
Interprocedural Conditional Branch Elimination+ 

Rastislav Bodik Rajiv Gupta Mary Lou Soffa 

Dept. of Computer Science 
University of Pittsburgh 

Pittsburgh, PA 15260 
{bodik,gupta,soffa)Ocs.pitt.edu 

Abstract 

The existence of statically detectable correlation among con- 
ditional branches enables their elimination, an optimization 
that has a number of benefits. This paper presents tech- 

niques to determine whether an interprocedural execution 
path leading to a conditional branch exists along which the 
branch outcome is known at compile time, and then to elim- 
inate the branch along this path through code restructuring. 
The technique consists of a demand driven interprocedural 
analysis that determines whether a specific branch outcome 
is correlated with prior statements or branch outcomes. The 
optimization is performed using a code restructuring algo- 
rithm that replicates code to separate out the paths with 
correlation. When the correlated path is affected by a pro- 
cedure call, the restructuring is based on procedure entry 
splitting and esit splitting. The entry splitting transforma- 
tion creates multiple entries to a procedure, and the ezit 
splitting transformation allows a procedure to return control 
to one of several return points in the caller. Our technique is 
efficient in that the correlation detection is demand driven, 
thus avoiding exhaustive analysis of the entire program, and 
the restructuring never increases the number of operations 
along a path through an inter-procedural control flow graph. 
We describe the benefits of our inter-procedural branch ehm- 
ination optimization (ICBE). Our experimental results show 
that, for the same amount of code growth, the estimated re- 
duction in executed conditional branches is about 2.5 times 
higher with the ICBE optimization than when only intrapro- 

cedural conditional branch elimination is applied. 

Keywords: inter-procedural data flow analysis, conditional 
branch correlation, path-sensitive optimization, optimiza- 
tion of object-oriented languages. 

1 Introduction 

Recent research in branch prediction [16, 24, 251, profiling 
[3], and the elimination of conditional branches [19] has re- 
ported the existence of significant amounts of correlation 
among conditional branches, presenting opportunities for 
optimizations. A conditional branch has static correlation 
along a path if its outcome can be determined along the path 
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at compile time from prior statements or branch outcomes. 
Such a conditional branch is redundant along the correlated 
path and can be eliminated by code restructuring. Elimina- 
tion of conditional branches has a number of benefits, which 
are discussed in Section 6, including 

l enhancing instruction scheduling and software pipelin- 
iw, 

l improving speculative execution and hardware branch 
prediction, and 

l optimizing C++/Java virtual functions. 

Previous work on conditional branch elimination through 
static correlation [19] demonstrated substantial performance 
improvements despite its restricted focus on eliminating con- 
ditionals within loops. Experimentally, we show that sub- 
stantia.Uy more static correlation is detected at compile time 
when programs are analyzed interprocedurally. Using pro- 
grams from the SPEC95 suite, we discovered that interpro- 
cedural detection of correlation enables elimination of 3% to 

18% of executed conditionals, which is a factor of about 2.5 
improvement over strictly intraprocedural analysis. As il- 
lustrated below, this high correlation among branches when 
procedures are considered is due to the modular fashion in 
which we write procedures: 

l In a procedure, the value returned is often selected by 
an if-statement. This value may again be checked by 
the caller. For example, consider a call to a procedure 
that removes an element from a linked list. The proce- 
dure tests whether the list is empty and, if so, returns 
nil. The caller performs an identical test on the return 
value to determine if nil was returned. The later test 
is fully correlated with the earlier one. 

l In order to keep the procedure interface simple by 
passing few arguments, procedures frequently include 
checks on the parameters that are also performed by 
the caller or even by previous calls to the same proce- 
dure. For example, procedures from the same library 
module may be called one after another, propagat- 
ing values. These procedures often perform correlated 
tests on the propagated values. With our optimiza- 
tion, the repeated testing can be eliminated. 

Conditional branch elimination is a form of partial re 
dundancy elimination (PRE). However, the code motion 
techniques useful for PRE of assignments [14, 51 do not suf- 
fice for removing conditional branches. To eliminate a condi- 
tional, the control flow graph must be restructured in order 
to separate the correlated path from the rest of the paths 
[19]. After code replication isolates the correlated path, the 
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conditional on this path becomes fully redundant and can be 
removed. Procedures are traditionally viewed as inherently 
single-entry/single-exit regions of code which means that all 
paths through the procedure must pass through the unique 
entry and exit points. To exploit interprocedural opportuni- 
ties for conditional branch elimination, the correlated paths 
crossing procedure entry/exit must be isolated by splitting 
procedure entry/exit nodes. 

In this paper, we present a new optimization, lnter- 
procedural Conditional Branch Elimination (ICBE). The 
optimization consists of a demand-driven interprocedural 
static correlation analysis and a code restructuring algo- 
rithm that uses the detected correlation to eliminate con- 
ditional branches. We implemented the optimization and 
experimentally investigated the amount of inter-procedural 
correlation detected and the benefits and costs of conditional 
branch elimination. 

Demand-driven interprocedural correlation analysis. 
Using the demand-driven data flow framework for distributed 
data flow problems [9], we developed a demand-driven cor- 
relation detection analysis algorithm. The analysis is in- 
ter-procedural and thus considers correlated paths spanning 
procedural boundaries, as welI as correlations that occur 
within the same procedure. In the analysis phase, given a 
conditional branch, a query propagation search is performed 
to find assertions on program variables that indicate the cor- 
relation along paths leading to the conditional. The exhaus- 
tive approach to analysis would naively determine at each 
node all existing assertions on program variables (including 
irrelevant ones), resulting in exponential worst-case analysis 
time. Because our analysis is restricted to discovering use- 
ful assertions on relevant variables, we are able to achieve 
polynomial analysis time. If correlation is found along some 
path, code restructuring by path duplication is required to 
eliminate the conditional. Our analysis determines the up- 
per bound on the amount of code duplication required to 
eliminate the conditional. If profile information is available, 
our analysis also provides an estimate of the reduction in the 
execution frequency of the conditional. The above measures 
can be used to guide the optimizer in making a decision on 
whether and how to transform the program to eliminate the 
conditional. 

Interprocedural restructuring. The correlated condi- 
tional is eliminated by path duplication, which separates 
paths with correlation from those where correlation was not 
detected. Two approaches to inter-procedural elimination of 
branches can be used. The first is to inline procedures in- 
volved in the correlation and duplicate paths strictly within 
a procedure. We present an alternative approach that incurs 
less code growth than inlining because only paths with cor- 
relation are duplicated. Another advantage of our algorithm 
is that it enables optimizations of call sites where inlining 
is not possible [2]. The algorithm is based upon procedure 
entry splitting and exit splitting. The entry splitting trans- 
formation creates multiple entries to a procedure through 
which the procedure can be entered from different call sites. 
The exit splitting transformation allows a procedure to re- 
turn control to one of several return points in the caller in- 
stead of always returning control to the call site. Intuitively, 
entry splitting enables the elimination of inter-procedurally 
redundant code in the callee, and exit splitting enables elim- 
ination in the caller. Our restructuring algorithm restruc- 
tures a control flow graph such that the number of opera- 
tions in the control flow graph does not increase along any 

path. After exit splitting, additional return addresses may 
need to be passed during a procedure call. Within the scope 
of a procedure, our restructuring algorithm is similar to that 
of Mueller and Whalley [19], except that our restructuring 
techniques takes advantage of correlation that spans nested 
loops. Our algorithm is able to create two versions of a loop, 
one for each known outcome of the conditional, enabling the 
elimination of the conditional in each loop version. 

Experimental evaluation. Our measurements performed 
on a set of application programs provide insight into the in- 
ter-procedural correlation that can be detected statically and 
its usability for compiler optimizations. We found that not 
only the number of conditionals with some correlated paths 
greatly increases with inter-procedural analysis, but also the 
effect of branch elimination is more significant because many 
short, frequently taken inter-procedural correlated paths ex- 
ist. Since some correlated branches may need long analysis 
times to detect the correlation and also require extensive 
code replication, we developed and evaluated simple heuris- 
tics that control the extent of the analysis and the amount of 
code growth due to ICBE. We show that for the same code 
growth, ICBE removes significantly more executed condi- 
tional branches than what is possible with the intraproce- 
dural conditional branch elimination optimization. 

lntraprocedural elimination of conditional branches in 
loops was developed by Mueller and Whalley [19]. We ex- 
tend their technique in several respects. First, we can detect 
and eliminate partial redundancy of branches in loop nests 
and across procedure boundaries. Second, even in the scope 
of a single procedure, our approach is more powerful because 
we can detect redundancy that is apparent by examining 
multiple basic blocks along a path, as opposed to a redun- 
dancy due to a single basic block detected in their analysis. 
In addition, in our technique, the analysis cost and the code 
growth incurred due to program restructuring can be con- 
trolled. Mueller and Whalley [18] also investigated avoiding 
unconditional jumps by code replication. Krall [16] devel- 
oped code replication techniques to improve the accuracy 
of semi-static branch prediction to the accuracy of dynamic 
prediction. 

This paper is organized as follows. The next section 
presents an example to motivate the technique and gives 
the overview of ICBE. Section 3 presents the algorithms 
and Section 4 presents our experimental results. Section 5 
highlights the benefits of ICBE. 

2 An Example and Overview 

We illustrate ICBE on a small application program that 
usea the stdio GNU C library (gIibcl.99). The program is 
shown in Figure l(a). Function MAIN first opens a text file 
by a call to fopen and then iterates through each character 
in the file until EOF is reached. The characters are obtained 
by a call to fgetc, which returns a character from a buffer 
that is filled by calling fillbuf. 

First consider applying ICBE to optimize the conditional 
PO in MAIN. Since EOF equals -1, our demand driven analy- 
sis algorithm raises the query (c = -1) at PO and propagates 
it backwards into function fgetc where the analysis quickIy 
terminates at nodes a, b, and c with answers TRUE, UNDEF, 
and FALSE, respectively. The TRUE result at a means that 
along the path from node a to PO, the outcome of PO is true. 
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(a) The source program. 

(b) After optimization of PO. 

(c) Elimination of Pl, P2, P3; exit splitting on Rllbuf. 

Figure 1: The example program using the GNU C library. 

Figure 2: h&ring of optimized fgetc. 

Thus, PO is statically correlated along the path from a to PO. 
Node c fetches from the buffer an unsigned character with a 
non-negative value which resolves the query to FALSE indi- 
cating that the outcome of PO is false. Thus, PO is statically 
correlated along the path from node c to PO. Assuming for 
now that the code of function fillbuf is unavailable and noth- 
ing is known about its return value, the query must resolve 
to UNDEF at the call site node b, meaning that the behavior 
of PO cannot be determined along the path from node b to 
PO and thus it is not statically correlated along this path. 
From the analysis, the conditional PO is redundant along two 
out of three paths reaching it. Our optimization algorithm 
restructures the program by exit splitting to separate the 
paths from node a to PO and from node c to PO. After the 
transformation, the conditional PO is bypassed each time, 
except when the buffer is refilled at node b (see Figure l(b)). 
Exit splitting is implemented by passing additional return 
addresses to the callee. 

Next, we optimize conditionals Pl, P2, and P3 in func- 
tion fgetc. The individual queries raised at these condi- 
tionals are all resolved in function fopen where the analysis 
reveals that either fp = NULL or fp # NULL A fp->magic = 
IOMAGIC holds. In either case, all three conditionals are 
fully redundant (that is, they can be eliminated along all 
paths). Our optimizer splits the exit of fopen and the entry 
of fgetc to bypass these conditionals. The result is shown in 
Figure l(c). The statements in fgetc that are reachable only 
from its original entry can be deleted if no other call site of 
this entry exists. 

When the code of fillbuf is available, propagation of the 
query raised at PO does not terminate at its call site but 
detects that fillbuf either returns EOF or an unsigned value, 
resolving the query to TRUE and FALSE, respectively. The 
resulting exit splitting of fill buf enables the complete elimi- 
nation of conditional PO, shown in Figure l(c). 

In the original loop, during each loop iteration five con- 
ditional branches are executed. After the optimization, only 
one conditional remains. This optimization cannot be car- 
ried out by intraprocedural branch elimination [19]. The 
overhead of the optimization is passing two return addresses 
to fgetc. However, the additional instructions related to ar- 
gument passing can be freely scheduled ahead of the proce- 
dure call because they have no incoming data dependencies. 
Furthermore, the code size of procedure fgetc is reduced 

148 



callsnedp procedure P allomer~lsiteofP 

Figure 3: Interprocedural CFG in call site normal form. 

which enables its inlining into MAIN, where the resulting 
loop can be efficiently pipelined (see Figure 2). We discuss 
the use of inlining further in Section 5. 

3 The ICBE Optimization 

For each conditional branch considered, the ICBE optimiza- 
tion performs analysis followed by restructuring. First, the 
conditional is analyzed to detect correlated paths and to 
determine the amount of code duplication required to elimi- 
nate the conditional. If correlation is found and the demands 
on code growth are acceptable, the program is restructured 
to create paths along which the conditional and instructions 
that compute its predicate condition are eliminated. The 
analysis and restructuring algorithms are explained in the 
following subsections. 

The interprocedural control flow graph (ICFG) used in 
the algorithm is a graph that combines CFGs of all program 
procedures by connecting procedure entries and exits with 
their calf sites as depicted in Figure 3. All edges in the fig- 
ure define the predecessor-successor relation for nodes. Each 
procedure can have multiple procedure entry nodes and mul- 
tiple procedure ezit nodes. The successors of a call site node 
are the procedure entry node and the associated call site 
exit nodes. The analysis algorithm requires the ICFG to be 
in the norm41 call site form, where a) each call site node 
has a single procedure entry successor and b) each call site 
exit node has exactly one call site predecessor and one pro- 
cedure exit predecessor. We assume that the above nodes 
are dummy nodes with no program statements. 

3.1 Interprocedural Correlation Detection 

Our analysis is demand-driven from a given conditional in 
the sense that only the nodes that may lie on a correlated 
path are visited and only the relevant data flow information 
is computed. The analysis is initialized by raising a query 
at the conditional that corresponds to asking a question “is 
the outcome of the conditional with the predicate (u relop c) 
known along some incoming paths?” The form of the raised 
query is (u relop c), where t! is a variable and c a constant. 
The query is then propagated from the conditional back- 
wards along all paths in the ICFG until it can be resolved 
on these paths. Resolving a query at a node produces one 
of three answers: TRUE, FALSE, UNDEF. The first two an- 
swers indicate that the path along which the query reached 

the node is correlated. TRUE means that the outcome of 
the conditional along the path is true and FALSE means the 
opposite. The UNDEF means that the outcome is unknown 
because the variable is assigned an unknown value. 

For resolving a query, we have identified four sources of 
static correlation. First, a query is always resolved TRUE or 
FALSE at a node that assigns a constant to the variable v 
from the query. The second source is a conditional branch 
that involves the variable u. The assertions on variables 
that exist on the true and false out-edges of the conditional 
may define the outcome of the predicate in the query. Note 
that a conditional correlates with itself if there is a path 
around a loop along which the query variable is not defined. 
The third source is a type conversion from an unsigned to 
signed value, as in the example in Figure l(a). The result is 
always non-negative, which may determine the branch pred- 
icate outcome. Last, after a pointer variable is dereferenced, 
its value is guaranteed to be non-zero; otherwise a segmen- 
tation fault would have occurred. 

During the propagation, a copy assignment to the query 
variable may be encountered, e.g., v := w. When this hap 
pens, the query is modified to reflect this assignment before 
it continues to propagate. This simple form of symbolic 
back-substitution is essential to capture assignments to and 
from temporaries, common subexpressions, procedure re- 
turn values, and parameter passing. As a consequence of 
this substitution, multiple distinct queries can be raised at 
a single node. Our analysis can support more general sym- 
bolic back-substitution and is restricted only by the capa- 
bilities of symbolic manipulation available in the compiler. 
Since query propagation may not terminate under a gen- 
eral symbolic analysis, we stop query propagation with the 
UNDEF answer when a sufficient number of nodes has been 
processed. 

After the analysis terminates, the resolved queries are 
rolled back along the paths they traversed. The goal is to 
collect all resolved answers to each query raised at a node. 
Starting at the successors of nodes where a query was re- 
solved, answers are propagated forward and merged by a 
set-union operation at control flow merge nodes. At any 
node, including the conditional itself, each query may have 
from one to all three possible answers from {TRUE, FALSE, 
UNDEF}. For example, if the query raised at the condi- 
tional has answers TRUE and FALSE, then there are some 
correlated paths leading to the conditional where the out- 
come is true, some correlated paths where it is false, and no 
paths along which it is unknown. Such a conditional has full 
correlation. 

The demand-driven framework of [9] computes proce- 
dure summary nodes on demand to improve the efficiency 
of interprocedural analysis. Since in our analysis the queries 
are propagated through procedures backwards, summary 
node entries are stored at procedure exit nodes and for each 
query raised at the exit node we maintain: a) the answers 
resolved in the procedure, and b) the corresponding queries 
at each entry of the procedure, if the query propagated all 
the way to the entry node. (Remember that the analysis is 
invoked on a restructured program in which procedures can 
have multiple entries.) All queries raised at procedure exit 
nodes are used to compute summary nodes and are, there- 
fore, treated specially. When a summary node query reaches 
a procedure entry, it is not propagated to the callers, but 
resolved with the fourth kind of query answer, TRANS. This 

149 



Analyze predicate (w relopc) in conditional branch node b 

1 initialize Q[n] to {} at each node n 
2 form the initial query qb = (D, rdOp, c, nil) 
3 raiseXpIery(pred(b), qb) 
4 while worklist is not empty do 

5 remove pair (node n, query q) from worklist 
6 case n is entry node of a procedure p: 
7 if q is a summary node query then A[n,q] := TRANS; add q to q.sne.entrieJ[n] 

8 else if n has no predecessors then A[n,q] := UNDEF 
9 for each call site node predecessor m of entry node n do 
10 if q is a summary node query for jth exit of p then 
11 if q.sne.gi, is raised at jth exit of m then raise-query(m,q) 
12 else raise-query(m, q) 
13 end for 
14 case n is call site exit node: 
15 let ez be the procedure exit predecessor of n 
16 let m be the call site predecessor of n and en the entry node invoked by m 

17 if summary node entry sne[ez,q] does not exist then 
18 let qdn be a copy of q 
19 sne[ex, q] := (qsn, ez, 0); qSn.sne := sne[ez,q] 
20 raise-query(ex, qSn) 
21 else if sne[ex,q].entriegen] does not exist then 
22 sne[ex,q].entries[en] := {} 
23 raise-query(ex, sne[ez,q].qin) 
24 end if 
25 add A[ez, sne[ez,q].q,,] \ {TRANS} to A[n, q] 
26 for each query q. in sne[ez, q].entries[en] do raise-query(m, qo) 
27 otherwise : 
28 answer := resolve(n, q) 
29 if ansuIer E {TRUE, FALSE, UNDEF} then A[n, q] := {ansurer} 
30 else for each m f Pred(n) do raise-query(m, substitute(n, q)) 
31 end case 
32 end while 

Procedure raise-query(node n, query q) 
33 if q $! Q[n] then add q to Q[n]; add pair (n,q) to worklist 

end 

Figure 4: The interprocedural static conelation analysis. 

answer marks paths through the procedure along which the 
query was not resolved. The procedure is transparent along 
such paths and the summary node lookup must propagate 
queries (backward) and collect answers (forward) across caU 
sites of transparent procedures. Our analysis handles both 
call-by-value and call-by-reference parameters. 

The analysis algorithm is given in Figure 4. The algo- 
rithm computes summary nodes without interrupting the 
anaIysis. Each query is a tuple (u, relop, c, sne), where sne 
is used by summary node queries to keep a pointer to their 
summary node entries; for non-summary queries, this field is 
niL The summary node entry for query q raised at exit node 
ex is a tuple sne[ex, q] = (qSn, ex,entries), where qSn is the 
summary node query raised on the procedure exit node ex 
and entrieden] is the set of queries propagated to a particu- 
lar entry node en. The analysis is started at line 3 by raising 
the initial query at, the predecessor of the conditional to be 
analyzed. Line 4 terminates the analysis when no node with 
an unresolved query remains. Lines 6-13 handle procedure 
entry nodes. Summary node queries are resolved here to 
TRANS and are added to the summary node entry as having 

reached the particular entry node, as described above. The 
non-summary query is propagated to aII caII sites of this en- 
try (lines 9 and 12). The summary node query is propagated 
only when the computation of the summary node was initi- 
ated at the exit of the call site (lines 9-11). Lines 14-26 pro- 
cess a caII site exit node n. Predecessors of n are determined 
according to Figure 3. If summary node lookup in line 17 
fails, a new summary node entry is created and a summary 
node query qsn is raised. Lines 21-23 update the summary 
node after a previous split of a procedure entry/exit, node. 
Line 25 resolves the query based on the answers saved in the 
summary node and line 26 propagates the query across the 
procedure when a transparent path through the procedure 
exists. Finally, any other kind of node may be a source of 
correlation (lines 27-30). Function resolve attempts to re- 
solve a query. If it fails, the query is propagated after it is 
back-substituted. The algorithm for collecting the analysis 
answers by query rollback can be easily derived from the 
analysis algorithm, and we omit it from this paper. 

During the rollback, the upper bound on the amount 
of code duplication required to optimize the conditional is 

150 



(a) our- program 

A[(x=O.nil)l=/lJj 

A[lx=O.nil)]=(F) 

Alql:(r=O,wlJl=/U,Tr/ 

A -..........‘.: P snci:: ql. G, II: .: 

F 

. . . . . . .._..__.._......__............ 
A P sncl:: ql, G. mnies~El=(tx4ml~} j 

~.........__..._.................... 

(b) analysis (-2) mmack 

Figure 5: An example of interprocedural correlation analysis. 

Figure 6: Intraprocedural restructuring. 

calculated by determining how many copies of each node 
must be created. Given a node with k answers to a query 
raised at that node, the node must be split k-ways (k is at 
most 4). When the node hosts more than one query, then 
the number of copies needed is bound by the cross product 
of answers to all queries raised at that node. The actual 
code growth is usually lower due to the fact that a node 
split on one query may separate answers to other queries 
raised at that node. 

We iIlustrate the analysis with an example in Figure 5. 
The four possible query zmswers are abbreviated in the fig- 
ure as T, F, U, and Tr, for query answers TRUE, FALSE, 
UNDEF, and TRANS. The analysis of conditional node P 
is initiated by raising a query q : (x = 0, nil) at the pre- 
decessor of P (FigureS(b)). The entry nil signifies that the 
query does not compute a summary node entry. Since x is a 
global variable, it cannot be propagated across the intrapro- 
cedural edge (C, D). Instead, it is raised at the exit of pro- 
cedure f, where it initiates computation of a summary node 
entry sne 1. The summary node entry is computed by raising 
a summary node query q1 : (x = 0, snei) at the procedure 
exit node G. The query is resolved at node F to UNDEF be- 
cause an unknown value is assigned to x. The nodes where 
a query is resolved are highlighted in the figure. The scope 
of the summary node is limited to the procedure and hence 
q1 is resolved at the procedure entry node to TRANS. Also, 
the query is recorded in the entries[G] field of the summary 
node entry. Whenever a summary node query reaches the 

procedure entry, a corresponding query is raised at the call 
site node. In our case, query q : (x = 0, niZ) is raised at node 
C. This query is subsequently resolved at nodes A and B to 
UNDEF and FALSE, respectively. The analysis is followed 
by the rollback phase (Figure 5(c)). The answer for a query 
q is stored in A[q] and consists of all answers for q reaching 
the node. Note that the UNDEF answer for q at node D was 
propagated from node C through the TRANS answer of the 
summary node query. The foIlowing section and the exam- 
ple in Figure 7 show how the collected answers are used to 
restructure the ICFG. 

3.2 CFG Restructuring 

The restructuring of the ICFG is performed to isolate cor- 
related paths and then remove the correlated conditionals 
on these paths. The underlying technique is to split each 
node on which a query has multiple answers so that each 
duplicate of the node can host a single answer. 

Intraprocedural Restructuring. Restructuring, when 
the correlation is not affected by a procedure call or return, 
is similar to that proposed by Mueller and Whalley [19] ex- 
cept that we handle correlations that cut across loop itera- 
tions. Restructuring proceeds in the forward direction start- 
ing from each node that hosts multiple answers to a query 
and at least on one of its predecessors hosts only a single 
answer. Figure 6 illustrates intraprocedural restructuring 
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Figure 7: Interprocedural restructuring. 

followed by the equivalent CFG labeled with the answers to 
the query raised at node P: x=0. Restructuring starts at the 
loop header C and continues until every node hosts only a 
single query answer. At this point, the correlated path has 
been separated. In the last step, after the conditional itself 
is split, the copy of the conditional that hosts the TRUE or 
FALSE answer is redundant and is removed. 

Interprocedural Restructuring. Because of the repro 
sentation of the ICFG in our algorithm (see Figure 3), the 
splitting of the procedure entry and exit nodes does not re- 
quire special handling. Entry splitting occurs when the cor- 
related path is entering the procedure through a procedure 
entry node. Entry splitting always involves call site split- 
ting. Ezit splitting occurs when a correlated path crosses a 
procedure exit node. Exit splitting always involves splitting 
call site exit nodes and requires passing additional return 
addresses to the procedure. Figure 7 illustrates interpro- 
cedural restructuring. The nodes of the ICFG are labeled 
with answers to the queries raised in the analysis shown in 
Figure 5. The splitting process starts by duplicating the 
call site node C, followed by splitting of the call site exit 
node D. Note that after these two steps the node D’, which 
corresponds to the call site node C’, hosts a single answer, 
while the node D hosts two answers. After splitting of the 
procedure exit node G, node D can be split again, resulting 
in each copy of D hosting a single answer, thus enabling the 
optimization of the conditional P. After the optimization of 
the conditional is complete, the graph must be converted to 
call site normal form, as defined previously. The last figure 
illustrates the converted graph. 

The restructuring algorithm is shown in Figure 8. The 
initial worklist is determined during the analysis phase. Be- 

fore a node n is split under a query q at line 7, it is verified 
at line 5 that all answers to q that are hosted at n are still 
present at some predecessor of n. The answers may have 
disappeared if n was previously split on some other query 
and some predecessors have been disconnected from n. If 
an answer was removed at line 7, then the call to fix-edges 
removes edges so that only nodes hosting the same answer 
for a query are connected. The successors of n are added 
to the workhst when the node is split in order to continue 
splitting in the forward direction, or when an answer was 
removed in order to adjust the answers and edges at succes- 
sors. Line 2 terminates the restructuring if there is no node 
that requires splitting, adjusting incident edges, or removing 
an answer to a query. Procedure split duplicates a node to 
create a copy of the node for each answer hosted on the orig- 
inal node. Each new copy is added to the worklist because it 
may still need to be split under the remaining queries raised 
at the original node. Lines 15 and 16 perform the actual 
elimination of the conditional; when the conditional is split 
under the query that was initially raised on it, the copies 
hosting TRUE and FALSE answers are fully redundant and 
are removed. 

3.3 Complexity and Safety 

The cost of the ICBE optimization is determined by the 
asymptotic complexity of the correlation analysis. Although 
the worst-case time complexity for the restructuring phase 
is exponential, it is only polynomial for the correlation anal- 
ysis. The cost of the analysis dominates because ICBE per- 
forms restructuring only when the required code growth is 
moderate, resulting in the size of the ICFG always remaining 
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Restructure interprocedural CFG to eliminate branch node b 

begin 
1 let worklist be set of nodes n s.t. a query has multiple answers at n and a single answer at m E Pred(n) 
2 while worklist is not empty do 
3 remove a node n from worklist 
4 for each query q from Q[n] do 
5 remove from A[n,q] answers to q no longer hosted at predecessors of n 
6 fix-edges(n, q) 
7 if A[n,q] contains multiple answers then split(n,q) 
a if n was split or answer was removed from A[n,q] then add Succ(n) to worklist 
9 end for 
10 end while 
11 for each visited call site m do normalize m 

end 

Procedure split(node n, query q) 
12 for each answer a from A[n,q] do 
13 let n, be a duplicate of n including incident edges and Q[n], A[n, *I, sne[n, *] information 
14 set A[n4,q] to {a}; add n, to urorlclist 
15 if n = b and q = qb and a E (TRUE, FALSE} then 
16 change n, into empty node and remove edges to false/true successors 

17 end if 
18 Ax-edges(n,, q) 
19 end for 
20 remove n and edges incident on n 

end 

Procedure fix-edges(node n, query q) 
21 remove each edge (m, n) s.t. n and m no longer host a common answer for q 

end 

Figure 8: The interprocedural restructuring algorithm. 

within a constant factor of its original size. Let V denote the 
number of program variables, P the number of conditional 
nodes, and N the total number of nodes in the ICFG. When 
the format of the analyzed predicate expressions is restricted 
to (uar refop const), and only copy-assignment statements 
v := w are interpreted, at most V different queries can be 
created during the analysis of a single conditional. Con- 
sequently, at most V queries can be raised at each node. 
In addition, we also have to consider the summary node 
queries raised at each node. For each query, multiple sum- 
mary node queries may be raised at each node, one for each 
exit of the relevant procedure. Since conservative applica- 
tion of restructuring keeps the number of procedure exits 
within constant bounds, O(NV) node-query pairs are in- 
serted into the worklist at line 33 during the analysis of 
each conditional. This results in O(PNV) cost to analyze 
all conditionals. We should point out that the rollback al- 
gorithm is bound by the same cost. Even though the data 
flow problem of static branch correlation does not conserva- 
tively merge query answers at confluence nodes (but instead 
propagates forward their set-union), each query can have at 
most four possible answers. As a result, each node-query 
pair needs to be updated at most four times during propa- 
gation of query answers. 

The analysis cost can be reduced by caching at all nodes 
the results of all queries resolved in previous analyses. The 
overall number of queries is bound by 6VC, where 6 is the 
number of different relational operators and C the number of 
unique literals that appear in predicates of conditionals (C 

is typically a small number). The cost with query caching 
is then O(CNV). However, maintaining the cache proved 
counterproductive in our implementation due to increased 
memory requirements. 

The ICBE optimization is safe because it never increases 
the number of operations along any path in the ICFG. How- 
ever, argument lists of procedures with split exits must be 
extended in order to communicate alternative return ad- 
dresses. It is highly likely that eliminating a conditional at 
the expense of passing additional arguments is advantageous 
because return addresses are all compile-time constants and, 
having no incoming data dependences, argument passing in- 
structions can be scheduled more freely than conditionals. 
Furthermore, some of the return addresses may be unnec- 
essary at a procedure entry because not all procedure exits 
may be reachable from the entry (see Figure l(c)). Alter- 
natively, if some call site cannot take advantage of the split 
exits in the callee, an unmodified copy of the callee may 
be called from this call site, eliminating the need to pass 
additional arguments. 

4 Experiments 

Implementation. We implemented the analysis and 
restructuring algorithms in our inter-procedural compiler that 
is based on the retargetable compiler ICC described in [lo]. 
Our implementation considered the correlation of those con- 
ditionals that compared a scalar variable (not a structure 
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Benchmark source procedures 11 nodes 11 cond/prog [%] 
oroeram lines defined I librarv II all I cond II static I dvnamlc 
1 ” I 

099.go 29 246 372 11 38 806 5 304 21.4 29.0 

124.m88ksim 19 915 252 35 21 657 2 416 16.5 30.9 

129.compress 1 934 24 6 957 89 13.5 20.9 

13o.li 7 597 357 26 10 718 875 12.9 26.7 

Table 1: Benchmark programs. 

Benchmark time [set] 1 memory [MB] 11 node-query pairs 

program overall analysis progreo I analvsis II total I ner cond 

099.g0 98.4 83.8 5 -. - , -. ,, -- - -- - , -- -. - 

124.m88ksim 56.1 40.0 67.3 I 1.9 Ii 236 252 I 168.8 t 

Table 2: The cost of correlation analysis. 

member) with a constant. Overall, 45% of conditionals in 
the benchmark programs could be analyzed using this pat- 
tern. We implemented both an intraprocedural optimiza- 
tion, which used MOD and USE [7j procedure summary 
information at call sites, and the ICBE optimization that 
considered both intra- and interprocedural correlations. The 
analysis recognized two sources of correlation: constant as- 
signments and conditional branches. 

Benchmarks. The experiments were performed on the in- 
teger SPEC95 suite. Since ICC does not generate correct 
code for the 126 .gcc benchmark, we used ICC itself as a 
compiler benchmark program. The programs are character- 
ized in Table 1. The number of procedures, both defined 
in the program as well as the library procedures called are 
given in the table. The correlation analysis did not analyze 
library procedures and thus assumed the worst case behav- 
ior at their call sites. Each node in our representation corre- 

sponds to a dag of multiple operations and may be viewed as 
a high-level node. Therefore, the ratio of the number of con- 
ditional nodes to the number of all nodes that are executable 
is higher than usually reported (last 2 columns). Note that 
the number of all nodes in column 5 includes unexecutable 
label nodes. The dynamic profile information was collected 
from the ref input set. 

Behavior of statically detectable correlation. We first 
performed experiments to determine the amount of stati- 
cally detectable correlation for paths restricted to a proce- 
dure and for paths that cross procedure boundaries. The 
topleft graph in Figure 9 depicts the number of condition- 
als that exhibit some correlation; that is, those whose out- 
come is known along some, but not necessarily all, incoming 
paths. Using the total number of conditionals in a program 
as a base, the graph shows for each program the percentage 

of conditionals that were analyzable using our implementa- 
tion, the percentage of conditionals that were found corre- 
lated using intraprocedural analysis and the percentage that 
were found correlated using interprocedural analysis. The 
results show that at least twice as many correlated branches 
are detected using interprocedural analysis than by using 
intraprocedural analysis. The topright graph presents the 
same information weighted by the execution count of each 
conditional, showing that correlation is detected on condi- 
tionals that execute frequently. 

The bottom two graphs in Figure 9 show the number of 
conditionals that had full correlation. The outcome of such 
conditionals is known along all paths and hence they can be 
completely eliminated; however code duplication might be 
necessary if both TRUE and FALSE correlations are discov- 
ered. Here, the benefit of interprocedural analysis is even 
more evident. If only fully correlated conditionals were to 
be optimized, the programs would execute between 3% and 
19% less conditionals, while intraprocedural analysis enables 
reduction of only up to 8%. The fact that more useful cor- 
relation exists when procedures are considered supports our 
hypothesis that we write procedures in an isolated fashion 
with repeated computation in the caller and callee. 

The branch elimination optimizer replicates code to elim- 
inate conditionals by creating separate paths. Since the 
amount of code duplication increases with the distance be- 
tween the correlated branch and the source of the correla- 
tion, the extent of code duplication must be estimated before 
the interprocedural optimization is applied. Figure 10 plots 
the cost-benefit relationship for each correlated conditional. 
Each point in the graphs represents one conditional with a 
correlation. The x-coordinate of the point is the number of 
nodes that are created due to code duplication when the con- 
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Conditionals with correlation Conditionals with correlation 
static cam dynamic wunt 

Condii with full cofrelation 
static count 

Condiiionais with full correlation 
dvnamicm 

Figure 9: Characteristics of statically detectable branch correlation. 

ditional is eliminated. The y-coordinate shows the amount 

of dynamic instances of conditionals that were avoided by 
the elimination of this conditional. A comparison with the 
intraprocedural results reveals that substantially more cor- 
relation is detected when procedures are considered, as the 
full-correlation graphs in Figure 9 suggest. But interpro- 
cedural correlation also requires more code duplication in 
many cases because the correlation may span a large part 
of the call graph. However, the amount of frequently ex- 
ecuted correlated conditionals with low duplication needs, 
positioned in the upper-left quadrant, has increased with in- 
terprocedural analysis. These conditionals make ICBE more 
beneficial than intraprocedural elimination because with less 
code growth a higher reduction in eliminated banches can be 
achieved. We estimated the number of eliminated dynamic 
instances of each optimized conditional from the execution 
counts of the nodes where the analysis query was resolved. 

Eliminated Branches. The goal of eliminating only con- 
ditionals causing reasonable code growth is easily achieved 
in our approach, for ICBE optimizes conditionals one by 
one, performing first the analysis and then the restructur- 
ing optimization for each conditional. The amount of code 
growth necessary to optimize the conditional is determined 
during the analysis phase, as described in Section 3.1. The 
restructuring phase is executed only if the number of new 
nodes that must be created is less than a predetermined 
limit. We optimized the benchmarks with various values of 
the per-conditional duplication limit. Each conditional was 
optimized only if the number of node duplicates required 
for its optimization did not increase N, where N ranged 
from 5 to 200. Figure 11 shows the amount of conditionals 
eliminated and the incurred code growth. Each point in a 
graph corresponds to one duplication limit value. Note the 
different y-ranges in the bottom row. 

In this experiment, the analysis was terminated after 
1000 node-query pairs were examined (see line 5 in Figure 4) 
even though not all queries were resolved. Since in each pro- 

gram there are numerous conditionals that test global vari- 
ables, early termination of demand-driven analysis avoids 
far-reaching propagation of their queries and dramatically 
reduces the analysis time. The early termination is made 
possible by demand-driven analysis. All queries remaining 
after the analysis termination limit is reached are conser- 
vatively resolved to UNDEF. Terminating the analysis af- 
ter 1000 nodes is sufficient to find correlated branches that 
require up to approximately 300 duplicated nodes. Even 
though not all correlation is detected with early termina- 
tion, the missed opportunities are likely to be prohibitive 
due to high code duplication demands. Terminating the 
analysis early thus seems to be a practical improvement. 
However, note that for some values of the duplication limit, 
the interprocedural analysis may produce worse optimiza- 
tion for the 134.perl benchmark than its intraprocedural 
counterpart. The reason is that the analysis termination 
limit was reached by examining the callees, missing the in- 
traprocedural opportunity. This problem can be alleviated 
by experimentally increasing the analysis termination limit. 
Note that the results in Figure 9 and Figure 10 were com- 
puted with an infinite termination limit. 

We can conclude that: 1) for a given code increase, ICBE 
can eliminate significantly more dynamic conditionals than 
its intraprocedural counterpart; 2) when more code growth 
can be tolerated, ICBE offers opportunities for additional 
branch elimination; and 3) the per-conditional limit on code 
duplication is an effective way to control overall code growth. 
A better heuristic for deciding whether to apply the op 
timization would also consider the amount of conditionals 
eliminated, as opposed to the incurred code growth alone, 
as was done in our experiments. 

Analysis Cost. The analysis is the dominating component 
of ICBE’s cost. The running time of the analysis that de- 
termined the results in Figure 11 is given in Table 2. In 
the column labeled overall time, we give the time spent by 
the compiler in parsing, building the internal program rep 
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intraprocedural intefprccedural 

code duplication [nodes] code duplication [nodes] 

Figure 10: Contribution to branch removal vs. code duplication requirements for each correlated conditional. 

resentation and performing the correlation analysis. The 
third second column gives the time to perform the analysis. 
The memory use listed in the analysis column indicates the 
amount needed to store the queries and summary nodes. We 
compare it to the memory required for the internal repre- 
sentation of the program, listed in the progrep column. The 
last two columns report the number of node-query pairs pro- 
cessed by the analysis, overall and per optimized conditional. 

‘.‘..,S “.....J 
1 10 rm 

124xn38ksim 
$0 , . 

129.comp~ 
to 

5 ---------:----- --__ 

0 
D $0 rm 

13O.H 

Figure 11: Reduction in executed conditional nodes vs. pro- 
gram code growth, for various values of the per-conditional 
code duplication limit. 

5 Benefits of ICBE 

The primary benefit of ICBE is the reduction in the instruc- 
tion count (and the schedule length) through the elimination 
of correlated conditionals and the operations that compute 
their predicate. In this section we discuss how both the cor- 
relation analysis and the inter-procedural restructuring can 
be applied in other areas of compiler optimization. 

Procedure inlining. Most inter-procedurally-visible op 
portunities for branch elimination can be exploited by inlin- 
ing and subsequent application of intraprocedural elimina- 
tion of conditionals [19]. However, without the knowledge of 
correlated paths in the call graph, the pre-pass inlining pro- 
cess must resort to exhaustive inlining, at least in the critical 
program regions. Short of folding alI procedures into a sin- 
gle, flat procedure, there is no guarantee that all statements 
involved in a correlation will end up within the same pro- 
cedure, which is necessary to remove the branch. Clearly, 
pre-pass inlining incurs large code growth. 

Inlining becomes more practical when it is directed by 
our inter-procedural correlation analysis. After correlation 
of a branch is detected, the procedures involved in the cor- 
relation can be merged by post-analysis inlining. Such a 
solution to ICBE may be desirable in an existing compiler 
where inlining and intraprocedural branch elimination are 
already supported. The code growth of post-analysis inlin- 
ing may be further lowered by performing full ICBE (with 
interprocedural restructuring), followed by partial inlining 
[12], in which only frequently executed paths through the 
optimized procedure are inlined. However, inlining of recur- 
sive, virtual, or library procedures may not be feasible. In 
this case, our inter-procedural restructuring can be applied 
to carry out ICBE. 

Regardless of the exact ICBE scenario, the correlation 
analysis produces an upper bound on the code growth re- 
quired to eliminate the conditional and, if profile informa- 
tion is available, provides also a profile-based estimate of 
the cost-effectiveness of the optimization before it is applied. 
The inlining algorithm in [2] inlines procedures one by one 
based on their execution rate until a code growth budget 
is exhausted. Our correlation analysis can be used in the 
inliner to give procedures that generate correlation a higher 
priority so that correlated branches can be removed after 
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inlining [6, 81. Our restructuring algorithm can be used to 
eliminate correlated branches after the code growth budget 
for inlining has been exhausted because its code growth de- 
mands are smaller than those of inlining. Richardson and 
Ganapathi [23] observed that the benefit of inlining comes 
mainly from eliminated procedure call overhead. Our anal- 
ysis is able to identify procedures whose inlining will cre- 
ate intraprocedural optimization opportunities for branch 
removal. 

Dynamic dispatching of virtual procedures. Object- 
oriented languages complicate interprocedural compilation 
because call sites invoking member procedures of polymor- 
phic types may transfer control to one of many procedures, 
depending upon the concrete type of the receiver object. 
Since such call sites require expensive dynamic dispatch- 
ing, methods for their elimination through concrete type 
inference have been developed [l, 20, 211. In these meth- 
ods, demand-driven interprocedural analysis determines for 
each call site the set of “reaching concrete types.” Subse- 
quent program restructuring separates out paths and clones 
procedures with the goal of creating call sites reached by 
a single type of the receiver. There is an analogy between 
concrete type inference and our work in that both methods 
compute at optimizable nodes the set-union of all optimiza- 
tion opportunities and enable optimization by making the 
opportunities unique through path separation. While ICBE 
collects values of variables that determine branch outcomes, 
type inference is interested in the types of receiver objects. 
With respect to the restructuring algorithms, however, our 
transformation is more powerful than cloning because exit 
splitting is able to separate out paths that cross the exit 
node, which cloning cannot achieve. The following para- 
graph describes how entry/exit splitting is performed at dy- 
namic dispatch call sites. Our restructuring can prove valu- 
able for object-oriented languages because the cost of pass- 
ing additional return addresses is small compared to that of 
a dynamic dispatch. 

While concrete type analysis is very successful in en- 
abling inlining at virtual calI sites, some call sites will still 
require dynamic dispatch. These call sites are, however, 
amenable to ICBE. Each procedure that may be invoked 
from a virtual call site can be independently analyzed and 
optimized by entry/exit splitting. Optimizing in turn each 
possible callee will provide the cumulative effect of entry/exit 
splitting in each callee with respect to the original call site. 
What results is a set of multiple call sites, each invoking 
some entry of each callee and returning to multiple points 
in the caller. If any of the callees was left unoptimized, then 
all call sites invoke the original entry and the procedure al- 
ways returns to the original return point in the caller. ICBE 
thus allows both optimized and unoptimized procedures to 
be called from a single call site. 

Fine-grain computer architectures. The elimination 
of conditional branches is especially important for wide- 
issue super-scalar and VLIW architectures, in which instruc- 
tions are pre-fetched and executed speculatively across con- 
ditional branches based on predictions of their outcomes. 
With increasing processor parallelism, branch density in the 
stream of instructions is becoming critical because expensive 
mechanisms are required to predict and issue multiple condi- 
tional branches in a single cycle [13]. Our experiments have 
shown that between 3% and 18% of executed conditionals 
can be eliminated by ICBE, reducing branch density. 

A mispredicted branch stalls the processor for many cycles 
and pollutes the instruction cache. Research in correlation- 
based hardware branch prediction [25] shows that unpre- 
dictable branches exhibit correlation with earlier branches. 
Some unpredictable branches can arguably be eliminated by 
ICBE. Consider, for example, a procedure that removes an 
element from a linked list. When the average list length is 
low, the conditional that tests for an empty list is unpre- 
dictable. Nevertheless, the test is correlated with the condi- 
tional that tests the return value in the caller. Optimization 
of unpredictable branches has an especially high payoff. 

ICBE can also be used to improve the effectiveness of 
software pipelining [17,22] by reducing the number of condi- 
tionals and other statements in the loop body, as illustrated 
by the example in Figure 2. Elimination of branches can 
significantly speed-up the loop schedule when conditionals 
that form recurrent cycles of control dependencies are elimi- 
nated. Branches testing a flag whose value is assigned within 
the loop are examples of such conditionals. 

Assisting hardware branch prediction. Run-time pre- 
diction schemes have been proposed that predict the out- 
come of a branch using its correlation with the last k branches 
[24]. Since the exact source of the correlation is not known, 
all k outcomes are maintained and used for prediction, slow- 
ing down the learning process of the predictor. If the cor- 
relation is statically detectable, our analysis can provide 
the prediction hardware with directions about which recent 
branch(es) should be used for prediction. 

Library procedures. Even when it is not possible to com- 
pile the library procedures together with the application pro- 
gram, we can take advantage of correlation that crosses the 
application-library boundary. The library procedures can be 
pre-split by optimization with respect to characteristic ap- 
plication programs and the summary nodes describing the 
resulting entry/exit splitting can be conveniently stored with 
the library interface for later lookup during the optimization 
of the user program. For example, a separate exit from mal- 
lot would exist that would be taken when the return value is 
NULL. Since a large portion of correlation exists across calls 
to the same or related library procedures, the characteristic 
program may be as small as the one in Figure 1. The orig- 
inal unoptimized procedure entry must be maintained for 
library procedures. When this entry is invoked, all proce- 
dure exits return control to the standard return address so 
that compilers without ICBE can also use the library. 

Interprocedural optimizations. Because path separa- 
tion and entry/exit splitting eliminate control flow merge 
points, conservative merging of data flow information at 
procedure boundaries is reduced. As a result, other opti- 
mizations, such as procedure cloning, partial redundancy 
and dead code elimination, may be more effective following 
interprocedural restructuring. The ICBE optimization can 
be used to optimize array bounds checks [15, 111 which typi- 
cally exhibit correlation. Finally, branch elimination can be 
used as a component of aggressive program transformations, 
such as slicing-based partial dead code elimination [4]. 
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