulted
in reduction in prediction accuracy in the range of ��
�� in case of both the conventional and new predic�
tion schemes� The reduction in accuracy is due to the
VPHT remaining inconsistent after executing an in�
struction for � cycles� when the table would be updated
by the instruction�s value� However� the average per�
formance improvement decreased only by a fraction of
a percentage indicating the improvement for the pro�

posed predictors was not impacted severely by delayed
updates�

� Per�Path Stride Prediction

We also developed two prediction schemes that im�
prove stride prediction by incorporating path informa�
tion� The �rst of these two schemes� Per�Path Stride
�PS� prediction� stores di�erent stride values for an in�
struction along di�erent paths� The extension of stride
prediction is analogous to extending last value predic�
tion within the PLV predictor� Path information can
be useful for stride prediction when a loop variable
is updated by di�erent amounts along di�erent paths
within a loop� In the example of Figure �� the vari�
able Offsetv demonstrates this characteristic� While
the strides are stored separately for di�erent branch
histories� the last value is stored globally for all the
strides� The table storing the strides is accessed using
the instruction address and branch history bits�

<Usage>
<Value>

Program Counter

H

History Register

 History Table

Branch

Hash Fn.
Generator

Value Prediction

<Counter> <Tag>
<Address> <Stride1> <Stride2>

<Usage Counter>

+

Value used for prediction

Stride History
 Table

<Last>

Figure 6. Per-path Stride Predictor Microar-
chitecture

The components of the predictor are shown in Fig�
ure �� Besides using the components of the PLV pre�
dictor� this scheme makes use of an additional table�
the Stride History Table�SHT�� The SHT stores
the stride values for di�erent execution histories of an
instruction� It is accessed by hashing the address bits
and the branch history register value� The stride up�
date policy used here is the two�delta policy ��� In
this policy� the stride gets updated only if the di�er�
ence between the two most recent values of an instruc�
tion occurs twice in a row� To implement this policy�
two strides are stored for an instruction� The �rst one
stores the di�erence between the last two values com�

puted by the instruction while the other stride stores
the value being used for prediction� The latter value is
updated when the �rst stride has the same value twice
in a row�

For each analyzed instruction� the predictor uses its
lower �k bits� to map to the VPHT� The last value of
the instruction is obtained from this table� Simulta�
neously� the address bits are hashed with the branch
history to map to the SHT� This mapping accesses the
stride used for the instruction and current branch his�
tory� The sum of the two values is used to predict the
next value� Similar to the PLV scheme� the correctness
of the prediction is checked after execution of the in�
struction is completed� and the update of the last value
and stride is performed following completion�

The second path�based stride predictor scheme com�
bines the previous two proposed schemes by maintain�
ing a last value for each path� as well as a stride value
for each path� This scheme� Per�Path Stride Per�Path
Last Value �PS�PLV� prediction� is used to handle con�
ditions such as that of Addrc in the example of Fig�
ure �� whose value depends on operands evaluated dif�
ferently along di�erent paths� The implementation is
shown in Figure �� It is similar to the PLV predictor
with the exception that each entry in the VPHT now
also contains a stride value�

Value used for prediction

+

<Last>

Program Counter

 H

 History Table
Prediction
Value

History Register
Branch

<Stride2>
<Usage Counter><Stride1><Tag>

<Address>
<Value>

Hash Fn. Generator

Figure 7. Per-path Stride Per-path Value Pre-
dictor Microarchitecture

Each instruction is hashed to index the VPHT based
on its address and branch history� This table stores the
last value as well as the strides for each branch history�
A single access results in accessing both the values to
be used for prediction� These values get updated dur�
ing the completion stage of the instruction� as in the
previous methods�

VPHT entry

SHT entry

24 8 8 4

Stride1 Stride2 CounterAddress

Bits per line of VPHT = 92

Size of VPHT (Number of Entries) = 11.5KB (256)

Bits per line of SHT = 44

Set associativity of SHT = 4

Size of SHT (Number of Entries) = 5.5KB (256)

11KB (512), 22KB (1024), 44KB (4096)

VPHT entry
Usage

24 64

Address Value CounterTwo Strides

8 8 4 Bits per line of VPHT = 108
Set associativity of VPHT = 4

27KB (512), 54KB (1024), 108KB (4096)

(a)

(b)

Size of VPHT (Number of Entries) = 13.5KB (256)

Set associativity of VPHT = 4

23KB (512), 46KB (1024), 92KB (4096)Usage

24 64 4

Address Value Usage Counter

Figure 8. Table entry lines for (a) PS predictor
(b) PS-PLV Predictor

The con�gurations of PS and PS�PLV predictors
that were used are shown in Figure �� They were
implemented and compared with conventional stride
predictors� The performances of the PS and PS�PLV
predictors are shown in Figure
� For each bench�
mark� the �rst bar shows the result of applying con�
ventional stride prediction� The second and third bars
show results of applying the PS and PS�PLV predic�
tion techniques respectively� The fourth bar shows the
result of applying a hybrid predictor that combines the
PS and PS�PLV prediction techniques� Details of this
hybrid predictor are provided below� Similar to the
study for the PLV predictor� we chose a branch his�
tory size of � for our analysis� From the �gure� we
observe that the PS predictor almost always outper�
forms the conventional stride predictor �except for the
benchmark fpppp which has a marginal degradation in
performance�� The PS�PLV predictor also gives a bet�
ter performance when compared to the conventional
stride predictor for most of the cases� However� the
performance improvement is less than with PS predic�
tor� Overall� the PS predictor shows an average im�
provement of ���� for ��
� entries while the PS�PLV
predictor improves performance by an average of ��
��

From the above results� we infer that the PS pre�
dictor improves conventional prediction signi�cantly�
Notice that both PS and PS�PLV prediction schemes
would be able to capture di�erent sets of prediction
cases �as illustrated by the example of Section ���
Hence a hybrid predictor that uses both these predic�
tion schemes would potentially give an additive im�
provement in performance� Such a hybrid predictor
was implemented involving both the PS and PS�PLV
prediction mechanisms� The method used for predic�
tion was based on a con�dence mechanism associated
with the instruction� The con�dence mechanism used
was a ��bit counter value that was updated depending
on which prediction mechanism performed correctly on
the instruction� The performance of such a predictor is
shown in Figure
� The improvement in performance
over conventional stride prediction for ��� entries was

di
ff

ga
w

k

gr
ep

li

pe
rl

ijp
eg go

ap
pl

u

fp
pp

p

sw
im

w
av

e5

A
ve

ra
ge

0.0

20.0

40.0

60.0

80.0

100.0

 P
er

ce
nt

ag
e

of
 c

or
re

ct
 p

re
di

ct
io

ns

256 entries
512 entries
1024 entries
4096 entries

S
tr

id
e

P
S

P
S

−
P

LV

H
yb

rid

Figure 9. Performance of Stride vs. PS vs.
PS-PLV vs. Hybrid Predictors in Percentage
Predictions

����� and was �� over the best path�based stride pre�
dictor� The main issue to be explored in implementing
a hybrid predictor of this form is to select which pre�
dictor to use every time a prediction is to be made�

The performances of all the predictors were re�
duced by ���� when the the predictors were imple�
mented with a delayed update� However� the perfor�
mance improvements of the new predictors were re�
duced marginally�

� Path and Instruction�based Value

Prediction

It is possible that information other than path in�
formation may be useful in predicting an instruction
value� This was demonstrated in the example when
Basev was moved to block � in Figure �� and Addra
could no longer be predicted using path history� A
scheme that performs prediction of the value of an in�
struction by correlating it with the value computed by
the previous instruction in the instruction sequence was

1 2 3 4 5 6 7 8 9 10
Distance between correlated instructions

0.0

10.0

20.0

30.0

40.0

P
er

ce
nt

ag
e

pr
ed

ic
te

d
of

 to
ta

l p
re

di
ct

ed
 in

st
ru

ct
io

ns

Figure 10. Percentage predicted vs. Distance
between correlation

shown to predict Addra� However� using simply the
last instruction will not allow us to predict Addrb and
Addrc in this case� In order to correlate with a previous
instruction value� we need to store values generated by
a number of previously completed instructions� The
correlation is detected by selecting an instruction from
these instructions and using its value to predict the cur�
rent instruction�s value� However� the issue here arises
as to which instruction to select out of the recently
completed instructions�

We performed experiments to observe the detectable
correlation with recently completed instructions� the
results of which are presented in Figure ��� From this
�gure� we notice that ��� of the instructions are cor�

Selector

<Value>

Program Counter

H

History Register
Branch

Hash Fn.
Generator

<Tag>
<Address> <Stride1> <Stride2> <Predicted>

<Value>
<Predicted>

<Tag> <Value>
<Address>

H

Hash Fn.
Generator

Stride History

 Table
Valid
Bit

Correlation
History Table

+

Value used for prediction

Value Prediction

 History Table

<Counter>
<Confidence>

<Usage Counter>

<Usage>
<Counter>

Figure 11. Per-Stride Previous Instruction-
based Predictor Microarchitecture

64

Value Valid Bit

1

VPHT entry

SHT entry

24 8 8 4

Stride1 Stride2 CounterAddress

Confidence

Bits per line of VPHT = 96

Size of VPHT (Number of Entries) = 12KB (256)

24KB (512), 48KB (1024), 96KB (4096)

Bits per line of SHT = 44

Set associativity of SHT = 4

Size of SHT (Number of Entries) = 5.5KB (256)

CHT entry Bits per line of Prediction Table = 65

11KB (512), 22KB (1024), 44KB (4096)

Set associativity of SHT = 1

Set associativity of VPHT = 4
24 64 4

Address Value

4

Counter Counter

Size of Prediction Table (Number of Entries) = 65KB (8192)

Usage

Figure 12. Table entry lines for PS-PI Predictor

rectly predictable due to their correlation with the im�
mediately preceding instruction appearing in the dy�
namic sequence� Therefore� to maintain simplicity of
the predictor we choose to correlate the instruction to
be predicted with the immediately preceding instruc�
tion�

Prediction using instruction correlation is able to
capture prediction cases that are independent of paths�
Hence� we implemented a hybrid predictor that per�
forms prediction using instruction correlation in con�
junction with the PS predictor� The PS predictor was
chosen as part of the hybrid predictor since it produced

di
ff

ga
w

k

gr
ep

li

pe
rl

ijp
eg go

ap
pl

u

fp
pp

p

sw
im

w
av

e5

A
ve

ra
ge

0.0

20.0

40.0

60.0

80.0

100.0

 P
er

ce
nt

ag
e

of
 c

or
re

ct
 p

re
di

ct
io

ns

256 entries
512 entries
1024 entries
4096 entries

P
S

P
S

−
P

I

Figure 13. Performance of PS vs. PS-PI Pre-
dictors in Percentage Predictions

the best performance of the path based predictors� The
new predictor� Per�Path Stride Per�Instruction
�PS�PI�� attempts to predict the instruction value us�
ing either path information or the previous instruc�
tion�s value� The prediction component that is se�
lected� each time an instruction is predicted� is based on
a con�dence mechanism� Each entry of the VPHT has
a ��bit con�dence counter whose value is incremented
whenever the PS component makes a correct prediction
and decremented when the instruction�based compo�
nent predicts correctly� The value of this counter is
used to decide which prediction component to use for
predicting the next value of the instruction� In case the
instruction does not have an entry in the VPHT� the
instruction�based component is used for prediction�

The implementation of the PS�PI predictor is shown
in Figure ��� The left half of the �gure depicts the
previous�instruction�based component of the predictor�
It uses a table� Correlation History Table �CHT��
which stores values that are predicted using correlation
with previously computed values� In order to perform
such correlation� the address and value computed by
the last instruction are always saved and used �along
with the program counter� to map to the entry storing
the predicted value in the table� The right half of the
�gure shows the PS component described in the last
section� The selector chooses one of the two values
predicted based on the con�dence counter value in the
VPHT�

The size of the CHT was �xed at �K entries� We an�
alyzed the performance of previous�instruction�based
correlation by comparing the PS�PI predictor with the
PS predictor using the experimental design described
in Section ���� The results are depicted in Figure ���
The �rst bar shows the result of applying the PS pre�
dictor and the second bar shows the result of applying
the PS�PI predictor� We observe that the improvement
is signi�cant for all benchmarks� The average improve�
ment is ���� for table sizes of ��� entries and similar
performance for other table sizes�

When the predictor was modi�ed to incorporate de�
layed update of branch history and tables as discussed
in the last two sections� the prediction accuracy of
all the predictors was reduced in the range of �������
However� the degradation in performance improvement
over PS predictor was less than ���

� Conclusions

From our experiments� a number of conclusions can
be drawn�
��� Path information is helpful in performing
prediction of data values of instructions� Three

novel schemes have been proposed for performing value
prediction sensitive to path information� The �rst
scheme� PLV predictor� improves the last value pre�
diction by as much as ��� for some benchmarks and
���� on average� The other two proposed predictors�
PS and PS�PLV� extend the stride predictors� The
PS prediction scheme shows an improvement exceed�
ing ��� for some benchmarks and ���� on average�
For PS�PLV prediction� the improvement exceeds ���
for some benchmarks and ��
� on average� The PS
and PS�PLV stride predictors are combined in a hy�
brid predictor� which improves prediction accuracy by
����� over convention stride prediction and by �� over
the best path�based predictor�

��� Prediction based on correlating instruc�
tion values can produce additional bene	ts over
path�based predictors� The proposed previous�
instruction�based prediction scheme is incorporated
within a hybrid predictor� PS�PI� Analysis of the PS�PI
predictor indicates that this method can capture sev�
eral cases of instruction values that are not predictable
by path�based predictors� The percentage of instruc�
tions of this kind exceeds ��� for some benchmarks
and ���� on an average�

��� Signi	cant performance improvement is at�
tainable with a simple hardware scheme and re�
alistic table sizes� The proposed prediction schemes
provide improvement over the conventional last value
and stride predictors for limited number of entries per
table� The FCM predictor does not match up to these
predictors for the table sizes under consideration� We
have shown that each of the proposed schemes would
require very simple hardware for implementation�

��� Delaying update of information as is done
in real microarchitecture does not a�ect the
performance signi	cantly� We performed experi�
ments by updating branch history a few cycles after
the branch outcome is available� In an attempt to give
a more realistic view of the performance� we performed
experiments by updating branch history � cycles after
the branch outcome is available� Results indicate that
the degradation in performance due to delayed update
is minimal�

References

��� T� F� Chen and J� L� Baer� A performance study of
software and hardware data prefetching schemes� Pro�
ceedings of the ��st International Symposium on Com�
puter Architecture� pages �������� April �		
�

��� R� F� Cmelik and D� Keppel� Shade� A fast instruction
set simulator for execution pro�ling� Tech� Rep� TR�
������ Sun Microsystems Laboratories� July �		��

��� R� J� Eickemeyer and S� Vassiliadis� A load instruction
unit for pipelined processors� IBM Journal of Research
and Development� pages
���
� �		��

�
� F� Gabbay and A� Mendelson� Speculative execution
based on value prediction� EE Department TR	�
�
�
Technion � Israel Institute of Technology� November
�		��

�� D� M� Gallagher� W� Y� Chen� S� A� Mahalke� J� C�
Gyllenhaal� and W� W� Hwu� Dynamic memory dis�
ambiguation using the memory con�ict bu�er� Pro�
ceedings of the �th International Conference on Ar�
chitectural Support for Programming Languages and
Operating Systems� pages �����	�� October �		
�

��� M� H� Lipasti� Value locality and speculative exe�
cution� Ph�D� Thesis� Department of Electrical and
Computer Engineering� Carnegie Mellon University�
May �		��

��� M� H� Lipasti and J� P� Shen� Exceeding the data�ow
limit via value prediction� Proceedings of the ��th
Annual ACMIEEE International Symposium on Mi�
croarchitecture� pages �������� December �		��

��� M� H� Lipasti� C� B� Wilkerson� and J� P� Shen� Value
locality and load value prediction� Proceedings of the
�th International Conference on Architectural Support
for Programming Languages and Operating Systems�
pages �����
�� October �		��

�	� S� McFarling� Combining branch predictors� Tech�
Rep� DEC WRL TN���� pages �����	�� June �		��

���� A� Moshovos and G� Sohi� Streamlining inter�
operation memory communication via data depen�
dence prediction� Proceedings of the �
th Annual
ACMIEEE International Symposium on Microarchi�
tecture� pages ����
� December �		��

���� S� T� Pan� K� So� and J� T� Rahmeh� Improving the ac�
curacy of dynamic branch prediction using branch cor�
relation� Proceedings of the �th International Confer�
ence on Architectural Support for Programming Lan�
guages and Operating Systems� pages ����
� October
�		��

���� Y� Sazeides and J� E� Smith� The predictabilty of data
values� Proceedings of the �
th Annual ACMIEEE
International Symposium on Microarchitecture� pages
�
����� December �		��

���� Y� Sazeides� S� Vassiliadis� and J� E� Smith� The
performance potential of data dependence specula�
tion and collapsing� Proceedings of the ��th Annual
ACMIEEE International Symposium on Microarchi�
tecture� pages �����
�� December �		��

��
� K� Wang and M� Franklin� Highly accurate data value
prediction using hybrid predictors� Proceedings of the
�
th Annual ACMIEEE International Symposium on
Microarchitecture� pages �����	�� December �		��

��� T� Y� Yeh and Y� N� Patt� Alternate implementation
of two�level adaptive branch prediction� Proceedings of
the ��th International Symposium on Computer Archi�
tecture� pages ��
���
� May �		��

