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Abstract

Program instrumettation, inseried eiber befae or during
execution, is rapidlypbecominga neessary component of
many sgtems.Instrumentatia is commonly used to collect
information for many dverse andyysis appications, such as
detecing program invariants, dyramic slicing and alas
analysis, softare ®cuiity chedking, and canputer architec-
ture modeling. Becase instrumentaion typically has ahigh
run-time overead, techiques are needed to mitigate the
oveheads. This paer describes ‘astrunrentaton optimiza-
tions” that reduce the ovedread of profiling for program
andysis. Qur approach appies transbrmations to the
instrumentdion code thareduce the () nunber of instru-
mentation points executed, (2rtost of instumentation
probes, and3) cost ofinstrumentdion payload while main-
taining the senantics of he original instrumentdion. W\
presem the transformaions and aply themfor programpro-
filing and conputer achitecture modéng. We evaluatethe
optimizations andshow hat the gtimizatons improve po-
filing perfamance ly 1.26-2.63xand architecture modtling
performance by 2—-3.3x.

Categories and Subject Descriptors

D.2.5. [Boftware Engineering]: Testing and Debuggg—Debug-
ging aids D.3.3. Programming Languages]: Langwage Con-
struicts  and  FeaturesProgram  instrumentation run-time
environmerts

General Terms
Languages, Performance, Algbms
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Dynamic Binary Tanslation, Dynanic Instrumentaon, Instrumen-
tation Optimization, Profiling

1. Introduction
Instrumentation used toprofile andmonitor a program,
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statc and dynamic anaysis. Instrumenttion is used by
Daikon © discover progam invarians [9] and by the
dynamic code ofimizers Jkes [1] and Dnano [2] to guide
coce transfornations. Otler uses inalde dyamric program
slicing [28], cemard-driven strictural software teston[18],
modeling conputer architecture feature$4,16,23,26], ard
software security [12,22].

Many techniqueshave leen propeed forinstrunenting
code The techniquesnclude placing instrunentaton in a
program lefore it executes, statibinary rewriting for profil -
ing [5,15,19,20,24 and placing(andremoving) instrument-
tion in executig programs [110,17,19]. There are also
infrastuctures hat proude instrumenttion capalblities fa
different machine plaforms [5,10,15,1p An important
aspect is how these approashaddressnstrumentation
overheadTools such a®&A\TOM apply context-specifiopti-
mizations to the nstrumertation  redice is cost [24].
However ATOM does no reduce the nunber of locations
where irstrumengtion is insered, but can oy reducethe
costof anindividualinstrumentaion locaion. ATOM is also
a sttic tool: It relies onexpensive iterprocedural analysis
which is dore at link-time, and ths, it is not suted fa
dynamic instrunentation. Otter frameworks sgh asDynInst
[10] ard Pn [19 have eficient mechanisms for dynamic
instrumentation but they do nat aubmaically apgy instru
mentation ogimizations to nitigate oerhead Arnold and
Ryderdescrited a echnique to condtionally execue instru-
mented code fordynamic instrumenation [1]. Although
their approach usesconditional probe to redce overhead,
it does not use ogimizations at the ristrumertation alge
rithm level. In these aproaches itis left o the insrument-
tion appication © determhe hav best toinstrunent a
program, gien low cost instumentation probes andecha-
nisms.

Yet, bah an @portwity andneedexist to auomatically
apgy optimizations onthe irstrumenttion code ¢ reduce its
overhead, sintar to cade opimizations but tageted and jze-
cialized toinstrumentation oge. Our research is devabing
instrumentation techngues ad opimizations that are tar-

has received muchttention de to the increased usefulness 9€€d to redicing the overhead bdynamically instrunerted

of information abou a praggram's executiorio analyss appli-
catins. Instrumertation is used in rany settngs fa both
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coce. This paper describes mstrumertation opimizations
and an irsrumenttion opimizer for programmonitoring
and profiling. Our intial instrumenation ogimizations tar-
get three sourceof overhead including the (1) cdsof
instrumentation probes ttat intercept program execution, (2)
the nunber d probes excuted (“dymmic probe count”),
and (3) the cdsof instrumentton cade tself (the “instru-
mentation payoad”). Ore optimizaion minimizes he num-
ber of irstrumentation pants executed using coakschg
while anotter opimization uses pail inlining to select



Unoptimized instrumentation points,
with control flow and data flow graph
built on binary code

Optimized (reduced) instrumentation
pomts are used to guide injection of
instrumentation code into binary

Instrumentatlon
Appllcam)n

Uninstrumented
Binary Code

Instrumentation Instrumentat|on
Optimizer Back-end

Instrumented
Binary Code

Program binary code

Figure 1 Approach to istrurentation (ptlmlzauon

between Ightweight andheavyvweight versons d instrumen-
tation code as mttime conditions warrantFinally, athird
optimization usesspecidization, including partial regiser
conext sawe andresbre to make the instrumertation cade
more eficient. Theseoptimizationscan usedynamic infor-
mation, suich as pogram pahs, toimprove peformarce.

This paperfirst describes lhe instrumenation gotimiza-
tions, andthen demastratestheir usefulress in twocase
studies. The first case studyuses the ojhizations to
improve the performare of lightweight program profiers.
Profiles are typically usetb gather information needed for
program analysi The secondcasestudy uses instimenta-
tion optimization toimprove the performance of onine nod-
eling of computer architecterfeaturesSuch modeing is
used in the computerchitectire community to analyze the
performarce of new achitectural features.

This papemakes seweral contibutions,including:

* Instrumenttion optimizations hat mitigate instru-
menrtation overhead by reding the nurber of
probes, the cosdf eachprobe and the cosf the
payload code;

* An instrumertation ogimizer, caled INS-OR that
appies instrumenation optimizations in a dynaric
binary coddranslator;

» A case studythat demadrates that the optimiza
tions can inprove the performance of Ightweight
profilers for basic ldck caints, dynarmic call chairs,
program path, and da andaddress values; and

* A second casestudy tha apgdies INS-OP to com-
puter architecture modely and evaluates he ti-
mizationson afag cache simulator

I nstrumentation and Over head
Because instrumentation m®t normallypart of a pro-
gram,it incursan overhead Htis the extraamourt of time
spentin execuing instrumenttion cade, rather tan he
appication cock. Instrumertation is typically inserted aspe-
cific points in the programwhich we call instrumentdion
points (IP) An IP encapulates tk instrunentation functon-
ality andits program cotext An IP consists of an instru-
menation probe andinstrumenttion payload. The probe is
the cale that is inserted m the applcation to intercept po-
gram executin to inwoke the paylad.The paybad doeshe
actualinstrumentation actiity, such & collectinga profile.
Because it may be unnecess#wyinvoke the payload on
everyexecuton of a probe, the probe can have a ctodi
thatcontrols wherthe paybad is inwked. Fo exanple, sich
condtions can be used tomplemernt samping—when a
court is within a spedied range profiling isdone.
Instrumentation overhead effected by the number of
probes egcuted or the pobe countTheprobecount for an
IP determines theaumber of istancef the probe (i.e., the
number oftimesthat gobe is hi). Everytime a probed hit,
it incurs an overhead assatddwith executing the probe

2.
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codethat intecepts progranexecution. Because the payload
can ke guarded i a condtion, every insance of a probe may
not incur theoverheadof the payload. Thus, e taal over-
head for an IP is reled tothe numbeof probes executed,
how much eachprobe costs, bw frequettly the paybad is
invokedand the cost ofhe payload.

Instrumentation ojrhizations can be tgetedto each
overheadcomponert. To redwce overheadhe ogimizations
transfam the instrumentaion code into a more dicient
form. Transfamations are apjd to a setof unopimized
IPs to gt optimized IPs. Tk transformations reduce the
numberof runtime insancesby comnbining ard eiminating
some IPs, whickeads to fever overall executethstance®f
IPs. Transfornations are doa onthe instrurrentation code
itsef to reduce probe and dagpdcost Partdl inlining can
be appled toreduce the pdgad cost. Irthis case, a tjht
weight version othe instrunentation payoad nay be incor-
porateddirectly into the apfication inary togather mnimal
information and perform a sih&et of actionsWhenneces-
sary the full version(i.e.,a heawweight version) of tle pay
load is invoked. Forexample,the nunber d regisers hat
hawe to be saved andestaed wheninvoking instrumeng-
tion can le lowered byanalying the livenesf registers
The instrumentdon code can also beexposed to the
dynamic run-time system which may perform optimiza-
tions, such astructiontraceformation, on thénstrumen-
tationcode to diciently stitchit into the applation.

Figure 1shows tow instrumenation gotimizaion can
be integated with a dyramic instrumentation toolkit (e.g.,
Dyningt [10], Pin[19], FIST [14]). In tke figure,wheneer
instrumentation need to be inserteddynamicaly, a base
instumenter is invoked D determine where amd how to
instrument the program The nputto this base istrumenter
is a sequence of kary instructions—e.g., aninstruction
trace—and the output is a sE#tunoptimized IPs. A simple
intermediat represetation (IR)is used to describe thunop-
timized IPs; the upptimized instrumetation code isnot
actualy gereratedor insered inb the appication binary

The bas instrumenter immments theénstrumentation
algorithm; for example, abasic block prdiler wodd gener-
ate anlP for everyblock inan instructiortrace. Theunopti-
mized IPsare passed to dnstrunentation optimizer which
transfams the input IPs irto a set of opimized instrument-
tion mints. The ogimizations are apjed over tre interme-
diate represdation for the IPs, pralucing an ofimized set
of points. Fo exanple, usiig the optmizations on irstru-
mentation t count bast blocks, a segence of IPs can be
optimized into a single IP atace exitshat covers the path
from the trace entry to an exitheintermediate representa-
tion for the optimized IPgsre pasedto aninstrumenttion
back-endthat generates anchsers the acta instrument-
tion code ito the bharycode.



3. Instrumentation Optimizations

Our goal is to appy instrumertation opimizations in
many setings andpreserve exct information, rather than
trade precision for low overhedd.g, samping). The opi
mizations are implementdd an instrunentaion opimizer
that ransforns IPs toimprove profiling performare. The
optimizations include reduang the rumber of runtime
instances of IPs witdynamic pobe coalescing (DPCand
reducirg the overhead of an inddual pant with partial
context switche@PCS)andpartial payload inlining (PPI).

To make the analysis needby these optimizatiofea-
sible ina dynamc seting, the gotimizations operate orcode
regiors that are straigtine sequences of basic thks with a
single entry and multiple exsifi.e., instruction traces

3.1. Dynamic Probe Coalescing

To reduce dynanic prdbe caunt, we usedyramic probe
coalescing(DPC), whch pairwise coadscesnultiple probes
into a sigle probe hat deesall the actions of the original
probes wihou the Isss of any iformaton (i.e., it invokes
the sane paylbads as ther@inal probes, except with a one
probe).The nevly coalesed pobe has lessverhad than
the original onedecaus the overhead ointercepting pro-
gram executiorns paid only once forthe newprobe. Many
probes can @entfally be conbined inb a shgle probe,
which will further redicethe caost of executing the probes.

The challenge with coaleimg probes is to elect the
dependences betveen probes ahthe intervening cock to
determinewvhether probes can lwealesced. Fanstancethe
payloadinvoked ky a probe ray use the curren value in a
register which cauld changeif the probe were coalesced
with sorre other prive. A similar depadence can arigéthe
payloadinvoked by aprobechanged the state ekecutionin
someway (e.g., alue in a rgister or memory). At the very
least the order of IPs often need 0 be preseved. To detect
thesedependencies, analysestbé appication codeandbr
payload is performed. Ifthe analyses do notletectany
dependencythe correspndng probes can be coalesced.

1 IPset DPC(IPset I, regionr) {
2 IPset O« J; IPPrev « firstEl enent(l);
3 Vi in | do {
4 V instructions mbetw. *Prev and *i do{
5 if ((def(i.instruction) n def(m)=J)
6 src_reg_live « true;
7 }
8 if (src_reg_live = false){
9 k <« coal esce(i, Prev, r);
10 O« {(OPrev) UKk}, Prev « k;
11
12 el se {
13 O« {Oui},;, Prev « i;
14
15
16 return O
17
(a) Algorithm for DPCoptimization
1
2 IP coalesce(lPi, IPj, regionr) {
3 IPK «< (i . j); k.address « j.address;
4 E « exitBlocks(r);
5 if Jein E e is an exit between i and j{
6 i .address <« e.address;
7
8 return k;
9
10 (b) Coalescingnsingle entrymultiple exit code
11

Table 1: Pseuo-code br DPC
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Table 1a shaevs pseudo-codefor the DPC optimization.

In the table, the ofimization takesan input set ofunogpti-
mizedinstrunentation points () and produces an optimized
setof instrunenttion points (O). DPCalsotakes an associ-
ated code region for I. The gtimizationworks bytravers-
ing the set of original IPs, startirg from the IPs thatare
earliestin the code, trying tdind adjacent pairs of IPs that
can be combined (line 3). Qusider o instrumentaton
points Prev andi, wherePrev is earlier in tle code thAni.
Prevandi canbe coaleced adongasthere is no itervening
definition of aregister ugd inPrevbetweerPrevandi (lines
4-7). This cmdition ensures thathe sameinformation at
Prevs original locdion is also available a WhenPrevand

i are coalesced, mewinstrumentation poink is formed and
inserted af’s original locaton (lines 811). k is addedo O
andPrevis remwed fran O (line 10).k is also marked as the
new Prev (line 10).If Prevandi can not be coaleed, i is
added toO andi is considered focoakscirg with the next
stbsequentP (line 13). Inthe pseudo-code, a newly coa-
lesed wint will be mmediately consdered forcoalescing
with the next subsequent IP. Instrumentatiompoints are déc-
tively coalesed in the dowward direction ard moved as
late aspossble. Although itis nat shown it is beneficial to
coalesceén the upward direction asell.

Because the code is squential (posibly with exits)
DPC needs to consider ongdjacent points because two
pointscanbe coalesced only #ll intervenng pointscanalso
be coalesed. For example, consider tiee instumentation
points: i, j, andk. Sypposei uses aegiderr that isdefined
between andj. If i can notbe combined withj, then it can
not be conbined with k because thre is a definition of r
between andk. Note thatthe peudo-codeloes mt resohe
dependacies that digble coalesing IPs. It is pssibk, how-
ever to spill neededraluesbeforethey are overwritterio
enable coalesng. While spillirg can be useful, its cost may
be sgnificant because a contextitch may be neede do
the spill (e.g., for the déctive address). \ith regster live-
ness information, dead regisers can be used to holdthe
splled values to redcethe cost of naking copies.

Table 1bshows how two IPsare coalesced. The IPs are
initially coalescedby cambining their paylcads (ndicaied by
the “.” operator). For instruicin traces, coalescing can com-
bine two IPs in adjacent hasblocks. Consider an instru-
mentation paint i in an earlier block and in a later one.
When i and | are coalesced, theewly coalesced IP is
inseted in j's basic block. Duringxecution, ifthe trace is
exited earlyfrom i’s basc block, then we must ensure that
is executed. @ ensuretha i is executedalong an earhoff-
trace path, instrumentation isserted into an “exit stub
block”. Theexit stubis a“dummy block” at atraceexit that
holdsthe points that must bexecutedvhenthetrace exitsat
that black. Thesé'fi x-up instrunentation ponts” aresimply
copies of IPs that were coatesl with IPsfrom the adjacent
basic block. A fix-up instrumertation point can ke anlP that
resultedfrom a pevious coalescing.

3.2. Partial Context Switch

The cost of a sinlg IP can le lowered by appling opti-
mizations that spéalize it tothe surrouding cocke contex.
We develop instrumentation optimizations to improve the
instrunentation probes performaie. Inparticular, the cost
of savingand restorig program conteX when caling and
returning from the payoad canbe bwered, which is the
major cos$ associated witha probe. Ths optimization is
amlied in statc instrumenation toalkits, but it is harcer for



dynamic instrumentationbecase information needed to
reducethe contexis potertially expensie to obfain.

If an IP can beglacedat ary ingruction addresghen no
assumptions canbe medeaboutwhatregisters nay be Ive at
thatlocaion without conextual knowledge. However, if the
livenessof registersat aninstrumertation locationand inthe
instrumentation payload is known or can be easilcom-
puted,then the cost ofasing ard restesing regsters wien
invoking the paybad carbe reducedIn paricular, any regs-
ter thatis dead atn irstrumentation locaion whetter or not
it is used by the instrumeiation paylcad does rot haveto be
saved oresbred Also, anylive register at an IP thas not
usedby the myload does nad have o be savedor restaed.
By analyzing register livenesthe overhead othe context
switch can beignificantlyreduced.

Statictools like ATOM [24] canafford the cos of analy-
sis to determine the livenes of registersto apply PCS.
Instead & determhing sich information at run-tme, amther
possilility is to collect ttre livenesdnformation for IPs dir-
ing conpilation and passig thatinformation o PCS at run-
time. PCS Wl thengenerate ode on-the-fly that saves ad
restores onlyhose regiers whid arenecesary

Local register livenessan be determined relatively
inexpensiely onstraidhtline code, such as basic the ard
instructon traces. Thslocal information is valualle on sorre
archtectuesthat have conition cade regsters(e.g, SARC
and »86). Savig and restoringhe comlition cales canbe
expersive (i.e., moe sothan reglar registers) ad it is
worthwhile to awid spilling and reloading the condtion
codes whenever possible.

In sone situations, t is also possibleto spil andreloada
register only once between riple IPs. For example, in an
instruction trace, registerseeded by the Btrumentation
code ca be gilled at trace stry and reloadedt the exit
points when the registetsedby the irstrumertation are no
needed (buare live) on thdrace. Alternatively regiders in
theinstrumentation canbe rewiitten to use dead registers.

3.3. Partial Payload Inlining

In additionto theprobe, thecost ofthe payload can also
be reducedInstrunentaion paylad often has a structue
where a condtion maitors program execign to decde
what action to performForinstance, a payload fa mem-
ory profiler might monitor anaddress nage and collect val-
ues whenever an addrdssn thatrange. The paytad nay
even have aeriesof conditions that guard nultiple actons,
wheresome actionsnay be moe frequeily executedhan
others. The frequently executezfjions can le identifiedfor

payload partial inlining (PPI). PPI replaces and inlines a

heavyweight payload by a lightweight version that is
guarded bya check. The cheaftetermines wheto transfe
contol to the heavyweght version PPI ensures tat the
inlinedportion of the payloadis frequently execuéd and rea-
sonably mall (to avoid adverseache dects).

PPl has thre steps:1) code partitioning, 2) partial
inline replacerment, and 3) run-time setcion. In the first
step, the gyload is partitoned into lightweight and heavy-

weight versiors, ard in the £cond step, IPs are optimized to

use m@rtia lining. Finaly, at run-time, the guard ecides
which versim of the payloadto execute.

For cock paritioning, PPI divdes the gyloadinto light-
weight and heavyvweight code regias. These regian are
determinedeither by uer amotations or by analysiwith
profile information. The lightweight region and is guard,
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1 code_region partition(code_region c) {

2 code_regi on pir«g;

3 code_regi on cond«find_guard(c);

4 if (cond = @) {

5 code_regi ons R«find_regions(cond);

6 hot «;

7 vr in Rdo { // find small, hot region
8 if ((hot=g || (hotness(r)>HOI_THRES&&

hot ness(r) > hotness(hot_region))
&& size(r) < Sl ZE_THRES)

11 hot «r;

12 }

13 if (hot 20) {

14 remove(hot, c); // renmove hot region
15 renmove(cond, c); // renove condition
16 pi r«<gen_inline_regi on(cond, hot, c);
17

18

19 return pir;

20

Table 2: Pseudo-code fextraging partialinlined code region

which we collectively tem a partially inlined region (PIR),
is a small region that is frequentlkezuted. It can be
includeddirectly in a prole to avdd a funcion cal to the
original payload In essence, the PIR inlined while the
heavyweight code regon remains a separate funoti. The
full payloadis not inlined becase it may result in too much
codegrowth and can hurt itrsiction cachdocality. In addi-
tion to he beneti of inlining the PIR,dividing the paybad
into two parts maymable PCSBecaus the PIR is relatively
smal, it is more likey thatfewer registerswill have to be
spilled ard relbbadedwheninvoking the inlined code, wich
allows PCS to be nre efectve.

Table 2 shavs a smplifiedalgorithm for patitioning the
payload nto the partialy inlined regon ard heavyveight
regons. Thealgorithm takes as arinput a code regio c
anrotated with edge weidits (from a prdile) to ke parti-
tioned. Tle algorithm looks for a hot regon in ¢ that is
guardedby a condtion at he entry ofc and hasanexit from
¢. Thealgaithm triesto idertify the guard candition (cond
for the inlined cale (ine 3, which shoull be atthe enty of
c. If a sutable condtion is found, henc is partifoned into
several hot regons, R, strting from cond (line 5). The
regons in R are singleentry and multiple exit (e.g., an
instruction tracg with the entry being a successor tie
guard candition. To simplify the algaithm, all exits fromthe
regons in R shaild exit the surounding regon c (this
restiction canbe relaxed, Were onlyan exit on the hot path
in R should exitt). The regons arerocessed to fid the hot
test onghat meésa consrainton codt size (Ines 6-12). The
regonsize mst bebelow the threstold size to aval inlining
too much codelf a gnall, hotregion hat is found, thenthat
regon and its guard are remed from c to form the parial
inline regia, pir (lines 13-17)which will be inined The
heavyweight region isc afterhothas been removed;call is
insertedin the guard tanvoke ¢ whenpir’s condtion fals.

In the second step &PI,IPs are opinized base@n the
PIR. THs sep inines tle PIR into aninstrunentation prote.
IPsthat invoke diferent (o multiple) paybads carbe han
dled by inlining the appropétePIR for each payload. Dur-
ing run-time, the final step occurs, where the guard is
execukd to call the partia inlined orheavyweghtregions.

4. INS-OP

We implemented an instmentation optimizercalled
INS-OR that is inegrated with a dynamic binary translatpr
Strata [23], and a dynamic instrumengtion system, FIST



[14]. INS-OR Srata,and FISTserve as a “dynamic irigu-
mertation taolkit” that canbe used tomplemen new irstru-
mertation algaithms and optimizations.

IPs from Base
Instrumenter

Instruction traces
from Strata

Use Strata’s

l«—» analysis to
get live regs

1

DPC
optimization

Transform IPs into
a smaller set of IPs

Transform IPs to
save/reload only
some regs.

PCS
optimization

PPI
optimization

Instrumentation
Code Generation

Transform IPs to
use partial evaluator

Construct and
insert probes

INS-OP

Instrumented (optimized)
instruction traces

Figure 2: Instrumentation Optimizer

INS-OP implements DPCRPI and PCS apassesas
shown in Figure 2. INS-OPaccepts an instruction trace
(formed online with the NET algrithm [2]) from Strata aml
a ¢t of IPs from the bas@strumenter The IPs arerepre
sented agnnotationsn the control flow gragh for the code
regon. INS-OP wil work with ary base istrumenter that
generates IPs in INS-Ofintermediate representation. The
optimizer ugs DPC to reducéhe wnoptimized IPs. After
DPC,the cost of aimdividual IP istackled. PCS replaces the
full context switch with apartial one that saes and rebads
the registersused by the paybad Then, PPI des partial
inlining o the paybad. The opmizedIPsard the input code
regon are passed the FIST instrurentaion cade generator
[14]. FIST consucts andinserts the coddor each IP.
Finally, FIST’s output is passed tot&ta.

5. Case Sudiesof Using INS-OP

To explae the usefulessof instrumertation optimiza-
tion, we apped INS-OP to two case stués: ore onprogram
profiling and the other foriswulating processor cacherhe
profilers irsert Imited irstrumengtion and lave rektively
inexpensivepayloads.The cache imulator on the othe
hand hasinstrumengtion that isrelatively expensie, with

mary instrumengtion pants. Hence, these case studies rep-

resent sspectrum for explorinthe efectivenes ofINS-OP
All experinents were doe ona 500MHz Sun Bhde
with 256 MB of RAM and So#ris 9. The benchrark suite
was SPECIigK, using gcc 2.95.3 wth flags “-G8 -mv8”.
The traindataset wasused foiprofiling and the reference set
for evaluation. The resultaclude all run-timecosts.
For the profiler case studyhebenchnarks were runfor
a maximum obne billion profike value. Forthe cache simu-
lation study, the bencimarks were rurto comgetion. The
simulated cachés a splitinstruction and data two-way set
as®ciativeL1 cache with 16 KB storage and 32 byte lines

5.1. Case Study: Program profiling

To investigate how INS-OP performs forprofiling, we
conducted acase stdy with seweral program profilers as
shownin Table 3 Although these profilers are similar in
some regects, they represeaspectum of commonly used
profilers thainstrumen at different granularities
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ProfilergDescription Base | Opt. [Speedup
Xecution count ogach

BB count basic block 487s | 218s | 2.15x

Path IGather blocks executed algh

profile | pab 948s | 218s | 1.96x

’S‘%%ﬁss Cdllect load/storeaddesses|| 589s | 219s | 2.54x

Vaue [[Cdlectvalues used by loads

profile |jand stores 585s | 2lls | 263x

Branch [Recad taken andhot-taken

history |branch history Slis | 212s | 2.26x

Cadl- Recad order of function

chain |lcdls andreturns 712s | 586s | 1.26x

Table 3: Speedudue tonstrumentation optimization

Table 3 shows average rumae for each profiler when
run on the SPECIirgK benchnarks, with no instrumenation
optimization (“base”) and with instrurmrentation optmization
(“Opt.”). The numbers are thaverae run-times irseconds
for the benchrarks. Fo example, the firstow shows dasic
block coun profiler inwhichthe averge run-time is reduced
from 487 secads t0218 secods. INS-OP inprovedprdfil -
ing perfornance by 2.18imes inthis case.

The table shows thathe speedupvaries from 1.26 for
call-chan profiing to 263 for value profiing. The differ-
encein speedupis relatedto the number d IPsandpayload
cost. Forexample, theaddress pofiler gathers al memory
addess gneraed during program execuion. In comparison
to the aher profilersjt hasa high number d IPs andamore
expensive payoad, which males the optimizations mnore
effective. The call-chain progl, on the oher hand, irstru-
ments oy calls andreturns. Thatis, thecall-chain prdfiler
has sparse IPshich reduceshe effectiveness of somepti-
mizations (e.g., DPC). Thushe speedup is smaller (1.26),
but INS-OP is sill effective due to PPand PCS.

From these redts, we concludethat INS-OP iseffec-
tive and can reducastrumentation overhead. INS-Balso
eased the burden dafmplementng theseprofilers. It took
only a day to develop the profikebecause the hardask of
minimizing instrumentation cog was lef to INS-OP. Instead
we aly neededo descrbe what instructions toinstrument,
what information to extract, ad how to useiit.

5.2. Case Study: Cache Simulation

In this study the nstrunentaion application is a direct-
executon processor simlator. These simlators, incuding
SimOS/Embra [26] an Shadd4], instrument the executing
program 6 dynamically model a computer architecture. One
way to model caclesin these ginulators is to instrumert all
memory operations to colleattrace of instruction andata
addesses. Profifig all memory operations—i.e., all instruc-
tion fetchesand data load and stores—is exgige because
every nstructon has o be instrumented. Insteadf instru-
menting all instructions, the cost andmourt of instrument-
tion can be optnized by INS-OP

We integratedan irstrumerter for memory profiling into
INS-OP The base irstrumener deternmes aset of IPsthat
collect dataand instruction agdtess streams.olextract the
addess gsteans, he base istrumener generaes wo types
of instrumetmation ponts: da& and instruction poirts. The
data points are generated for evetgad and storeand the
instruction poirts are gneraed for everyinstruction. Probes
for data points deermine sairce vales fa effective
addesseswhich are passed to the instremtaion payload.



Similarly, the prdes for instuction points determie the
instruction addess fromthe orignal binary and passthe
addess tathe myload The setof ungtimizedIPs fromthe
base insumenter are giveno INS-OP for opimization.

tation on instruction traceslowever these optimizations
have to be writenand applied by the programe.

There are may tools for cachesimulation thatuse
direct executon. FastSin{21] is a praessor gnulator that

To model processor caches, the payload is a cache simuses stadt instrumenttion. It does notapply instrumentation

lator. For the cachsimulator we used a simulator based
Embra [26]. Enbra uses a téb lookup to quickly detect
cache hits at the expense lndling misss, and becaes
cachehits are more likely thamisses, itis able toachieve
fast performance [2§. In the original Emlra tod, the hit
hardling coc is inlined at an instmentation site [2§. In

our case, the base caclmmglaor combines the hit and miss

hardler into a sinde payload. WhenPPI s used, tle hit han-

dler is inlined automaticallypy INS-CP. Enbra awids con-

text switches wien detecting hits by hard-caling reserved
registersfor simulation [26]. In INS-OR PCS is apied

auomaicaly on the hit detedor after PPl to get the sane

effect. Embradoesnot apply DPC.

Program |[|Native (Sec)| Srata-Embra | Strata-Embra-Opt
md 13813 5.5X 25X
twolf 3,534 15.7% 7.2X
gcc 1,364 25.% 11.1x
vpr 831 20.4 10.1x
parser 1,979 21.& 8.8x
vortex 2,747 21.5 10.6
gzip 1,192 34x 13.1x
bzip 1,325 26.7% 8.1x

Table 4: Slowdowrpf cache shulators ovemaive execution

We comparedNS-OP for cahe simulation relative to
Embra asshawvn in Table 4. Thetable shows the nate exe-
cution time, the sbwdown of Srata-Enbra and Srata-
Embra-Opt Srata-Embras Witchel and Rosenibm’s origi-
nal simulator [26] implemented n our frameverk. Strata-
Embra-Optis Strate-Emlra optmized by INS-OP

As the table shows, Bata-Embra has slowdown of
5.5-34x, with an average 8ix. When &ata-Embra-Optis
corsidered it is 2.5—-1% slower than retive execubn, with
an average 8.9x slowe8rata-Enbra-Opt is 2-3.3x faster
(averag@ 2.4x) than Srata-Emipa dwe to instrumentaion

optimizations. These resultse encouraging because INS-

OP s agerera instumentation ogimization frameverk that
canbe appied in differentsettings. ols like Embra araot
general systems—they are dpgsd for a specific purpose.
INS-OPis more general, yetit acheves letter performance.

6. Related Work

Instrumertation has been usddr a rumber of purposes,
including program profiling [5,15,19,2(R4], dynamc opi-
mization [1,2], software secuyi [12], and bnary translabn
[6,7,8]. These systems usestrumemation to maitor and
gater information about a prgram However unlike INS-
OR theydo not use insumentaion optimizations.

Systens like Dyrinst[10] and Paragin [17] use mstru-
mentaion probes based offast breakpmts to keep nstru-
mentaion owerheadlow. Both Dyninst and Parady were
built for dynamic instumengtion, and © the best & our
knowledge, their instrumentaion techmques were not
desgned fa instrumenation optmization. FIT is aATOM-
like static systenthatfocuses on ratgetability rather than
instrumengtion opimization [5]. PIN is adynanic instru-
mentaton framework [19]. It has sppart for writing cusbm
instrumengation opimizations, such as lawing instrurren-
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optimizaion, but uses memizaton to improve sinulation
pefformarce. INS-OP could be integraied with FastSimto
improve instrumenttion performance. Sinilarly, Embra [26]
uses dyarmic binary translaton ard inlines instumentation
in the birery code. Emba coud benefit from the DPC opi-
mization.Fast-Cache [16] is fast data cache simulattirat
uses sttic instrumertaton for every nemory instruction
(load and store) and calls cacle smulator when there is a
miss. Fast-@cte could bergfit from both DPC am PCS.

7. Conclusion

This paper deschied an approach teeduce dpamic
instrunentation overhead with “instrumentaton optimiza-
tions”. These ptimizaions redwe the number of rn-time
instances o@ninstrumertation point andthe cost of imdlivid-
ua instrumentation points with dynamic proke coalescig,
partial payload inlining, and m@rtial context swiches. Vé
presenéd an opimizer, INS-OP, for dynanic instrunenta-
tion optimization and descdpedtwo case studs that evalu-
ated the déctiveness of intsumenttion optimizations for
profiling and processor caclsémulation. INS-OHmproved
profiling performanceby 126—2.6% and cache simulgon
by 2-3.3x The instrurentation optmizations are general
and canbe wsedin otherappications, such as cbcking pro-
graminvariants alias anajsis, and dymamic slicing.
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