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Abstract
Program instrumentation, inserted either before or during
execution, is rapidly becoming a necessary component of
many systems. Instrumentation is commonly used to collect
information for many diverse analysis applications, such as
detecting program invariants, dynamic slicing and alias
analysis, software security checking, and computer architec-
ture modeling. Because instrumentation typically has a high
run-time overhead, techniques are needed to mitigate the
overheads. This paper describes “instrumentation optimiza-
tions” that reduce the overhead of profil ing for program
analysis. Our approach applies transformations to the
instrumentation code that reduce the (1) number of instru-
mentation points executed, (2) cost of instrumentation
probes, and (3) cost of instrumentation payload, while main-
taining the semantics of the original instrumentation. We
present the transformations and apply them for program pro-
fil ing and computer architecture modeling. We evaluate the
optimizations and show that the optimizations improve pro-
fil ing performance by 1.26–2.63x and architecture modeling
performance by 2–3.3x.

Categories and Subject Descriptors
D.2.5. [Software Engineering]: Testing and Debugging—Debug-
ging aids; D.3.3. [Programming Languages]: Language Con-
structs and Features—Program instrumentation, run-time
environments

General Terms
Languages, Performance, Algorithms

Keywords
Dynamic Binary Translation, Dynamic Instrumentation, Instrumen-
tation Optimization, Profiling

1. Introduction
Instrumentation, used to profile and monitor a program,

has received much attention due to the increased usefulness
of information about a program’s execution to analysis appli-
cations. Instrumentation is used in many settings for both

static and dynamic analysis. Instrumentation is used by
Daikon to discover program invariants [9] and by the
dynamic code optimizers Jikes [1] and Dynamo [2] to guide
code transformations. Other uses include dynamic program
slicing [28], demand-driven structural software testing [18],
modeling computer architecture features [4,16,23,26], and
software security [12,22]. 

Many techniques have been proposed for instrumenting
code. These techniques include placing instrumentation in a
program before it executes, static binary rewriting for profil -
ing [5,15,19,20,24] and placing (and removing) instrumenta-
tion in executing programs [1,10,17,19]. There are also
infrastructures that provide instrumentation capabilit ies for
different machine platforms [5,10,15,19]. An important
aspect is how these approaches address instrumentation
overhead. Tools such as ATOM apply context-specific opti-
mizations to the instrumentation to reduce its cost [24].
However, ATOM does not reduce the number of locations
where instrumentation is inserted, but can only reduce the
cost of an individual instrumentation location. ATOM is also
a static tool: It relies on expensive interprocedural analysis
which is done at link-time, and thus, it is not suited for
dynamic instrumentation. Other frameworks such as DynInst
[10] and Pin [19] have efficient mechanisms for dynamic
instrumentation, but they do not automatically apply instru-
mentation optimizations to mitigate overhead. Arnold and
Ryder described a technique to conditionally execute instru-
mented code for dynamic instrumentation [1]. Although
their approach uses a conditional probe to reduce overhead,
it does not use optimizations at the instrumentation algo-
rithm level. In these approaches it is left to the instrumenta-
tion application to determine how best to instrument a
program, given low cost instrumentation probes and mecha-
nisms. 

Yet, both an opportunity and need exist to automatically
apply optimizations on the instrumentation code to reduce its
overhead, similar to code optimizations but targeted and spe-
cialized to instrumentation code. Our research is developing
instrumentation techniques and optimizations that are tar-
geted to reducing the overhead of dynamically instrumented
code. This paper describes instrumentation optimizations
and an instrumentation optimizer for program monitoring
and profili ng. Our initial instrumentation optimizations tar-
get three sources of overhead, including the (1) cost of
instrumentation probes that intercept program execution, (2)
the number of probes executed (“dynamic probe count”),
and (3) the cost of instrumentation code itself (the “instru-
mentation payload”). One optimization minimizes the num-
ber of instrumentation points executed using coalescing
while another optimization uses partial inlining to select
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between lightweight and heavyweight versions of instrumen-
tation code as run-time conditions warrant. Finally, a third
optimization uses specialization, including partial register
context save and restore to make the instrumentation code
more efficient. These optimizations can use dynamic infor-
mation, such as program paths, to improve performance. 

This paper first describes the instrumentation optimiza-
tions, and then demonstrates their usefulness in two case
studies. The first case study uses the optimizations to
improve the performance of lightweight program profilers.
Profiles are typically used to gather information needed for
program analysis. The second case study uses instrumenta-
tion optimization to improve the performance of online mod-
eling of computer architecture features. Such modeling is
used in the computer architecture community to analyze the
performance of new architectural features. 

This paper makes several contributions, including:
• Instrumentation optimizations that mitigate instru-

mentation overhead by reducing the number of
probes, the cost of each probe and the cost of the
payload code;

• An instrumentation optimizer, called INS-OP, that
applies instrumentation optimizations in a dynamic
binary code translator; 

• A case study that demonstrates that the optimiza-
tions can improve the performance of lightweight
profilers for basic block counts, dynamic call chains,
program paths, and data and address values; and 

• A second case study that applies INS-OP to com-
puter architecture modeling and evaluates the opti-
mizations on a fast cache simulator. 

2. Instrumentation and Overhead 
Because instrumentation is not normally part of a pro-

gram, it incurs an overhead that is the extra amount of time
spent in executing instrumentation code, rather than the
application code. Instrumentation is typically inserted at spe-
cific points in the program, which we call instrumentation
points (IP). An IP encapsulates the instrumentation function-
ality and its program context. An IP consists of an instru-
mentation probe and instrumentation payload. The probe is
the code that is inserted in the application to intercept pro-
gram execution to invoke the payload. The payload does the
actual instrumentation activity, such as collecting a profile.
Because it may be unnecessary to invoke the payload on
every execution of a probe, the probe can have a condition
that controls when the payload is invoked. For example, such
conditions can be used to implement sampling—when a
count is within a specified range, profil ing is done.

Instrumentation overhead is affected by the number of
probes executed, or the probe count. The probe count for an
IP determines the number of instances of the probe (i.e., the
number of times that probe is hit). Every time a probe is hit,
it incurs an overhead associated with executing the probe

code that intercepts program execution. Because the payload
can be guarded by a condition, every instance of a probe may
not incur the overhead of the payload. Thus, the total over-
head for an IP is related to the number of probes executed,
how much each probe costs, how frequently the payload is
invoked and the cost of the payload. 

Instrumentation optimizations can be targeted to each
overhead component. To reduce overhead, the optimizations
transform the instrumentation code into a more efficient
form. Transformations are applied to a set of unoptimized
IPs to get optimized IPs. The transformations reduce the
number of run-time instances by combining and eliminating
some IPs, which leads to fewer overall executed instances of
IPs. Transformations are done on the instrumentation code
itself to reduce probe and payload cost. Partial inl ining can
be applied to reduce the payload cost. In this case, a light-
weight version of the instrumentation payload may be incor-
porated directly into the application binary to gather minimal
information and perform a small set of actions. When neces-
sary, the full version (i.e., a heavyweight version) of the pay-
load is invoked. For example, the number of registers that
have to be saved and restored when invoking instrumenta-
tion can be lowered by analyzing the liveness of registers.
The instrumentation code can also be exposed to the
dynamic run-time system, which may perform optimiza-
tions, such as instruction trace formation, on the instrumen-
tation code to efficiently stitch it into the application. 

Figure 1 shows how instrumentation optimization can
be integrated with a dynamic instrumentation toolkit (e.g.,
DynInst [10], Pin [19], FIST [14]). In the figure, whenever
instrumentation needs to be inserted dynamically, a base
instrumenter is invoked to determine where and how to
instrument the program. The input to this base instrumenter
is a sequence of binary instructions—e.g., an instruction
trace—and the output is a set of unoptimized IPs. A simple
intermediate representation (IR) is used to describe the unop-
timized IPs; the unoptimized instrumentation code is not
actually generated or inserted into the application binary. 

The base instrumenter implements the instrumentation
algorithm; for example, a basic block profiler would gener-
ate an IP for every block in an instruction trace. The unopti-
mized IPs are passed to an instrumentation optimizer which
transforms the input IPs into a set of optimized instrumenta-
tion points. The optimizations are applied over the interme-
diate representation for the IPs, producing an optimized set
of points. For example, using the optimizations on instru-
mentation to count basic blocks, a sequence of IPs can be
optimized into a single IP at trace exits that covers the path
from the trace entry to an exit. The intermediate representa-
tion for the optimized IPs are passed to an instrumentation
back-end that generates and inserts the actual instrumenta-
tion code into the binary code. 

Figure 1: Approach to instrumentation optimization
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3. Instrumentation Optimizations 
Our goal is to apply instrumentation optimizations in

many settings and preserve exact information, rather than
trade precision for low overhead (e.g., sampling). The opti-
mizations are implemented in an instrumentation optimizer
that transforms IPs to improve profil ing performance. The
optimizations include reducing the number of run-time
instances of IPs with dynamic probe coalescing (DPC) and
reducing the overhead of an individual point with partial
context switches (PCS) and partial payload inlining (PPI). 

To make the analysis needed by these optimization fea-
sible in a dynamic setting, the optimizations operate on code
regions that are straightline sequences of basic blocks with a
single entry and multiple exits (i.e., instruction traces). 

3.1. Dynamic Probe Coalescing 
To reduce dynamic probe count, we use dynamic probe

coalescing (DPC), which pairwise coalesces multiple probes
into a single probe that does all the actions of the original
probes without the loss of any information (i.e., it invokes
the same payloads as the original probes, except with a one
probe). The newly coalesced probe has less overhead than
the original ones because the overhead of intercepting pro-
gram execution is paid only once for the new probe. Many
probes can potentially be combined into a single probe,
which will further reduce the cost of executing the probes. 

The challenge with coalescing probes is to detect the
dependencies between probes and the intervening code to
determine whether probes can be coalesced. For instance, the
payload invoked by a probe may use the current value in a
register, which could change if the probe were coalesced
with some other probe. A similar dependence can arise if the
payload invoked by a probe changed the state of execution in
some way (e.g., a value in a register or memory). At the very
least, the order of IPs often needs to be preserved. To detect
these dependencies, analyses of the application code and/or
payload is performed. If the analyses do not detect any
dependency, the corresponding probes can be coalesced. 

Table 1a shows pseudo-code for the DPC optimization.
In the table, the optimization takes an input set of unopti-
mized instrumentation points (I) and produces an optimized
set of instrumentation points (O). DPC also takes an associ-
ated code region r for I. The optimization works by travers-
ing the set of original IPs, starting from the IPs that are
earliest in the code, trying to find adjacent pairs of IPs that
can be combined (line 3). Consider two instrumentation
points Prev and i, where Prev is earlier in the code than i.
Prev and i can be coalesced as long as there is no intervening
definition of a register used in Prev between Prev and i (lines
4-7). This condition ensures that the same information at
Prev’s original location is also available at i. When Prev and
i are coalesced, a new instrumentation point k is formed and
inserted at i’s original location (lines 8-11). k is added to O
and Prev is removed from O (line 10). k is also marked as the
new Prev (line 10). If  Prev and i can not be coalesced, i is
added to O and i is considered for coalescing with the next
subsequent IP (line 13). In the pseudo-code, a newly coa-
lesced point will  be immediately considered for coalescing
with the next subsequent IP. Instrumentation points are effec-
tively coalesced in the downward direction and moved as
late as possible. Although it is not shown, it is beneficial to
coalesce in the upward direction as well. 

Because the code is sequential (possibly with exits)
DPC needs to consider only adjacent points because two
points can be coalesced only if all intervening points can also
be coalesced. For example, consider three instrumentation
points: i, j, and k. Suppose i uses a register r that is defined
between i and j. If i can not be combined with j, then it can
not be combined with k because there is a definition of r
between i and k. Note that the pseudo-code does not resolve
dependencies that disable coalescing IPs. It is possible, how-
ever, to spill needed values before they are overwritten to
enable coalescing. While spilling can be useful, its cost may
be significant because a context switch may be needed to do
the spill (e.g., for the effective address). With register live-
ness information, dead registers can be used to hold the
spilled values to reduce the cost of making copies. 

Table 1b shows how two IPs are coalesced. The IPs are
initially coalesced by combining their payloads (indicated by
the “.” operator). For instruction traces, coalescing can com-
bine two IPs in adjacent basic blocks. Consider an instru-
mentation point i in an earlier block and j in a later one.
When i and j are coalesced, the newly coalesced IP is
inserted in j’s basic block. During execution, if the trace is
exited early from i’s basic block, then we must ensure that i
is executed. To ensure that i is executed along an early off-
trace path, instrumentation is inserted into an “exit stub
block”. The exit stub is a “dummy block” at a trace exit that
holds the points that must be executed when the trace exits at
that block. These “fi x-up instrumentation points” are simply
copies of IPs that were coalesced with IPs from the adjacent
basic block. A fix -up instrumentation point can be an IP that
resulted from a previous coalescing. 

3.2. Partial Context Switch
The cost of a single IP can be lowered by applying opti-

mizations that specialize it to the surrounding code context.
We develop instrumentation optimizations to improve the
instrumentation probe’s performance. In particular, the cost
of saving and restoring program context when calling and
returning from the payload can be lowered, which is the
major cost associated with a probe. This optimization is
applied in static instrumentation toolkits, but it is harder for
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IPset DPC(IPset I, region r) {
IPset O m �; IP Prev m firstElement(I); 
�i in I do {
� instructions m betw. *Prev and *i do{
if ((def(i.instruction) � def(m))z�)
src_reg_live m true;

}
if (src_reg_live = false){
k m coalesce(i, Prev, r);
O m {(O-Prev) � k}; Prev m k;

}
else {
O m {O � i}; Prev m i;

}
}
return O;

}
(a) Algorithm for DPC optimization 
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IP coalesce(IP i, IP j, region r) {
IP k m (i . j); k.address m j.address;
E m exitBlocks(r); 
if �e in E: e is an exit between i and j{

i.address m e.address; 
}
return k;

}
(b) Coalescing on single entry, multiple exit code

Table 1: Pseudo-code for DPC
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dynamic instrumentation because information needed to
reduce the context is potentially expensive to obtain. 

If an IP can be placed at any instruction address, then no
assumptions can be made about what registers may be live at
that location without contextual knowledge. However, if the
liveness of registers at an instrumentation location and in the
instrumentation payload is known or can be easily com-
puted, then the cost of saving and restoring registers when
invoking the payload can be reduced. In particular, any regis-
ter that is dead at an instrumentation location whether or not
it is used by the instrumentation payload does not have to be
saved or restored. Also, any live register at an IP that is not
used by the payload does not have to be saved or restored.
By analyzing register liveness, the overhead of the context
switch can be significantly reduced. 

Static tools like ATOM [24] can afford the cost of analy-
sis to determine the liveness of registers to apply PCS.
Instead of determining such information at run-time, another
possibilit y is to collect the liveness information for IPs dur-
ing compilation and passing that information to PCS at run-
time. PCS will then generate code on-the-fly that saves and
restores only those registers which are necessary. 

Local register liveness can be determined relatively
inexpensively on straightline code, such as basic blocks and
instruction traces. This local information is valuable on some
architectures that have condition code registers (e.g., SPARC
and x86). Saving and restoring the condition codes can be
expensive (i.e., more so than regular registers) and it is
worthwhile to avoid spilling and reloading the condition
codes whenever possible. 

In some situations, it is also possible to spill and reload a
register only once between multiple IPs. For example, in an
instruction trace, registers needed by the instrumentation
code can be spilled at trace entry and reloaded at the exit
points when the registers used by the instrumentation are not
needed (but are live) on the trace. Alternatively, registers in
the instrumentation can be rewritten to use dead registers. 

3.3. Partial Payload Inlining 
In addition to the probe, the cost of the payload can also

be reduced. Instrumentation payload often has a structure
where a condition monitors program execution to decide
what action to perform. For instance, a payload for a mem-
ory profiler might monitor an address range and collect val-
ues whenever an address is in that range. The payload may
even have a series of conditions that guard multiple actions,
where some actions may be more frequently executed than
others. The frequently executed regions can be identified for
payload partial inlining (PPI). PPI replaces and inlines a
heavyweight payload by a lightweight version that is
guarded by a check. The check determines when to transfer
control to the heavyweight version. PPI ensures that the
inlined portion of the payload is frequently executed and rea-
sonably small (to avoid adverse cache effects). 

PPI has three steps: 1) code partitioning, 2) partial
inline replacement, and 3) run-time selection. In the first
step, the payload is partitioned into lightweight and heavy-
weight versions, and in the second step, IPs are optimized to
use partial l ining. Finally, at run-time, the guard decides
which version of the payload to execute. 

For code partitioning, PPI divides the payload into light-
weight and heavyweight code regions. These regions are
determined either by user annotations or by analysis with
profile information. The lightweight region and its guard,

which we collectively term a partially inlined region (PIR),
is a small region that is frequently executed. It can be
included directly in a probe to avoid a function call to the
original payload. In essence, the PIR is inlined, while the
heavyweight code region remains a separate function. The
full payload is not inlined because it may result in too much
code growth and can hurt instruction cache locality. In addi-
tion to the benefit of inlining the PIR, dividing the payload
into two parts may enable PCS. Because the PIR is relatively
small, it is more likely that fewer registers will  have to be
spilled and reloaded when invoking the inlined code, which
allows PCS to be more effective. 

Table 2 shows a simpli fied algorithm for partitioning the
payload into the partially inlined region and heavyweight
regions. The algorithm takes as an input a code region c
annotated with edge weights (from a profile) to be parti-
tioned. The algorithm looks for a hot region in c that is
guarded by a condition at the entry of c and has an exit from
c. The algorithm tries to identify the guard condition (cond)
for the inlined code (line 3), which should be at the entry of
c. If a suitable condition is found, then c is partitioned into
several hot regions, R, starting from cond (line 5). The
regions in R are single entry and multiple exit (e.g., an
instruction trace), with the entry being a successor to the
guard condition. To simplify t he algorithm, all exits from the
regions in R should exit the surrounding region c (this
restriction can be relaxed, where only an exit on the hot path
in R should exit c). The regions are processed to find the hot-
test one that meets a constraint on code size (lines 6-12). The
region size must be below the threshold size to avoid inlining
too much code. If a small, hot region hot is found, then that
region and its guard are removed from c to form the partial
inline region, pir (lines 13-17), which will  be inlined. The
heavyweight region is c after hot has been removed; a call is
inserted in the guard to invoke c when pir ’s condition fails. 

In the second step of PPI, IPs are optimized based on the
PIR. This step inlines the PIR into an instrumentation probe.
IPs that invoke different (or multiple) payloads can be han-
dled by inlining the appropriate PIR for each payload. Dur-
ing run-time, the final step occurs, where the guard is
executed to call the partial inli ned or heavyweight regions.

4. INS-OP
We implemented an instrumentation optimizer, called

INS-OP, that is integrated with a dynamic binary translator,
Strata [23], and a dynamic instrumentation system, FIST
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code_region partition(code_region c) {
code_region pirm�;
code_region condmfind_guard(c); 
if (cond z �) {
code_regions Rmfind_regions(cond); 
hotm�;
�r in R do { // find small, hot region
if ((hot=� || (hotness(r)>HOT_THRES&&

hotness(r) > hotness(hot_region)) 
&& size(r) < SIZE_THRES) 

hotmr;
}
if (hot�z��) {
remove(hot, c); // remove hot region
remove(cond, c); // remove condition
pirmgen_inline_region(cond, hot, c); 

}
}
return pir; 

}

Table 2: Pseudo-code for extracting partial inlined code region
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[14]. INS-OP, Strata, and FIST serve as a “dynamic instru-
mentation toolkit” that can be used to implement new instru-
mentation algorithms and optimizations.  

INS-OP implements DPC, PPI and PCS as passes as
shown in Figure 2. INS-OP accepts an instruction trace
(formed online with the NET algorithm [2]) from Strata and
a set of IPs from the base instrumenter. The IPs are repre-
sented as annotations in the control flow graph for the code
region. INS-OP will work with any base instrumenter that
generates IPs in INS-OP’s intermediate representation. The
optimizer uses DPC to reduce the unoptimized IPs. After
DPC, the cost of an individual IP is tackled. PCS replaces the
full context switch with a partial one that saves and reloads
the registers used by the payload. Then, PPI does partial
inlining of the payload. The optimized IPs and the input code
region are passed to the FIST instrumentation code generator
[14]. FIST constructs and inserts the code for each IP.
Finally, FIST’s output is passed to Strata. 

5. Case Studies of Using INS-OP
To explore the usefulness of instrumentation optimiza-

tion, we applied INS-OP to two case studies: one on program
profiling and the other for simulating processor caches. The
profilers insert limited instrumentation and have relatively
inexpensive payloads. The cache simulator, on the other
hand, has instrumentation that is relatively expensive, with
many instrumentation points. Hence, these case studies rep-
resent a spectrum for exploring the effectiveness of INS-OP. 

All  experiments were done on a 500 MHz Sun Blade
with 256 MB of RAM and Solaris 9. The benchmark suite
was SPECint2K, using gcc 2.95.3 with flags “-O3 -mv8”.
The train data set was used for profiling and the reference set
for evaluation. The results include all run-time costs. 

For the profiler case study, the benchmarks were run for
a maximum of one billion profile values. For the cache simu-
lation study, the benchmarks were run to completion. The
simulated cache is a split instruction and data two-way set
associative L1 cache with 16 KB storage and 32 byte lines. 

5.1. Case Study: Program profiling
To investigate how INS-OP performs for profil ing, we

conducted a case study with several program profilers as
shown in Table 3. Although these profilers are similar in
some respects, they represent a spectrum of commonly used
profilers that instrument at different granularities. 

Table 3 shows average run-time for each profiler when
run on the SPECint2K benchmarks, with no instrumentation
optimization (“base”) and with instrumentation optimization
(“Opt.”). The numbers are the average run-times in seconds
for the benchmarks. For example, the first row shows a basic
block count profiler in which the average run-time is reduced
from 487 seconds to 218 seconds. INS-OP improved profil -
ing performance by 2.15 times in this case. 

The table shows that the speedup varies from 1.26 for
call-chain profiling to 2.63 for value profiling. The differ-
ence in speedup is related to the number of IPs and payload
cost. For example, the address profiler gathers all memory
address generated during program execution. In comparison
to the other profilers, it has a high number of IPs and a more
expensive payload, which makes the optimizations more
effective. The call-chain profiler, on the other hand, instru-
ments only calls and returns. That is, the call-chain profiler
has sparse IPs, which reduces the effectiveness of some opti-
mizations (e.g., DPC). Thus, the speedup is smaller (1.26),
but INS-OP is still  effective due to PPI and PCS. 

From these results, we conclude that INS-OP is effec-
tive and can reduce instrumentation overhead. INS-OP also
eased the burden of implementing these profilers. It took
only a day to develop the profilers because the harder task of
minimizing instrumentation cost was left to INS-OP. Instead,
we only needed to describe what instructions to instrument,
what information to extract, and how to use it. 

5.2. Case Study: Cache Simulation
In this study, the instrumentation application is a direct-

execution processor simulator. These simulators, including
SimOS/Embra [26] and Shade [4], instrument the executing
program to dynamically model a computer architecture. One
way to model caches in these simulators is to instrument all
memory operations to collect a trace of instruction and data
addresses. Profiling all memory operations—i.e., all instruc-
tion fetches and data load and stores—is expensive because
every instruction has to be instrumented. Instead of instru-
menting all instructions, the cost and amount of instrumenta-
tion can be optimized by INS-OP. 

We integrated an instrumenter for memory profil ing into
INS-OP. The base instrumenter determines a set of IPs that
collect data and instruction address streams. To extract the
address streams, the base instrumenter generates two types
of instrumentation points: data and instruction points. The
data points are generated for every load and store and the
instruction points are generated for every instruction. Probes
for data points determine source values for effective
addresses, which are passed to the instrumentation payload.

Figure 2: Instrumentation Optimizer
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Profilers Description Base Opt. Speedup

BB count Execution count of each 
basic block 487s 218s 2.15x

Path 
profile

Gather blocks executed along 
a path 448s 218s 1.96x

Address 
profile Collect load/store addresses 589s 219s 2.54x

Value 
profile

Collect values used by loads 
and stores 585s 211s 2.63x

Branch 
history

Record taken and not-taken 
branch history 511s 212s 2.26x

Call-
chain

Record order of function 
calls and returns 712s 585s 1.26x

Table 3: Speedup due to nstrumentation optimization 
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Similarly, the probes for instruction points determine the
instruction address from the original binary and pass the
address to the payload. The set of unoptimized IPs from the
base instrumenter are given to INS-OP for optimization. 

To model processor caches, the payload is a cache simu-
lator. For the cache simulator, we used a simulator based on
Embra [26]. Embra uses a table lookup to quickly detect
cache hits at the expense of handling misses, and because
cache hits are more likely than misses, it is able to achieve
fast performance [26]. In the original Embra tool, the hit
handling code is inlined at an instrumentation site [26]. In
our case, the base cache simulator combines the hit and miss
handler into a single payload. When PPI is used, the hit han-
dler is inlined automatically by INS-OP. Embra avoids con-
text switches when detecting hits by hard-coding reserved
registers for simulation [26]. In INS-OP, PCS is applied
automatically on the hit detector after PPI to get the same
effect. Embra does not apply DPC. 

We compared INS-OP for cache simulation relative to
Embra as shown in Table 4. The table shows the native exe-
cution time, the slowdown of Strata-Embra and Strata-
Embra-Opt. Strata-Embra is Witchel and Rosenblum’s origi-
nal simulator [26] implemented in our framework. Strata-
Embra-Opt is Strata-Embra optimized by INS-OP. 

As the table shows, Strata-Embra has a slowdown of
5.5–34x, with an average of 21x. When Strata-Embra-Opt is
considered, it is 2.5–13x slower than native execution, with
an average 8.9x slower. Strata-Embra-Opt is 2–3.3x faster
(average 2.4x) than Strata-Embra due to instrumentation
optimizations. These results are encouraging because INS-
OP is a general instrumentation optimization framework that
can be applied in different settings. Tools like Embra are not
general systems—they are designed for a specific purpose.
INS-OP is more general, yet it achieves better performance. 

6. Related Work
Instrumentation has been used for a number of purposes,

including program profiling [5,15,19,20,24], dynamic opti-
mization [1,2], software security [12], and binary translation
[6,7,8]. These systems use instrumentation to monitor and
gather information about a program. However, unlike INS-
OP, they do not use instrumentation optimizations. 

Systems like Dyninst [10] and Paradyn [17] use instru-
mentation probes based on fast breakpoints to keep instru-
mentation overhead low. Both Dyninst and Paradyn were
built  for dynamic instrumentation, and to the best of our
knowledge, their instrumentation techniques were not
designed for instrumentation optimization. FIT is a ATOM-
like static system that focuses on retargetability rather than
instrumentation optimization [5]. PIN is a dynamic instru-
mentation framework [19]. It has support for writing custom
instrumentation optimizations, such as allowing instrumen-

tation on instruction traces. However, these optimizations
have to be written and applied by the programmer. 

There are many tools for cache simulation that use
direct execution. FastSim [21] is a processor simulator that
uses static instrumentation. It does not apply instrumentation
optimization, but uses memoization to improve simulation
performance. INS-OP could be integrated with FastSim to
improve instrumentation performance. Similarly, Embra [26]
uses dynamic binary translation and inlines instrumentation
in the binary code. Embra could benefit from the DPC opti-
mization. Fast-Cache [16] is a fast data cache simulator that
uses static instrumentation for every memory instruction
(load and store) and calls a cache simulator when there is a
miss. Fast-Cache could benefit  from both DPC and PCS. 

7. Conclusion
This paper described an approach to reduce dynamic

instrumentation overhead with “instrumentation optimiza-
tions”. These optimizations reduce the number of run-time
instances of an instrumentation point and the cost of individ-
ual instrumentation points with dynamic probe coalescing,
partial payload inlining, and partial context switches. We
presented an optimizer, INS-OP, for dynamic instrumenta-
tion optimization and described two case studies that evalu-
ated the effectiveness of instrumentation optimizations for
profiling and processor cache simulation. INS-OP improved
profiling performance by 1.26–2.63x and cache simulation
by 2–3.3x. The instrumentation optimizations are general
and can be used in other applications, such as checking pro-
gram invariants, alias analysis, and dynamic slicing. 
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