
Integrating Program Optimizations and
Transformations with the Scheduling of

Instruction Level Parallelism*

David A. Berson 1 Pohua Chang 1 Rajiv Gupta 2 Mary Lou Sofia 2

1 Intel Corporation, Santa Clara, CA 95052
2 University of Pittsburgh, Pittsburgh, PA 15260

Abstract . Code optimizations and restructuring transformations are
typically applied before scheduling to improve the quality of generated
code. However, in some cases, the optimizations and transformations do
not lead to a better schedule or may even adversely affect the schedule. In
particular, optimizations for redundancy elimination and restructuring
transformations for increasing parallelism axe often accompanied with
an increase in register pressure. Therefore their application in situations
where register pressure is already too high may result in the generation
of additional spill code. In this paper we present an integrated approach
to scheduling that enables the selective application of optimizations and
restructuring transformations by the scheduler when it determines their
application to be beneficial. The integration is necessary because infor-
mation that is used to determine the effects of optimizations and trans-
formations on the schedule is only available during instruction schedul-
ing. Our integrated scheduling approach is applicable to various types
of global scheduling techniques; in this paper we present an integrated
algorithm for scheduling superblocks.

1 I n t r o d u c t i o n

Compilers for multiple-issue architectures, such as superscalax and very long
instruction word (VLIW) architectures, axe typically divided into phases, with
code optimizations, scheduling and register allocation being the latter phases.
The importance of integrating these latter phases is growing with the recognition
that the quality of code produced for parallel systems can be greatly improved
through the sharing of information. Integration of register allocation and in-
struction scheduling has been recently studied by various researchers [1, 14, 13].
However, the integration of optimizations and transformations with schedulers
has not been fully addressed.

In the optimization phase, optimizations are applied to improve the quality of
code while restructuring transformations are applied to increase the instruction
level parallelism (ILP). Since optimizations and transformations may increase
the requirements for registers and functional units beyond the numbers sup-
ported by the architecture, their application may adversely affect the quality of
code generated.

* Partially supported by National Science Foundation PYI Award CCR-9157371 and
a grant from Intel Corporation to the University of Pittsburgh.

208

In the scheduling phase, both local and global techniques are used to ex-
ploit ILP. Global scheduling techniques uncover and exploit ILP across basic
blocks [5, 8, 6, 1]. The program is divided into scheduling units (such as traces,
superblocks, and control dependence regions) composed of a collection of basic
blocks. The scheduling units are processed one at a time by a scheduler and
are represented using directed acyclic graphs (DAG) to assist in the scheduling
process. ILP is uncovered by restructuring the code within a scheduling unit. If
enough parallelism is not found within the unit, code is propagated from adjacent
scheduling units. Code is moved across units using code duplication, speculative
execution [9], and predicated execution [7].

The separation of the optimization and scheduling phases is problematic in
that the applications of optimizations and transformations are performed with-
out knowing if the scheduler will be able to utilize their effects. For example,
DAG restructuring transformations can be applied to increase parallelism within
a superblock as well as reduce critical path length within a superblock. How-
ever, the optimizer cannot apply these transformations unless it is aware of the
superblocks that will be constructed during instruction scheduling. Thus, the
usefulness of these transformations cannot be known until scheduling actually
begins. Also, when a choice of restructuring opportunities is available, the sched-
uler has the best information to determine which choice would produce the best
schedule. Code that is moved by the scheduler can create opportunities for fur-
ther optimizations. For example, hoisting of partially redundant code can result
in fully redundant code. Such opportunities can only be exploited by integrating
the redundancy elimination optimization with instruction scheduling.

In this paper, we present an approach to scheduling with the goal of inte-
grating selected code transformations and optimizations into the scheduler. We
present simple guidelines that enable the identification of optimizations that
should be integrated with instruction scheduling and those that may be per-
formed prior to instruction scheduling. The decision to apply an optimization
or transformation duing scheduling is based upon information that is only avail-
able during instruction scheduling. Such information includes the effect of op-
timizations and transformations upon (1) the availability of registers, (2) the
availability of functional units, and (3) the schedulability of instructions in an
idle slot of a schedule in progress. The integrated approach utilizes measures
of the resources required, including both functional units and registers, that are
maintained and used by the scheduling algorithm. By reorganizing code within a
block in a manner that keeps register pressure in check, we attempt to minimize
the generation of spill code. Furthermore, resource utilization levels also guide
the selection of code statements for code motion between blocks.

The remainder of the paper is organized as follows. In section 2 we identify the
optimizations that should be integrated with instruction scheduling. In section
3 we briefly outline the relationship between resource requirements and global
code motion. In section 4 we present an integrated schedule driven algorithm
using superblocks [8].

209

2 Optimizations and Instruction Scheduling

While the integration of optimizations with instruction scheduling may improve
their effectiveness, it also increases the complexity of the instruction scheduling
algorithm. Therefore it is important to examine the interactions between various
optimizations and the instruction scheduler to identify the optimizations that
should be integrated. The optimizations that do not significantly interact with
the instruction scheduling may be applied in a separate optimization phase that
precedes scheduling.

Three main characteristics of optimizations that determine whether or not
an optimization should be integrated with the instruction scheduler are:

Opportunity: If all of the opportunities for applying an optimization can be
determined prior to scheduling, then the optimizations can be carried out in-
dependently of the scheduler. On the other hand, if scheduling actions create
additional opportunities for optimization, these opportunities can only be ex-
ploited by applying optimizations during scheduling.

Usefulness: If the optimization is always considered to be useful, it need
not be integrated. If the usefulness of an optimization requires information that
is typically available during instruction scheduling, such as the availability of
registers, then the optimization should be integrated with scheduling.

Reversabili~y: An optimization may be generally useful, but harmful in some
situations. Furthermore, the latter situations may only become apparent dur-
ing instruction scheduling. This type of optimization may be applied prior to
scheduling and selectively reversed during instruction scheduling if it is deter-
mined that the application of the optimization was indeed harmful and, in fact,
the optimization can be reversed.

According to the above criteria, there are a number of traditional optimiza-
tions that can be applied prior to instruction scheduling. The optimizations of
constant propagation, loop invariant code motion, induction variable elimination,
strength reduction, and dead code elimination can be applied prior to schedul-
ing. The opportunities for these optimizations are not created during scheduling,
they are generally useful, and their reversal is not required. Copy propagation
can also be applied prior to scheduling. However, in some situations creation of
copies may facilitate code reordering. In these situations copy creation can be
carried out during scheduling. Partial dead code is another optimization which
is useful in most situations and therefore can be performed prior to scheduling.
In some situations it may be beneficial to reverse this optimization. However,
this can be easily achieved by the scheduler through global code motion.

The above criteria also suggest that some optimizations should be integrated
with instruction scheduling. These include the redundancy elimination optimiza-
tion and DAG restructuring transformations. Opportunities of redundancy elim-
ination can be created by code motion, its usefulness cannot be fully estimated
prior to scheduling due to its influence on register pressure, and it cannot al-
ways be reversed during scheduling. The usefulness of DAG restructuring cannot
always be determined prior to scheduling. In the remainder of this section we
discuss the integration of above optimizations with instruction scheduling.

210

2.1 Redundancy Elimination

The scope over which the redundancy elimination optimization is applied is
important in determining its integration with instruction scheduling. The appli-
cation of this optimization to individual basic blocks can be applied prior to in-
struction scheduling because the effect of local optimization on register pressure
is expected to be minimal. In rare situations where the effect is significant, local
optimization can be easily reversed during instruction scheduling using remate-
rialization. On the other hand, global redundancy elimination can significantly
increase register pressure. Furthermore, in general, the reversal of this optimiza-
tion during scheduling is not possible due to code that is already scheduled.
Finally opportunities for redundancy elimination may be created due to code
motion performed during instruction scheduling. Therefore global redundancy
elimination should be integrated with instruction scheduling.

Let us consider instruction scheduling based upon superblocks. Elimination
of global redundancy within a superblock can be performed immediately pre-
ceding its scheduling. This redundancy may arise due to multiple evaluations of
an expression within the superblock or due to the availability of an expression
at the entry of the superblock. The former opportunities can be exploited in
much the same way as local redundancy elimination. The exploitation of latter
opportunities increases the register pressure for other parts of the program and
also may require the introduction of copy statements to save the value of the
expression in a specific location. However, if the superblocks processed earlier
are more important than those processed later, then the application of redun-
dancy elimination improves the quality of code for the current superblock at the
expense of the quality of code for superblocks processed later.

The application of redundancy elimination to a superblock requires the com-
putation of available expressions at the entry point of the superblock. Since new
available expressions may be generated during code motion performed by the
instruction scheduler, the expressions available at the entry to the superblock
currently being scheduled must be computed immediately preceding the opti-
mization of the superblock. Only the expressions computed inside the superblock
prior to the redefinition of variables used in the expressions can be potentially
optimized. Given such an expression, the demand driven algorithm presented in
Figure 1 determines whether or not the expression is available at the superblock's
entry.

Starting from the entry of the superblock, the algorithm searches backwards
through the flow graph of a predecessor superblock for the evaluations of the
expression. If such evaluations are found, a temporary variable T is created
into which the value of the expression is copied so that it is available at the
entry of the superblock in T. It should be noted that during the search for an
expression, parts of the program that have already been scheduled may also be
encountered. Since scheduled parts correspond to more important superblocks,
we should not introduce a copy instruction within the schedule since it would
increase the schedule's length. Instead we ensure that an expression evaluated
in a scheduled superblock is only considered available at one of its exits if the

211

value of the expression is available in a register at the exit.
Our algorithm maintains a worklist that contains points in the program at

which availability of the expression is required to ensure that the expression is
available at the superblock's entry. Each member of the worklist is a query of
the form (n, regs) indicating that we need to determine Whether the expression
is available at n's exit. The set regs is used during traversal through scheduled
portions of the code to track the identities of registers whose current values
are available at a superblock exit. Thus, if the expression being searched for is
computed into one of the registers in regs , then it will be available at the exit.
On the other hand, if the scheduled code computes the expression into registers
tha t are overwritten prior to exiting the superblock, then the expression is not
available. If the algorithm finds available evaluations of the expressions along all
paths, the worklist becomes empty and the search terminates. The introduction
of copies into T makes this value available at the superblock entry.

A v a i l a b l e (e x p, S B ~,,tr~)
W o r k l i s t = {(n, ~ s : n G Pred(SB~,tr~) and n is scheduled}

success = true;
while Work l i s t # empty and success do

get a query (m, regs),~p from Worklist;
i f m computes ezp t hen

i f (m is scheduled and it writes to a register R E regs) or (m is unscheduled)
t h e n Add m to expression evaluation set Eval end i f

elseif (m defines variables used in ezp) or (m is the dummy start node of cfg)
t he n success = false
e lse - propagate query

W o r k l i s t = Work l i s t
U{(p, ~)o~ : p ~ Fred(m) and p is unscheduled}
U{(p, regs - {R}),xp : p E Fred(m) , p and m are scheduled and m wri tes to R}
ui(p, ~ g ~ s) ~ : p ~ Fred(m), p is scheduled a .d m is u.scheduled}

end l f
endwhi le
i f success t hen

create a new temporary T;
for each ins t ruc t ion / s ta tement E Eval do

move value of expression from register/variable to T
endfor
return(T)

else return() end i f

Fig. 1. Demand Driven Determination of the Availability of expression exp at su-
perblock $ B~,~try.

From the above discussion it is clear that our algorithm exploits only those
opportunities that benefit superblocks scheduled earlier at expense of superblocks
scheduled later. Tha t is, the register pressure is only increased for superblocks
that are yet to be scheduled. Also, our approach allows the exploitation of new
opportunities for redundancy elimination that arise due to code motion per-
formed by the instruction scheduler.

212

In our discussion so far we have not considered the elimination of partial
redundancy elimination [10]. This is because the application of tail duplication
that is performed prior to superblock construction, converts partial redundancy
to full redundancy. On the other hand, if trace scheduling is being used, then
prior to scheduling a trace, we must also perform partial redundancy elimination
using a similar integrated technique.

2.2 DAG Restructuring Transformations
As in the case of redundancy elimination, the scope over which DAG restruc-
turing transformations are applied is relevant to their integration with instruc-
tion scheduling. The transformations of individual basic blocks can be carried
out prior to instruction scheduling since their application is typically beneficial.
However, the transformations over a larger scope, such as within a superblock
and across superblocks, cannot be applied prior to instruction scheduling. This
is due to two main reasons. First, the superblocks are identified during instruc-
tion scheduling. Only after one superblock is identified and scheduled is another
superblock constructed. This is because the scheduling of a superblock is fol-
lowed by introduction of compensation code which must be considered prior to
constructing future superblocks. Second, the application of DAG restructuring
transformations are typically accompanied with an increase in register and func-
tional unit requirements. Therefore the application of these transformations over
large segments of code, such as those that form a superblock, may significantly
increase register pressure and hence the potential for spill code generation. Thus,
this class of transformations, when performed over a scope larger than a basic
block, is best left for the instruction scheduler to perform.

During instruction scheduling, DAG restructuring transformations are used
in two types of situations. First, if a superblock contains insufficient parallelism,
then restructuring of a DAG can be performed to increase the amount of paral-
lelism within the block. Note that the transformation of a superblock may require
global code motion. Second, if restructuring of the DAG is not enough to create
sufficient parallelism in a superblock, then the DAGs of adjacent unscheduled
basic blocks can be restructured to facilitate the propagation of operations from
an adjacent basic block to the superblock with insufficient parallelism.

There are two types of transformations that we consider for DAG restructur-
ing. The first type of transformation, shown in Figure 2, exploits the presence
of constant operands to reduce the height of a DAG and increase ILP. The sec-
ond type of transformation, shown in Figure 3, exploits algebraic properties of
the operators to restructure the DAG. The situations under which the transfor-
mations are applicable and the conditions under which they are useful during
the restructuring of a DAG are also given in the figures. In the discussion of
these transformations we assume that the DAG corresponds to a Superblock.
Thus, it should be noted that the application of DAG restructuring transfor-
mations involves global code motion and thus may require the introduction of
compensation code. To emphasize this fact, we assume that the nodes in the
figures come from two different basic blocks which are indicated by shaded and

213

unshaded nodes. A change in the shading of a node indicates that the node has
been moved using global code motion.

Before Transformation After Transformation

sbj: y - z [+1-] cons~ sbj: y - Z [+[-] r 2

sbi: x - y [+l'] constl sal: x - z [+l'] const~[+l-] coastl

sbj: y - Z * const2 sbj: y - z * const 2

sbi: x - y * const 1 sai: x = z * const 2 * coast 1

m
a

C

(a) Forward Substitution.

I

Conditions for height reduction and increasing parallelism:

Upheight(sbi) > Upheight(sibling (sbi)) + 1

Downheight(sbj) > Downheight(sibling (sb |)) + 1

I Before Transformation

sbj: y - z [+l'l r

s ~ : x - y [+['l r

sbj: y - z * Const 2

sbl: x - y * const 1

Co) Operator Replacement

After TYansformation

~: x- z [+lq consh [+1-] r
saj: y - x [-[+l constl

sai: x = z * const a * const 1

saj: y = x div colL~t 1

Fig. 2. Exploiting Constant Operands.

Forward substitution in the presence of constant operands eliminates a data
dependency between operations (see Figure 2(a)). As can be seen in the Fig-
ure 2(a), whenever a dependency exists between two nodes that have constant
operands and have no other dependencies, height reduction and increased paral-
lelism always occurs when we eliminate the dependency through forward substi-
tution. Therefore, there are no conditions needed for applying this transforma-
tion. Before the application of the transformations the two nodes are in different
basic blocks. However, after the transformation, they belong to the same basic
block.

We can sometimes apply a transformation to reduce the height and increase
parallelism even when there are other dependencies involved in expressions with
constant operands. Operator replacement is the transformation used to reorder
a pair of data dependent operations, enabling height reduction and parallelism
under certain conditions. In Figure 2(b) a node sibling(sb,) is dependent on sbj,
and sbi depends on sibling(sbj) (e.g., output dependency). In order to create
more parallelism, we ideally would like to have the bottom node and sibling
of sbj, which have no dependencies, execute in parallel. Since one of sbi's de-
pendencies would have then been computed, by using the operator replacement
transformation, we can compute sbi before sbj. We then compute sbj and its de-

214

pendent node. This transformation enables the bottom part of the DAG and the
top part of the DAG to execute in parallel with the computation of the depen-
dent section. However, in order for this transformation to be beneficial, we must
ensure that the transformed path that computes sbi and sbj does not increase
such that it takes longer to execute than the bottom part of the DAG or the
top part of the DAG. Thus conditions are given to ensure that the height of the
DAG from sbi to the top (Upheight(sbi)) is greater by more than one than the
height of the sibling of sbi to the top of the DAG. It is this portion of the graph
that would execute in parallel with the top part of the DAG. A similar check is
needed for the bottom of the DAG, using the function Downheight(sbj) since
the sbj and the sibling sbj would execute in parallel with the bottom part of the
DAG. The shading of nodes indicates that the application of this transformation
requires global code motion.

I
Condition for height reduction: [

I Downhdght(b) > Downheight(c) + 1

Before Tran~ormation After Transformation
(a opl b) oP2 c (a oP2 c) opl b

(a [+1"] b) [+1-] c (a [+1-] c)[+1-] b

(a * b) * c (a ' c) * b

(a div b) dlv e (a dlv r b

Condition for height reduction: [

I Downheight(a) > Downheight(c) + 1

J Before Trans formation After Transformation
(a oPl b) oP2 r a op4 Co op 3 r

(8 + b) + C

(a - b) - e

(a - b) + r

(a + b) - e
(a * b) * c

(a div b) div e

a +Co + c)
a - (b + e)

a - (b - c)

a + Co- c)

a * Co* c)

a div (b* c)

Fig. 3. Exploiting Algebraic Properties of Operators.

In expressions that do not necessarily involve constant operands, we may
be able to exploit the algebraic properties of associativity and commutativi~y of
operators to perform restructing of a DAG to reduce its height, enabling more
parallelism. The general idea is to reduce the height of a DAG by shortening a
path in the DAG that is longer than other paths. By using appropriate conditions
on the length of paths involved, transformations will reduce the height of a
DAG by reducing the length of a longer path in the DAG and lengthening a
shorter path in the DAG. Consider the DAGs and two transformations shown
in Figure 3. The first transformation handles the case where the length of the
path from the bottom of the DAG to b is longer that the length of the path from

215

the bottom to c. The transformation is to swap the subDAGs of b and c, using
commutativity and associativity properties of operators. This transformation is
applied when the height of the subDAG rooted at b is at least one greater than
the height of the subDAG rooted at c. The transformation shortens the overall
height of the DAG by one. As in the case of earlier DAG transformations, this
transformation may also require global code motion.

a = x*y b=x+ l ~ - -- ~ a= x*y b - x + l

c= a+ l V///r/////,~ ~ ~ ~ c= a+ l tl =a+b

(b) DAG Rmtructuring Enabledby (r ElimlnatingIdleSIotby
Associalivity and Communtativity. Enabling Code Motion.

~ ~

/

(a) Idle Slot in the Schedule.

Fig. 4. Enabling Global Code Motion by DAG Restructuring.

Consider the other case where the longest path is rooted at a. The second
transformation shown in the figure handles this case. If the height of the subDAG
rooted at a is longer (by more than one) than that of the subDAG rooted at c,
we can decrease the overall height of the DAG by interchanging the subDAG at
a with the subDAG at c. This transformation is accomplished using associativity
of the operators, as shown in the table. As was true in the previous case, the
height of the DAG is reduced by one. Thus, we can repeatedly apply these
transformations, reducing the height of the DAG by one as long as the conditions
continue to exist.

Let us now consider the situation in which the scheduler is unable to find
sufficient parallelism to completely fill a long instruction with operations even
after DAG restructuring transformations have been applied to the superblock.
Thus, we must examine unscheduled adjacent blocks for operations that can be
moved to the current block being scheduled. Even if we are successful in finding
operations that can be propagated, the propagation of operations may not always
be useful. It is only beneficial to propagate operations that are immediately
schedulable. However, if such operations are not immediately apparent in an
unscheduled adjacent block, then we may be able to expose such operations by
restructuring the DAG of the adjacent block. If the unscheduled adjacent block
is a successor (predecessor) of the block with insufficient parallelism, then the
leaves (roots) of the adjacent block must be considered for transformation.

The scheduled block in Figure 4(a) contains an idle slot and Figure 4(b) rep-
resents the portion of the DAG for an unscheduled adjacent block. We would
like to propagate operations from that DAG to the scheduled block to eliminate
the idle slot. The values of a, b and c are computed in the scheduled block and
used by the adjacent block. Since the operation that computes the value of c

216

has not been scheduled prior to the instruction with the idle slot, the statement
t l = a + c cannot be propagated and scheduled in the position of the idle slot.
On the other hand since the values of a and b have already been computed, we
can restructure the DAG as shown in Figure 4(b) and propagate the operation
t l = a + b to the position of the idle slot. Thus, depending upon the availability
of operand values we may choose between the equivalent DAGs shown in Fig-
ure 4(b). As we can see from this situation, the appropriate DAG can only be
selected by the scheduler.

Another example in Figure 5(a) shows a schedule with two idle slots. These
idle slots may be created due to a long latency of the multiplication operator.
As shown in Figure 5(b) one of the idle slots can be eliminated by propagating a
statement from the adjacent block. However, if the DAG for the adjacent block
is restructured using forward substitution, then both idle slots can be eliminated
(see Figure 5(c)).

x - x * y y ~ x * z x = x * y y = x * z x = x * y y = x * z

if x< 10 y = y + l f f x < 1 0 y = y + l] if x < 1 0 y = y + l

(a) Idle Slots in the Schedul~ (b) Eliminating One Idle Slot (c) Eliminating Both Idle Slots
using Global Code Motion. following nAG Restructuring.

Fig. 5. Increasing Global Code Motion by Exposing Parallelism.

3 Resource Requirements and Global Code Motion
The scheduling of operations is driven by the requirement levels of resources,
which includes both functional units and registers. We have developed a resource
conscious scheduling technique that integrates register allocation and scheduling.
The technique consists of identifying sections of a program that underutilize
registers and functional units and sections that require more of these resources
than are available. The scheduler is guided by the resource requirements at each
point in the block being scheduled and the critical paths through the block.
The scheduler tries to move code from the overutilized sections to underutilized
sections. The technique first measures the requirements of resources at each
program point. This information is then used by the scheduler to determine
where code motion should occur, taking into account the resource requirements
of both resources simultaneously [1].

To measure the resource requirements, we first create a special type of DAG
for each resource that reflects the resource requirements for the code in a block.
For each resource, the precedence and usage information in a block is used to
construct a partial ordering of the operations indicating which pairs of operations
temporally share a single instance of the resource under any Mlowable schedule.
Details of computing usage information for registers is described elsewhere [2].
For each resource R, a ReuseR DAG is constructed to represent the partial

217

order. Sets of operations in the ReuseR DAG that are fully ordered are called
allocation chains, since by definition of the partial order, they can all safely be
allocated a single instance of R. The maximum number of resources required to
exploit all exposed parallelism is given by the minimum number of allocation
chains that cover the ReuseR DAG.

The technique requires identification of the following sets:
Excessive sets: A block may have areas where the ILP exceeds the resources

provided by the architecture. We call sets of operations that can execute in par-
allel and would require too many resources excessive sets. While the number of
allocation chains covering a schedulable block indicates if there are any exces-
sive sets, it is desirable to know exactly which operations are in excessive sets.
Excessive sets are computed by finding the sections of the schedulable block
where there are portions of an excessive number of allocation chains, which is
performed in graph linear time [2].

Cri t ical sets: A critical set of length L is the minimal set of operations that
must be propagated out of a schedulable block to reduce that block's critical
path length by L cycles.

The goal of global scheduling is to move operations from a source block to
a destination block to decrease the program's execution time. A decrease in
execution time is achieved when the critical path length is reduced in the source
block while the critical path length of the destination block is not increased. Thus
it is desirable that operations should be moved in groups, where each group is
a critical set. In addition, the operations should not be moved into or create
excessive sets.

As an example, consider the block of code shown in Figure 6(a), which uses
only integer functional units and registers. Since a single type of functional unit
is used, the ReUSeFV DAG is the same as the program DAG. The partial sched-
ule for functional units is shown in Figure 6(b). Each column represents one
allocation chain, so three functional units are required to exploit all exposed
ILP. Similarly, a Reusen~a DAG and partial schedule can be constructed for
registers by considering their usage characteristics.

Assume that the architecture has two functional units available. Then the
sets {C, D, E}, {C, D, G}, and {C, F, G} are all functional unit excessive sets.
For scheduling, only a summary set of all nodes that are in at least one excessive
set for a resource is needed, and can be computed in graph linear time. The
summary excessive set for functional units is {C, D, E, F, 6}. Now assume
that global code motion is being performed on the DAG in Figure 6(a) to move
operations from the top of the block to some other location. The first critical
set is {B}, as that will reduce the height of the block by one operation. Now
operations C, D, and E can be moved. However, moving C at this time will not
affect the block's height, so the next criticM set is {D, E}.

Consider the construction of a final schedule for the DAG in Figure 6(a). C is
in an excessive set but there are no idle slots in the other two allocation chains.
That is, the scheduling of C would require an increase in the execution time of
the block. However ~. is a candidate for the forward substitution transformation

218

� 9

C=2 * b

b=a + I

d=a / b

f=d + e

h=c + f

j=h * i

e=b - 4

g=b * e

i=f - g

(a) ReuseFv DAG. (b) Functional
Schedule.

b=a + 1

d=a / b

f=d + �9

h=c + f

j=h * i

Unit Partial

e = a - 3

' c = 2 * b

g=b * e

i=f - g

(c) Post ReuseFv DAG. (d) Functional Unit Final
Schedule.

Fig. 6. Reuse DAGs and Schedules.

discussed in Section 2.2. After performing the transformation, B and E can be
scheduled in parallel, as shown in Figure 6(c). Application of the transformation
allows C to be scheduled in the slot previously used by E, eliminating all excessive
sets. The transformation also enables E to be moved out of the region by global
code motion, decreasing the critical path length of the region by one instruction.

This scheduling technique is integrated with optimizations and transforma-
tions (including using a common DAG) to produce our final scheduler. The
algorithm for this scheduler is given in the next section.

4 A n I n t e g r a t e d S u p e r b l o c k S c h e d u l i n g A l g o r i t h m

In this section we present a scheduling algorithm for superblocks that integrates
the optimizations and restructuring transformations described in the previous
sections with the resource conscious scheduling algorithm of the preceding sec-
tion. A superblock is a loop free sequence of basic blocks which has a single entry
point and possibly multiple exit points. Thus, a superblock can pass through sev-
eral splits in the control flow graph but it cannot include a join in the flow graph.
In order to create large superblocks our algorithm first carries out tail duplica-
tion which duplicates code following a join in the flow graph. Superblocks are
constructed one at a time using profiling information and scheduled using the
integrated scheduling and optimization algorithm.

Using the available expression information, a superblock is examined for re-
dundancy elimination prior to scheduling. The DAG for the superblock is con-
structed, and using the analysis summarized in the previous section, the register

219

and functional unit requirements, the excessive sets, and critical sets in the su-
perblock are identified. We then perform DAG restructuring transformations to
increase parallelism, if so required, and reduce the critical path length.

During the scheduling of a given superblock, the set of operations ready
for scheduling are repeatedly identified and packed into long instructions of a
VLIW machine. At any given point during scheduling AvailFUs and AvailRegs
denote the number of functional units and registers that are not in use and are
therefore available for use by the operations that will be packed into the next long
instruction. Let Ready denote the set of operations that are ready for scheduling.
There are two possibilities at this point. Either the Ready set is large enough and
therefore provides enough parallelism to keep all functional units busy during
the next instruction or there is insufficient parallelism at this point. In the former
case a subset of operations from the Ready set is selected for scheduling while in
the latter case we must find additional parallelism by moving operations from as
yet unscheduled superblocks that are adjacent to the current superblock. Thus,
our algorithm not only performs code reordering within a superblock but it also
performs code motion between superblocks.

Let us consider the situation in which the Ready set provides sufficient or
excessive parallelism. The selection of operations for scheduling is based upon
several criteria. First, we should give preference to operations which belong to
a critical path in the superblock. Second, we should also keep register pressure
in check so that scheduling of operations can continue unhindered through the
rest of the superblock. By keeping a balance between operations requiring new
registers and operations freeing up registers we attempt to keep register pressure
below a preset threshold. An operation frees a register if it represents the last use
of the register's value. If enough operations that free registers are not available we
may also consider generating spill code. If a register contains a value that is not
used for the remainder of the superblock, we can consider spilling the value into
memory. Therefore, the operations scheduled in the current long instruction may
contain operations from the Ready set and some additional spill code (Spill).

If the Ready set provides insufficient parallelism for filling the next long
instruction we proceed as follows. We examine basic blocks that are as yet un-
scheduled and are adjacent to the superblock being currently scheduled. Opera-
tions from these adjacent blocks are moved into the current block to increase the
number of operations available for scheduling. Our goal during the propagation
of operations is not only to create sufficient parallelism in the current superblock
but also to increase the potential of obtaining shorter schedules for the adjacent
block being considered. If the adjacent block contains excessive functional unit
sets, then we should propagate operations from these sets. On the other hand,
if the adjacent block contains insufficient parallelism, then we must attempt to
propagate operations from critical sets in order to reduce the critical path length
of the adjacent block. Finally, if the operations that can be found for propaga-
tion cannot be immediately scheduled in the current block, then we apply DAG
restructuring transformations to expose operations for propagation that can be
immediately scheduled in the current block. Thus, in this situation operations

220

In t egra t edSchedul lngO {
Perform tail duplication to create larger superblocks.
Apply all of the scheduling-independent optimizations.
Compute available expressions information.
while unscheduled code remains do

Construct the next superblock, SB, using profile information.
Compute available expression information for SB.
Eliminate fully redundant expressions within SB including

those that may be created by duplication of partially redundant expressions.
Compute resource usage, excessive sets, and critical sets for SB.
Initialize AvailFUs and AvailRegs by examining usage of resources

at the end of each already scheduled superblock whose execution
immediately precedes the execution of SB.

Apply DAG restructuring transformations to SB for
increasing parallelism, if required, and reducing critical path length.

while operations in SB remain unscheduled do
Ready ~- { I: operation I is ready to be scheduled }
i f [Ready >_ AvailFUs I t hen

Identify operations for scheduling Select C Ready using following criteria:
�9 Reduce critical path length: give preference to operations

that are a part of a critical path in the superblock.
�9 Control register pressure and spilling: balance selection of operations

requiring additional registers with operations that free registers and
spill registers if register pressure is too high.

Let Sehed = Select U Spill be the set of operations scheduled.
else -[Ready < AvailFUs I

Propagate set of operations Prop from unscheduled basic blocks
adjacent to SB using the following criteria:
�9 Redistribute excessive 1LP: Move operations from

an adjacent block that belong to functional unit excessive sets.
�9 Reduce critical path length: Move operations that axe in a critical set

of an adjacent block to reduce critical path length for the adjacent block.
�9 Transform and propagate: Apply DA G restructuring transformations to

an adjacent block to enable propagation of operations.
Let Sched = Ready U Prop be the set of operations scheduled.

end i f
Mark operations in Sched as scheduled.
Update AvailFUs and AvailRegs.

endwhi le
endwhi le

}

Fig. 7. An Integrated Scheduling Algorithm.

221

from the Ready set and also operations that are propagated from neighboring
blocks (Prop) are scheduled in the current long instruction. The steps of the
algorithm are summarized in Figure 7.

We presented an algorithm using the integrated approach for scheduling su-
perblocks. However, this technique is also applicable to other global scheduling
techniques such as those based upon control dependence regions.

The research most closely related to our work is the mutat ion scheduling
technique proposed by Novack and Nicolau [12] which integrates a number of
DAG transformations into the instruction scheduler. In most architectures cer-
tain functions can be performed through a number of alternative instruction
sequences. Mutation scheduling selects the appropriate alternative based upon
availability of resources. DAG transformations which exploit constant operands
are also used. In other related work Ebcioglu et al. and Chang et al. consider
the removal of partially dead code during instruction scheduling [4, 3].

References
1. D. Berson, R. Gupta and M.L. Sofia, "Resource Spackling: A framework for inte-

grating register allocation in local and global schedulers," In Proc. of Intl. Con]. on
Parallel Architectures and Compilation Techniques, pages 135-146, 1994.

2. D. Berson, R. Gupta and M.L. Sofia, "GURRR: A global unified resource require-
ments representation," In ACM SIGPLAN Workshop on Intermediate Representa-
tions, Sigplan Notices, vol. 30, pages 23-34, April 1995.

3. P.P. Chang, S.A. Mahlke, and W-M. Hwu, "Using profile information to assist classic
code optimizations," SoJtware.Practice and Experience, 21(12):1301-1321, Dec. 1991.

4. K. Ebcioglu, R.D. Groves, K-C. Kim, G. Silberman, and I. Ziv, "VLIW compila-
tion techniques in a superscalar environment," In Proc. of Sigplan Conf. on Prog.
Language Design and Implementation, pages 36-48, 1994.

5. J.A. Fisher, "Trace scheduling: a technique for global microcode compaction," IEEE
Trans. on Computers, C-30(7):478-490, 1981.

6. R. Gupta and M.L. Sofia, "Region scheduling: an approach for detecting and redis-
tributing parallelism," IEEE Trans. on Software Engineering, 16(4):421-431, 1990.

7. P. Hsu and E. Davidson, "Highly concurrent scalar processing," In Proc. o] 13th
Annual International Symposium on Computer Architecture, pages 386-395, 1986.

8. W-M. Hwu et al., "The superblock: an effective technique for VLIW and superscalar
compilation," In The Journal of Supercomputing vol. A, pages 229-248, 1993.

9. W-M. Hwu and Y. Part, "Checkpoint repair for out-of-order execution machines,"
In Proc. o] 14th Annual Intl. Syrup. on Comp. Architecture, pages 18-26, 1987.

10. J. Knoop, O. Ruthing and B. Steffen, "Optimal code motion: theory and practice,"
In ACM Trans. on Programming Languages and Systems, 16(4):1117-1155, 1994.

11. J. Knoop, O. Ruthing, B. Steffen, "Partial dead code elimination," In Proc. o]
Sigplan Conf. on Prog. Language Design and Implementation, pages 147-158, 1994.

12. S. Novack and A. Nicolan, "Mutation scheduling: a unified approach to compiling
for fine-grain parallelism," Proc. Languages and Compilers for Parallel Computing,
LNCS 892, 1994.

13. C. Norris and L. Pollock, "A scheduler-sensitive global register allocator," In Proc.
of Supercomputing, pages 804-813, 1993.

14. S. Pinter, "Register allocation with instruction scheduling: a new approach," In
Proc. o] Sigplan Con]. on Prog. Lang. Design and Impl., pages 248-257, 1993.

