
Marple: A Demand-Driven Path-Sensitive
Buff er Overflow Detector

Wei Le and Mary Lou Soffa
Department of Computer Science

University of Virginia
Charlottesville, VA 22904, USA

{weile, soffa}@cs.virginia.edu

ABSTRACT
Despite increasing efforts in detecting and managing soft-
ware security vulnerabilities, the number of security attacks
is still rising every year. As software becomes more com-
plex, security vulnerabilities are more easily introduced into
a system and more difficult to eliminate. Even though buffer
overflow detection has been studied for more than 20 years,
it is still the most commonly exploited vulnerability. In this
paper, we develop a static analyzer for detecting and helping
diagnose buffer overflows with the key idea of categorizing
program paths as they relate to vulnerability. We combine
path-sensitivity with a demand-driven analysis for precision
and scalability. We first develop a vulnerability model for
buffer overflow and then use the model in the development of
the demand-driven path-sensitive analyzer. We detect and
identify categories of paths including infeasible, safe, vulner-

able, overflow-input-independent and don’t-know. The cate-
gorization enables priorities to be set when searching for root
causes of vulnerable paths. We implemented our analyzer,
Marple, and compared its performance with existing tools.
Our experiments show that Marple is able to detect buffer
overflows that other tools cannot, and being path-sensitive
with prioritization, Marple produces only 1 false positive out
of 72 reported overflows. We also show that Marple scales
to 570,000 lines of code, the largest benchmark we had.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Security, Verification, Algorithms, Experimentation

1. INTRODUCTION
It has been 20 years since buffer overflow was exploited by

the Morris worm [22]. Over the years, buffer overflow has
caused huge losses in terms of productivity and trust in in-
formation technology. Despite persistent efforts to manage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE-16,November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

buffer overflow, the statistics show that it is still the most
common exploitable vulnerability. In 2007, SecuriTeam doc-
umented 482 newly discovered vulnerabilities, 207 of which
are buffer overflows [21], and the US-CERT database records
183 buffer overflows out of total 344 vulnerabilities [6]. Due
to legacy code and performance, many companies still heav-
ily use C and C++ to develop software. For instance, about
80% revenue for Microsoft comes from products written in
C or C++ code [1]. Therefore, much time and resources are
spent trying to detect and remove buffer overflows.

Currently, there are dynamic and static approaches to de-
tect buffer overflow. While helpful, both techniques have
significant drawbacks. Dynamic tools slow down the exe-
cution and thus are not universally applicable. To prevent
an exploit, dynamic detectors often halt the program, im-
pacting the software availability. Software companies can-
not simply rely on dynamic detection to isolate all potential
buffer overflows, because it is very difficult and expensive
to develop patches quickly and distribute them safely to a
large number of deployed software systems.

Static analysis has been shown to be helpful in identify-
ing buffer overflow before software release [11]. However,
applying static analysis in practice requires considerable hu-
man effort, either for annotating code to help analysis or
for confirming superfluous warnings. Often, the warnings
are not systematically prioritized [10, 19, 23, 24]. Many
tools, including Splint [10], ARCHER [24] and BOON [23],
only report a potentially vulnerable point in the program,
such as a statement or a buffer. The code inspectors do
not have knowledge about the path that actually produces
the overflow. Tools that provide path information include
ESPx [11], Prefix [5] and Prefast [19]. The analysis in these
tools is performed exhaustively along all paths, and as a re-
sult, scalability is an issue. In some cases, the analysis does
not terminate in a reasonable amount of time even when con-
strained to a procedure. ESPx relies on manual annotations
for scalability. However, not only is writing and verifying
annotation costly, but the correctness of the annotation is
not guaranteed [11]. Prefix and Prefast apply many heuris-
tics to select and merge paths, resulting in an unacceptably
high false positive rate [5, 19].

In this paper, we present an innovative technique that
statically identifies the paths along which buffer overflow
occurs in a program using a demand-driven path-sensitive
analysis. Our overall goal is to reduce the manual effort re-
quired by improving the precision of the static detection and
providing explanations for the causes of the identified over-
flows. Better precision and more helpful information can

272

be provided if the path along which a buffer overflow might
occur is identified. Hence, our approach is path-sensitive.
To address the scalability of path-sensitive analysis for large
software, we apply a demand-driven approach. To the best
of our knowledge, this is the first research to develop tech-
niques for buffer overflow detection that are demand-driven
and path-sensitive.

By applying path-sensitive analysis, we improve the pre-
cision of the detection by first isolating infeasible paths that
we find and excluding them from further analysis. We then
classify individual paths as to whether they are safe or vul-
nerable. Instead of merging imprecise dataflow facts with
precise facts and generating approximate results, we identify
paths whose vulnerability cannot be statically determined
as don’t-know and the reason that makes them don’t-know.
For paths that are vulnerable, we further categorize them
based on the severity of the vulnerability. The classifica-
tion guides code inspectors to first address those warnings
that contain the most severe vulnerabilities and are the least
likely to be false positives. To further focus the code inspec-
tors’ attention, we report path segments that are relevant
to the buffer overflow and pinpoint statements that change
the buffer status on the path, with the goal of identifying
the root cause of an overflow.

Despite the benefit, path-sensitive analysis can incur un-
reasonable overhead. Therefore, in our work, we collect path
information using a demand-driven analysis. Our insight is
that code is not equally vulnerable over the software. A
buffer overflow can only occur when a string is written into
or read from the buffer, and only statements that possibly
update a buffer are relevant to the vulnerability. Therefore,
our focus is the path segments starting from the entry of
the program to a buffer access. Only statements that can
reach the buffer access need to be examined to determine
the vulnerability. In the demand-driven analysis, we con-
struct a query at each buffer access specifying whether a
buffer overflow could occur at the statement and whether
the untrusted user is able to write to the buffer. Answers to
the query are collected through a partial reversal of dataflow
analysis. Previous research has demonstrated the scalabil-
ity of demand-driven algorithms [8, 9, 13]. Experiments on
a demand-driven copy constant propagation framework re-
port speedups of 1.4–44.3 [9], and a demand-driven pointer
analysis is able to scale up to millions of lines of code [13].

We implemented our technique in our tool, Marple, us-
ing Microsoft’s Phoenix [18] and Disolver [12] infrastruc-
tures. We show that different types of paths can traverse a
buffer statement. We identify a total of 71 overflows over
8 benchmark programs, 14 previously reported and 57 not
reported overflows. We demonstrate the scalability of our
tool through successfully analyzing a Microsoft online XBox
game with over 570,000 lines of code within 35.4 minutes.
We also compare Marple to several existing detectors in
terms of precision of the detection, false positives and speed
of analysis.

In summary, the contributions of this paper include:

1. the development of the first demand-driven path-sensi-
tive analysis for detecting buffer overflow in large soft-
ware,

2. the categorization of paths for prioritizing warnings
based on infeasibility, severity of the overflow and con-
fidence of the detection,

3. the identification of vulnerable path segments and the
statements relevant to the root cause,

4. the implementation, evaluation and comparison of our
technique with other buffer overflow detectors, and

5. the presentation of a technique that is scalable and can
report buffer overflow with low false positive rates and
rich diagnostic information.

This paper is organized as follows. Section 2 explains the
benefit of path information and the feasibility of demand-
driven analysis for buffer overflow detection. Section 3 de-
scribes our framework and algorithms. Experiments and
results are given in Section 4, followed by related work in
Section 5 and a summary and future work in Section 6.

2. OVERVIEW
In this section, we identify the path information we aim

to compute, and discuss the value of the path information in
detecting, diagnosing and removing buffer overflow through
examples found in real-world applications. We also explore
the feasibility of applying a demand-driven analysis to com-
pute path information of interest.

2.1 Path-Sensitivity in our Analysis
We first show that paths across a buffer overflow state-

ment can be distinct with regard to the feasibility, presence
of the overflow, and the reasons that cause the overflow. Dis-
tinguishing the type of paths is important to achieve precise
detection, to prioritize the inspection tasks and to guide the
diagnosis and correction. We then define five types of paths
that our analysis identifies.

2.1.1 The Value of Path Information
Compared to path-insensitive analysis, path-sensitive de-

tection can achieve better precision because it can take the
impact of infeasible paths into the consideration, and it
does not merge the dataflow facts collected to determine
an overflow. We give an example from Sendmail-8.7.5

to show the impact of merge on the detection results. In
Figure 1, the strcpy() at node 5 is not a buffer overflow.
However, a path-insensitive analyzer would merge the facts
of buf = xalloc(i+1) from path 〈1 − 3〉, and buf = buf0

from 〈1, 2, 4〉, and gets the result of buf = xalloc(i+1) ∨
buf = buf0 at node 5; since buf0 is a buffer with the fixed
length, and a->q_user gets the content from a network pack-
age, the analysis identifies node 5 as vulnerable. Whereas,
path-sensitive analysis can distinguish that buf is set to be
buf0 only along the path 〈1, 2, 4〉, while along this path, the
length of a->q_user is always less than the buffer size of
buf0, and thus the buffer is safe. We discovered this exam-
ple from our experiments. Our path-sensitive analyzer was
able to be aware of the impact of the bounds checking at
node 2 and successfully excluded this false positive. But a
path-insensitive detector, Splint, incorrectly identified it as
vulnerable.

Paths also play an important role in reporting an overflow.
As an example, consider a code snippet from wu-ftpd-2.6.2

in Figure 2. For the strcat() statement at line 13, the path
〈3, 4, 7 − 9, 13〉 is always safe and 〈3, 4, 7 − 9, 11 − 13〉 is al-
ways infeasible. Only the path 〈3, 5 − 9, 11 − 13〉 can over-
flow the buffer with a ′\0′. If a tool only reports line 13 as
an overflow, the code inspector may waste time by manu-
ally exploring the infeasible or safe paths. In our work, we

273

Figure 1: Path-sensitive vs. path-insensitive detection

1 /∗ s i z e of re so l v ed : MAXPATHLEN ∗/
2 char ∗ f b r e a l pa t h (const char ∗path , char∗ r e so l v ed){
3 i f (r e so l v ed [0]== ’ / ’ && re so l v ed [1]== ’ \0 ’)
4 rootd = 1 ;
5 else

6 rootd = 0 ;
7 i f (∗wbuf){
8 i f (s t r l e n (r e so l v ed)+ s t r l e n (wbuf)+rootd+1
9 > MAXPATHLEN){ . . .

10 goto e r r 1 ; }
11 i f (rootd == 0)
12 s t r c a t (re so lved , ”/ ”) ;
13 s t r c a t (re so lved , wbuf) ;
14 }
15 . . .
16 }

Figure 2: Different paths cross an overflow statement

1 pw = f i n du s e r (buf , &fuzzy) ;
2 bui ldfname (pw−>pw gecos , pw−>pw name , nbuf) ;
3

4 void bui ldfname (char∗ gecos , char∗ l og in , char∗ buf){
5 char ∗bp = buf ; char ∗p ;
6 for (p = gecos ; ∗p!= ’ \0 ’ && ∗p!= ’ , ’
7 && ∗p != ’ ; ’ && ∗p != ’%’ ; p++){
8 i f (∗p == ’&’){
9 st rcpy (bp , l o g in) ;

10 ∗bp = toupper (∗bp) ;
11 while (∗bp != ’ \0 ’)
12 bp++;
13 }
14 . . .
15 }
16 }

Figure 3: Path-sensitive root causes

report the path, not a program point, along which a buffer
overflow could occur. To further focus the code inspector’s
attention, we only report path segments that are relevant
to the overflow, and pinpoint statements on the paths that
likely explain the root cause. For example, in Figure 2, we
highlight the statements at lines 6,8,9,12 and 13 on the over-
flow path segment.

Paths are not only helpful for detection and diagnosis,
but also can provide guidance for correcting an overflow.
We discovered in our research that the root cause for buffer
overflow also can be path-sensitive, i.e., more than one root
cause can impact the same buffer overflow statement and
be located along different paths. Consider an example from
Sendmail-8.7.5 in Figure 3. There are two root causes
responsible for the vulnerable strcpy() at line 9. First, a
user is able to taint the string login through pw->pw_name

at line 2, and there is no validation along the path. Also, the
pointer bp might already reference an address outside of the
buffer buf at line 9, if the user carefully constructs the input

for pw->pw_gecos. This example shows that diagnosing one
path for a fix is not always sufficient to correct the overflow.

2.1.2 Path Classification
A goal of our technique is to categorize paths that go

through the potentially overflow statements. Through path
classification, we aim 1) to distinguish faulty paths from safe
or infeasible paths; 2) to prioritize vulnerable paths based
on their potential for being exploited; and 3) to isolate paths
whose vulnerability cannot be determined by static analysis.

Infeasible: Infeasible paths can never be executed. Iden-
tifying paths that go through an overflow statement but ac-
tually are infeasible is not helpful for precision or for un-
derstanding how a buffer overflow is produced. Previous
research has shown that 9–40% of the paths in the program
can be statically identified as infeasible paths [4]. Thus de-
tecting them is important to achieve more precise detection.

Safe: Some paths that execute a potentially overflow
statement can always guarantee the safety of the buffer re-
gardless of the input. (See Figure 2).

Vulnerable: A path is vulnerable if a buffer may overflow
along the path that allows users to write any content to the
buffer. Knowing more about who can write to the overflow
buffer, e.g., whether the user is anonymous or registered, or
from local or network, we can further distinguish the de-
gree of vulnerability for the paths. For instance, when some
anonymous network user can write any content to a buffer
through some path, it is the most vulnerable.

Overflow-Input-Independent: Not all buffer overflows
are easily exploited. For example, when a buffer only can
overflow with constant strings in the program, and users are
not able to manipulate the content beyond the buffer bound,
the chance of exploitation is low compared to a vulnerable
buffer. More likely, a crash or corruption of the data will
happen. We place these overflows in a lower priority, espe-
cially when we have to process a large number of warnings,
and when there is a time limit imposed for correcting the
code before shipping the software. Path 〈3, 5 − 9, 11 − 13〉
in Figure 2 is an example of the overflow-input-independent
path since the path always overflows the buffer with a ′\0′.

Don’t-Know: We identify paths as don’t-know when
the detection for buffer overflow is beyond the power of
static analysis. Instead of introducing heuristics to esti-
mate the don’t-know facts and merging imprecise dataflow
facts with precise ones to generate approximate results, we
identify these paths as don’t-know, the reason that makes
them don’t-know and the location of the don’t-know fac-
tors. Therefore, code reviewers can be aware of them. An-
notations or heuristics can be introduced to refine the static
detection, and other techniques such as testing or dynamic
detection can also be applied to address the unknown warn-
ings. We summarize a set of factors that can make a path
don’t-know:

1. Library calls: the source of library calls is often not
possibly known until link time. In our analysis, we
model a set of library calls as to their potential for
buffer overflow, e.g., memcpy() and strcat(). We iden-
tify all other library calls that might impact a query
as don’t-know. We can further model the commonly
used library calls to reduce the number of don’t-know
messages of this type.

2. Loops and recursions: the number of iterations of a

274

loop or recursive call cannot always be determined
statically. We identify three types of loops a query
traverses: loops that have no impact on the query,
loops where we can compute the symbolic update for
the query, and loops where we cannot determine the
update of the query. Our analyzer reports don’t-know
when a query encounters the third type of loops.

3. Non-linear operations: the capacity of a static an-
alyzer is highly dependent on the constraint solver,
since the security property under examination will be
finally converted to constraints. Non-linear operations,
such as bit operations, introduce non-linear constraints
which cannot be handled well by practical constraint
solvers.

4. Complex pointers and aliasing: pointer arithmetic and
several levels of pointer indirection challenge the static
analyzer to precisely reason about memory, especially
heap operations. Imprecision of points-to information
also can originate from the path-insensitivity, context-
insensitivity or field-insensitivity of a particular alias
analysis used in the detection. In our framework, we
apply a pointer analysis integrated into the Microsoft
Phoenix framework [18] to resolve memory indirection
and aliasing, and report those that cannot be handled
as don’t-know.

5. Shared global variables: globals shared by multiple
threads or by multiprocesses through shared memory
are nondeterministic.

6. Environment: sometimes the safety of buffer accesses
is dependent on the environment on which software
will run. For example, in the experiment, we found
cases where a buffer access is safe only when a com-
mand variable argc can never get the value 0, or when
some uninitialized integers are always set to be 0 by the
environment. We believe security analysis should not
make such assumptions. Therefore, we report these
results as don’t-know.

2.2 Applying Demand-Driven Analysis
Computing path information is challenging since there can

exist an exponential number of paths in a program, and de-
termining the existence of buffer overflow requires the track-
ing of both control flow and value range information. In this
subsection, we investigate the opportunities of applying a
demand-driven analysis to compute properties of paths.

In demand-driven analysis, a demand is modeled as a set
of queries originating at a statement of interest. For exam-
ple, applying a demand-driven analysis to determine con-
stants, the query is whether a certain variable in the program
is a constant. To identify branch correlation, the query is
whether the branch can always be evaluated as true or false.

Similarly, for modeling buffer overflow detection using de-
mand-driven analysis, we construct queries as to whether
each buffer access in the program is safe. We first raise a
query at a statement where a buffer overflow possibly occurs.
We then propagate the query backwards along the control
flow towards the entry of the program; along the propaga-
tion, we collect value range information from the code to
resolve the query. At the fork points of branches, the query
is propagated to each predecessor node of the branch. At

the points where branches merge, the queries from differ-
ent branches are propagated to the single predecessor of the
branch. The analysis terminates when the query propagates
onto an infeasible path segment, the information collected
can resolve the query, or the entry of the program is reached.

The demand-driven analysis can improve the scalability
for buffer overflow detection because only nodes reachable
from the buffer access are visited and only information rel-
evant to the query is collected. Queries constructed from
each potentially overflow statement are independent, and
the analysis could be run in parallel.

3. BUFFER OVERFLOW ANALYSIS
We develop Marple, a demand-driven path-sensitive ana-

lyzer for computing buffer overflow paths. In this section,
we introduce two important modules of the technique: the
vulnerability model and the analyzer. We also briefly de-
scribe how a user can apply Marple to diagnose and elimi-
nate buffer overflow.

To build a concrete demand-driven analyzer, we need to
answer the following questions [9]: 1) What is the query?
2) How should the query be propagated? 3) What informa-
tion is used for updating queries? 4) With the information,
what are the updating rules for queries? and 5) How is the
query resolved? The vulnerability model captures the in-
formation needed to answer the above questions and defines
rules for constructing, updating and resolving queries for the
analyzer. The analyzer drives the query in the code under a
set of propagation rules. With the guidance of the vulnera-
bility model, the analyzer takes information from the source
program to resolve the query.

3.1 The Vulnerability Model
The vulnerability model for buffer overflow is a 5-tuple:

〈POS, δ, UPS, γ, r〉, where

1. POS is a finite set of potentially overflow statements
where queries are raised,

2. δ is the mapping POS → Q, and Q is a finite set of
buffer overflow queries,

3. UPS is a finite set of statements where buffer overflow
queries are updated,

4. γ is the mapping UPS → E, and E is a finite set of
equations used for updating queries, and

5. r is the security policy to determine the resolution of
the query.

POS: Buffer overflow can only manifest itself at certain
statements, such as where a buffer is accessed. We de-
fine such program points as potentially overflow statements.
Our analysis raises queries from these points and checks the
safety for each of them. A program is free of buffer overflow
if no violations are detected on any paths that lead to the po-
tentially overflow statements in the program. We recognize
that a buffer can be defined only through a string library
call or a direct assignment via pointers or array indices. We
therefore identify these types of statements as potentially
overflow statements for write overflow. Table 1 presents a
partial vulnerability model for buffer overflow. In the first
column of the table, the first four expressions are types of
potentially overflow statements. For the language depen-
dent features, we use C. In the table, the notation Len(x)

275

Table 1: Partial buffer overflow vulnerability model
POS & UPS Q: Constraints E: Update Equations
strcpy(a,b) Size(a) > Len(b) Len′(a) = Len(b)
strcat(a,b) Size(a) > Len(a) + Len(b) Len′(a) = Len(b) + Len(a)

strncpy(a,b,n) Size(a) > Min(Len(b), n)
(Len′(a) = ∞∧ Len(b) >= n)∨
(Len′(a) = Len(b) ∧ Len(b) < n)

a[i] = ’t’ Size(a) > i Len′(a) = ∞
char a[x] N/A Size(a) = x
char *a = (char*)malloc(x) N/A Size(a) = x/8
r(x) : Size(x) > Len(x)

represents the location of ′\0′ in buffer x, Len′(x) indicates
the location of ′\0′ in buffer x after it is updated, Size(x) is
the buffer size of x, Min(x, y) expresses the minimum value
among x and y, and r(x) is the security policy to determine
if a write to buffer x is safe.

δ : POS → Q: The mapping provides rules for con-
structing a query from a potentially overflow statement in
the code. We model the buffer overflow query for each po-
tentially overflow statement using two elements. The first
element specifies whether a buffer access at the statement
would be safe, represented as an integer constraint of the
buffer size and string length. The second element indicates
whether the user input could write to the buffer, annotated
as a taint flag. The second column in Table 1 shows the
query constraints for the four types of potentially overflow
statements listed in the first column.

UPS: To update a query, the analysis extracts informa-
tion from a set of program points. We identify two types of
sources for information, including statements of buffer defi-
nitions and allocations, and statements where we are able to
obtain values or ranges of the program variables that could
impact a buffer access, such as constant assignment, condi-
tional branch and the declaration of the type. In Table 1,
the first four expressions in the first column are buffer defi-
nitions and the next two are buffer allocations, and they are
all members of UPS.

γ : UPS → E: The mapping formats the information
as equations so that the analysis can apply substitution or
inequality rules to update queries. In the third column of
Table 1, we display the equations we derive from the cor-
responding UPS. The symbol ∞ is a conservative approxi-
mation for buffers where ′\0′ may not be present.

r: The last part of the vulnerability model is a security
policy defined for the analyzer to determine if an overflow
could occur. We say a buffer definition is safe if after a write
to the buffer, the declared buffer size is no less than the size
of the string stored in the buffer. The last row of Table 1
expresses this policy. It should be noted that here we only
specify the upper bound of the buffer and only model write
overflows, but the technique can be easily extended to also
include the lower bound and read overflow. Based on how
a query conforms to this policy, the query can be resolved
as safe, vulnerable, overflow-input-independent, infeasible or
don’t-know. These answers categorize the paths through
which the query propagates.

3.2 Marple
Figure 4 summarizes Marple and shows the interaction

between the vulnerability model and the analyzer. As the
initial step, the analyzer identifies and labels the infeasible
paths on the program. It then scans the code and identifies

Figure 4: Marple

the statements that match the potentially overflow state-
ments described in the vulnerability model. Queries are con-
structed from those statements based on the rules defined in
the vulnerability model. The analyzer processes one query
at a time. Each query is propagated backwards from where
it is raised along feasible paths towards the program entry.
A set of propagation rules are designed in the analyzer to
guide the traversal. At the node where information could
be collected, the query is updated using the equations. An
evaluator follows to determine if the query can be resolved.
If not, the propagation continues. If the query is resolved,
the search is terminated. To present the detection results,
the answers to the query are propagated to the visited nodes
to identify path segments of certain types, and statements
for understanding root causes are highlighted.

3.3 The Algorithm
We present the algorithm for computing buffer overflow

paths in Algorithm 1. Due to the space limitation, we
only describe the intraprocedural analysis here. Our actual
framework is interprocedural, context-sensitive and path-
sensitive. The side effects of globals are also modeled.

The analysis consists of two phases: resolve query and
identify paths. In the first phase, the analysis first identi-
fies the infeasible paths and marks them on an intermediate
representation of the program, namely the Interprocedural
Control Flow Graph (ICFG), at line 1 [4]. The analysis
at line 2–15 examines the buffers from potentially overflow
statements one by one and classifies paths that lead to the
buffer access. At line 5, the query is constructed based on
the query template stored in the vulnerability model vm.Q.
The analysis uses a worklist to queue the queries under prop-
agation, together with the node to which a query propagates.
At line 6–13, each pair of the node and query is processed.

276

Input : ICFG (icfg), Vulnerability Model (vm)
Output: four types of paths: safe, vulnerable,

overflow-input-independent and don’t-know

Detect&MarkInfeasibleP(icfg)1

foreach s ∈ vm.POS do2

initialize each node n with Q[n] ={}3

set worklist to {}4

q = RaiseQ (s, vm.Q); add pair(s,q) to worklist5

while worklist 6= ∅ do6

remove pair(node i, query q) from worklist7

UpdateQ(i, q, vm.S, vm.E)8

a = EvaluateQ(i, q)9

if a ∈ {Vul,OCNST, Safe,Unknown}10

then add pair(i, a) to A[q]; else11

foreach n ∈ Pred(i) do PropagateQ(i, n, q)12

end13

IdentifyP(A[q])14

end15

Procedure UpdateQ(node n, query q, ups S, rule E)16

if n is unknown17

then info = GetUnknown (n, q, E)18

else if n ∈ S then info = CollectInfo(n, q, E)19

Resolve(info, q)20

Procedure EvaluateQ(node i, query q)21

SimplifyC(q.c)22

if q.c = true then a = Safe23

else if q.c = false ∧ q.taint = CNST then a = OCNST24

else if q.c = false ∧ q.taint = Userinput then a = Vul25

else if q.c = undef ∧ q.unsolved = ∅ then a = Unknown26

else a = Unsolved27

Procedure PropagateQ(node i, node n, query q)28

if NotLoop(i, n, q.loopinfo)29

then30

status = CheckFeasibility(i, n, q.ipp)31

if status != Infeasible ∧ !MergeQ(q, Q[n])32

then add q to Q[n]; add pair(n, q) to worklist33

end34

else ProcessLoop(i, n, q)35

Algorithm 1: Categorizing buffer overflow paths

To update a query, the analysis first determines if the node
could impact the buffer we are currently tracking. If so, we
extract the information and format it into equations. Proce-
dure UpdateQ at line 16–20 provides details. At line 17, the
analysis encounters a node that defines a variable relevant to
the current query, but the range or value of this variable is
not able to be determined statically. We use GetUnknown to
record this unknown factor based on rules E defined in the
vulnerability model. Line 19 finds that node n is a member
of UPS, and the analysis then computes info from node n
in CollectInfo. Finally, Resolve at line 20 consumes the
information to update the query.

After the query is updated, EvaluateQ at line 9 checks
if the query can be resolved as one of the defined answers.
Line 21–27 describes EvaluateQ in a more detail. SimplifyC
at line 22 first simplifies the constraints in the query. Based
on the status of the query after the constraint solving, four
types of answers can be drawn. For example, at line 26,
Unknown is derived from the fact that the constraint q.c is
undetermined and the unresolved variable set, q.unsolved,
is empty. If a query is resolved, its answer, together with
the node where the query is resolved is recorded in A[q] (see
line 11). If the query cannot be evaluated to be any of above
four types of answers, Unsolved is returned and the query

continues to propagate at line 12.
PropagateQ at line 28–35 interprets the rules we designed

for guiding the query to propagate through infeasible paths,
loops and branches. CheckFeasibility at line 31 checks if
the propagation from the current node to its predecessor en-
counters an infeasible path and thus should be terminated.
MergeQ at line 32 determines if the query has arrived at this
node before. At line 35, the analysis processes the loop. We
observe that when a query enters a loop, one of the following
scenarios could occur: 1) the loop does not update the query,
and the query remains the same after each iteration of the
loop; 2) the query is updated in the loop and the number of
loop iterations can be represented as a linear combination of
some integer variables. A common example is that we can
reason that the loop, for (int i = 0; i < c; i++), iter-
ates c times; and 3) the query is updated in the loop and
the number of iterations cannot be simply represented using
integer variables. For example, we are not able to express
the iteration count for the loop while(a[i] != ’\\’) using
integer variables. When the first type of loop is encoun-
tered, the analyzer identifies that the query will not change
in the loop. The propagation stops traversing the loop after
one iteration. To deal with the second and third cases, the
analyzer reasons the impact of the loop on the query based
on the update of the query per iteration, and the number
of iterations of the loop. Since the initial query at the loop
exit is known (note our analysis is backwards), obtaining
the above two parameters, the analysis is able to compute
the query at the loop entry. The third case is more compli-
cated since the number of iterations cannot be symbolically
expressed. We introduce a don’t-know factor to represent
the iteration count and use it to compute the query at the
entry of the loop.

Line 14 shows the second phase of the analysis, identify

paths. At this phase, the analysis propagates the answers
from resolved nodes to every node that has been visited,
and identifies paths and their types.

Optimizations for Scalability. We developed tech-
niques to further speed up the analysis. One observation
is that queries regarding local and global buffers are prop-
agated in a different pattern during analysis. Queries that
track local buffers cross into a new procedure only through
function parameters or return variables, and the computa-
tion for local buffers often does not involve many procedures.
However, global buffers can be accessed by any procedure
in the program, and those procedures are not necessarily lo-
cated close on the ICFG. In the worst case, the query cannot
be resolved until the analysis visits almost every procedure
on the ICFG, and the demand-driven approach cannot ben-
efit much.

To address this challenge, we develop an optimization
named hop. Our experience on analyzing real-world code
demonstrates that although global variables can be defined
at any procedure, the frequency of the accesses in a proce-
dure is often low, i.e., the procedure possibly just updates
the variable once or twice. Our approach is that when we
build the ICFG of the program, we record the location of
the global definitions in the procedures. Since the analysis
is demand-driven, we are able to know before entering a new
procedure the variables of interest. If all variables of inter-
est are globals, we can simply search the global summaries
at the procedure, and hop the query directly to the node
that defines the unresolved variables in the query, skipping

277

most of the irrelevant code. This hop technique also can be
applied intraprocedurally when we encounter a complex pro-
cedure with many branches and loops. Similar to the global
hop, we can record the nodes that define local variables in
the summary. Although the number of branch nodes could
potentially be large, the number of nodes that define vari-
ables of interest often is relatively small. Therefore, guided
by the demand, we are always able to resolve the query
with a limited number of hops. In addition to hop, we ap-
ply optimizations of advancing and caching as developed by
Duesterwald et al [9].

Threats to Validity. Although our framework intro-
duces the concept of don’t-know to handle the potential im-
precision of the analysis, there is still untraceable impreci-
sion that could impact the detection results. For example,
we do not model control flows impacted by signal handlers
or function pointers, and do not handle concurrency proper-
ties such as shared memory. Another example is that we use
an intraprocedural field-sensitive and flow-sensitive alias an-
alyzer from the Microsoft Phoenix infrastructure [18], which
is conservative. We also can miss infeasible paths from
our infeasible paths detection since identifying all infeasible
paths is not computable [3].

3.4 User Scenario
To use Marple for diagnosis, the user inputs an application

source code into Marple and requests to analyze the poten-
tially overflow statement of interest. If Marple returns a vul-
nerable path segment, the user then follows the statements
highlighted on the path segment to understand and correct
the root cause. Our experiments show that a path segment
often contains only about 20–30 basic blocks. After the fix is
introduced into the code, Marple is run again to determine if
all vulnerable paths are eliminated. If not, Marple returns
another vulnerable path to the user for further diagnosis.
The process iterates until all vulnerable paths are corrected.
Similarly, Marple then helps users process overflow-input-
independent paths, and lastly don’t-know paths.

4. EXPERIMENTAL RESULTS
In order to investigate the scalability and capabilities of

our analysis for detecting buffer overflow, we implemented
Marple using the Microsoft Phoenix [18] and Disolver [12]
infrastructures. The platform we used for experiments is
the Dell Precision 490, one Intel Xeon 5140 2-core proces-
sor, 2.33 GHz, and 4 GB memory. We selected 8 bench-
mark programs from BugBench [16], the Buffer Overflow
Benchmark [25] and a Microsoft Windows application [17].
All benchmarks are real-world code, and they all contain
some known buffer overflows documented by the benchmark
designers, which help estimate the false negative rate of
Marple. We examined the scalability of our analysis using
MechCommander2, a Microsoft online XBox game published
in 2001 with 570.9 k lines of C++ code [17].

We conducted two sets of experiments. We first ran our
analyzer over 8 benchmark programs and examined the de-
tection results. For comparison, we also experimented with
Splint, a path-insensitive static analysis tool developed by
Evans [10] on the same set of the benchmarks. In the second
set of experiment, we evaluated Marple using 28 programs
from the Buffer Overflow Benchmark and compared our re-
sults with the data produced by 5 other representative static
detectors [25]. We applied the metrics of probability of de-

tection and false alarms developed by Zister et al. for com-
parison [25]. The results for these two sets of experiments
are presented in the following subsections.

4.1 Experiment I

4.1.1 Path-Sensitive Detection
In this experiment, we ran Marple on every write to a

buffer in the program to check for a potential overflow. For
each buffer write, we excluded infeasible paths, and cat-
egorized paths of interest from program entry to the po-
tentially overflow statement into vulnerable, overflow-input-
independent, don’t-know and safe types. We identified a to-
tal of 71 buffer overflows over 8 programs, of which 14 have
been previously reported by the benchmark designers and
57 had not been reported before. Among all vulnerable and
overflow-input-independent warnings Marple reports, only 1
message is a false positive, which we confirmed manually.

We show the detailed experimental results in Table 2. Col-
umn Benchmark lists the set of benchmarks we used, the
first 4 from BugBench, wu-ftp, Sendmail, and BIND from
the Buffer Overflow Benchmark, and the last XBox appli-
cation MechCommander2. Column POS shows the number
of potentially overflow statements identified in these pro-
grams. Column Reported Bugs records the number of over-
flow statements documented in the benchmarks.

Column Detected Bugs summarizes our detection results.
It contains two subcolumns. Subcolumn Reported displays
Marple’s detection of previously reported overflows. Com-
paring the results from this subcolumn to the numbers listed
in Column Reported Bugs, we show Marple detected 14 out
of total 16 reported overflows. Marple identified 1 overflow
in BIND as don’t-know, because the analysis is blocked by
some library call, and we missed 1 flaw in MechComman-
der2, because we do not model function pointers. Subcol-
umn New shows 57 previously not reported overflows we
found in the experiment. We manually confirmed that these
overflows are actually true buffer overflows. Many of these
overflows are located in BugBench. For example, we found
11 previously not reported overflows in ncompress-4.2.4

and 9 in gzip-1.2.4. Bugbench uses a set of dynamic er-
ror detectors such as Purify and CCured to detect over-
flow [16]. Those dynamic detectors terminate when the first
buffer overflow on the path is encountered; therefore, other
overflows on the same path can be missed. We inspected
the overflows reported from Marple but not included in Bug-
Bench, and we found that many of new buffer overflow detec-
tions are actually located on the same path as other over-
flows. Furthermore, those overflows located on the same
path do not always happen on the same buffer.

The above results show that Marple not only identified
most of the documented overflows, but also discovered buffer
overflows that have not been reported by the benchmark
designers.

Column Path Prioritization presents the results of our
path classifications. Subcolumns V , O and U show the
number of statements Marple reported in the program that
contain paths of vulnerable, overflow-input-independent and
don’t-know. We manually inspected the vulnerable and over-
flow-input-independent warnings and identified 1 false pos-
itive in MechCommander2. The false positive results from
the insufficient range analysis for the integer parameters of
a sprintf(). Marple can properly suppress false positives

278

Table 2: Detection results from Marple

Benchmark POS
Reported Detected Bugs Path Prioritization Root Cause Info

Bugs Reported New V O U Stmt Ave No.

polymorph-0.4.0 15 3 3 4 6 1 2 2.9 1.7
ncompress-4.2.4 38 1 1 11 8 4 12 3.9 1.0
gzip-1.2.4 38 1 1 9 7 3 18 4.2 1.7
bc-1.06 245 3 3 3 3 3 108 7.1 1.0

wu-ftp 13 4 4 0 3 1 4 6.8 1.0
Sendmail 21 2 2 2 3 1 6 6.5 1.2
BIND 48 1 0 0 0 0 22 N/A N/A

MechCommander2 1512 1 0 28 28/1 0 487 9.4 1.0

because we use a relatively precise path-sensitive analysis,
and we successfully prioritized warnings that are truly buffer
overflows by categorizing the low confidence results into the
don’t-know set. For the don’t-knows reported in Subcolumn
U , we explain what factors cause the don’t-know and where
the reason for the don’t-know appears in the source code.

Consider the benchmark bc-1.06 as an example to illus-
trate the don’t-know warnings we generate. Among a to-
tal of 108 statements that contain don’t-know paths, 43 are
marked with the factor of complex pointers, 28 result from
recursive calls, 15 are caused by loops and 12 are due to non-
linear operations. There are also 8 blocked by library calls
and 6 dependent on environmental factors such as uninitial-
ized variables. One statement could be labeled with more
than one type of don’t-know factor, since paths with differ-
ent don’t-know factors can go through the same statement.
The computed factors indicate that we can further improve
the analysis by applying better memory modeling to resolve
pointers, trying to convert non-linear constraints to linear
constraints, or annotating the library calls that affect the
analysis. The results also help in manual inspections to fol-
low up the don’t-know warnings.

The above results validate our hypothesis that although
real errors may be in the don’t-know set, we are able to
report a good number of buffer overflows with very low false
positives.

The last column of the table, Root Cause Info, presents
the assistance of our analysis for helping identify root causes.
In our bug report, we highlight statements that update the
query during analysis. We count the number of those state-
ments for each overflow path segment. In Subcolumn Stmt,
we report the average count over all overflow path segments
in the program. The results suggest that to understand an
overflow, the number of statements that the user has to fo-
cus on are actually less than 10 on average. We have shown
in Section 2.1.1 that root cause can be path-sensitive. Sub-
column Ave No. displays the average number of root causes
per overflow for all overflow statements in the program. If
the result is larger than 1, there must exist some overflow in
the program resulting from more than one root cause. We
manually inspected overflow paths and discovered 3 out of
8 programs containing such overflows, and the different root
causes for the overflow are all located on different paths.

4.1.2 Two Examples from Results
Here, we show three buffer overflows from two examples

which we discovered but had not been previously reported.
The first example is from bc-1.06. In Figure 5, the overflow
occurs at line 8, since the number of elements written to the
buffer env_argv is determined by the number of iterations

of the while loop at line 6 and the if condition at line 7.
However, the execution of both the while loop and the if

condition are controlled by env_value, a string that can be
manipulated by untrusted users through the environment
variable at line 2.

1 char∗ env argv [3 0] ;
2 env va lue = getenv (”BC ENV ARGS”) ;
3 i f (env va lue != NULL){
4 env argc = 1 ;
5 env argv [0] = ”BC ENV ARGS” ;
6 while (∗ env va lue != 0){
7 i f (∗ env va lue != ’ ’){
8 env argv [env argc++] = env value ;
9 while (∗ env va lue != ’ ’ && ∗ env va lue != 0)

10 env va lue++;
11 i f (∗ env va lue != 0){
12 ∗ env va lue = 0 ;
13 env va lue++; }
14 }
15 else env va lue++; } . . .
16 }

Figure 5: An overflow in bc-1.06, main.c

1 char Sou r c eF i l e s [2 5 6] [2 5 6] ;
2 void l anguageD i r e c t i v e (void) {
3 char f i leName [1 2 8] ; char f u l lPa th [2 5 5] ;
4 while ((curChar != ’ ” ’) && (fileNameLength <127)){
5 f i leName [f i leNameLength++] = curChar ;
6 getChar () ;
7 }
8 f i leName [f i leNameLength] = NULL; . . .
9 i f (curChar==−1) st rcpy (fu l lPath , f i leName) ;

10 else {
11 st rcpy (fu l lPath , Sou r c eF i l e s [0]) ;
12 f u l lPa th [curChar+1] = NULL;
13 s t r c a t (fu l lPath , f i leName) ; }
14 i f ((openErr = openSourceFi l e (f u l lPa th)) . . .)
15 }
16 long openSourceFi l e (char∗ sourceFi leName){ . . .
17 st rcpy (Sou r c eF i l e s [NumSourceFiles] , sourceFi leName) ;
18 }

Figure 6: Overflows in MechCommander2, ablscan.cpp

The second example in Figure 6 presents two overflows we
identified in MechCommander2. At line 13, two strings are
concatenated into the buffer fullPath: the string fileName,
with the possible length of 127 bytes, and SourceFiles[0],
whose maximum length could reach 255 bytes. Both the
buffers of fileName and SourceFile are accessible to the
user, e.g., getChar() at line 6 gets the input from a file
that users can access, to the global curChar, which is then
copied into fileName at line 5. Therefore, given the size of
255 bytes for fullPath at line 3, the overflow can occur at
line 13 with the user input. This overflow further propagates
to the procedure openSourceFile at line 14, and makes the
buffer SourceFiles[NumSourceFiles] at line 17 also unsafe.

279

4.1.3 Comparison with Splint
We experimentally compared Marple with Splint [10], a

path-insensitive static analyzer for buffer overflow detection,
and the only static buffer overflow detector we found that
can run through most of our benchmarks and report rela-
tively reasonable false positives and false negatives [25]. We
ran Splint over the same set of benchmarks, and collected
statements that Splint reports as buffer overflow. We exam-
ined those warnings against statements Marple identified as
containing paths of vulnerable, overflow-input-independent
and don’t-know. We summarized the comparison in Table 3.
For programs of polymorph-0.4.0, BIND and MechComman-

der2, Splint terminates with parse errors, so we are not able
to report a comparison.

Table 3: Comparison of Splint and Marple
Benchmark Tm Ts (V ∪ O) ∩ Ts U ∩ T ′s

ncompress-4.2.4 24 14 1/11 7/5/8
gzip-1.2.4 21 95 8/2 15/3/84
bc-1.06 110 133 2/4 72/28/105

wu-ftp 6 6 4/0 2/1/0
Sendmail 6 8 2/2 3/1/5

The first column Tm in Table 3 shows the total num-
ber of statements Marple reports as containing vulnerable,
overflow-input-independent and don’t-know paths. Since
our analysis is path-sensitive, different types of paths can
go through an overflow statement [14], e.g., a statement can
be counted both in Column V and U in Table 2. Column Ts
in Table 3 presents the total number of warnings Splint gen-
erates for buffer overflow. Comparing these two columns, we
discovered that even if we do not use any further techniques
such as heuristics or modeling of library calls to remove
don’t-knows, Marple generated less warnings, except for the
benchmark ncompress-4.2.4; however, Splint reported 10
less warnings than our detection on this benchmark because
it missed 11 statements we identified as overflow. We man-
ually inspected the warnings missed by Splint, and found
that those 11 overflows are correlated in that the overflow
of the first buffer consecutively causes the 10 overflows on 3
other different buffers.

The second column (V ∪ O) ∩ Ts lists the intersection of
statements containing paths of overflow-input-independent
and vulnerable reported from Marple and the overflow mes-
sages generated by Splint. The number before “/” is the
number of statements that are listed in both Splint and
Marple results, while the number after “/” is the total num-
ber of confirmed overflows generated by Marple but missed
by Splint. Column U ∩ T ′s compares our don’t-know set,
U , with the warning set Splint produced excluding the con-
firmed overflows, annotated as T ′s. In each cell, we present
three numbers separated by “/”. The first number is the
number of statements listed in U but not reported by T ′s.
The second number counts the elements in both sets. The
third number reports the number of statements from T ′s,
but not in U .

Figure 7 presents a summary of the comparison in Table 3.
The diagram shows that for the 5 programs listed in Table 3,
Splint and Marple identified a total of 17 common overflows
(see set A in Figure 7), and Marple detected 19 more flaws
that Splint is not able to report (B). There are 38 warn-
ings both reported by Splint and the don’t-know set from
Marple (C), and thus those statements are very likely to be

U

C (38)

D (202)

A (17)

Ts

C = U ∩ (Ts − A)

E = U − (U ∩ Ts)

B (19)

A = (V ∪ O) ∩ Ts

B = (V ∪ O) − A

D = Ts − A − C

V ∪ O

E (99)

Figure 7: Summary of comparison

an overflow. There are a total of 202 warnings generated
by Splint but not included in our conservative don’t-know
set (D). We manually diagnosed some of these warnings
including all sets from ncompress-4.2.4 and Sendmail, 10
from gzip-1.2.4 and 10 from bc-1.06 that belong to D;
we found that all of these inspected warnings are false posi-
tives. The number of statements that are in our don’t-know
set but not reported by Splint is 99 (E), which suggests that
Splint either ignored or applied heuristics to process certain
don’t-know elements in the program.

4.2 Experiment II
We also compared Marple with other static buffer over-

flow detectors using the Buffer Overflow Benchmark devel-
oped by Zister et al. [25] in terms of detection and false
positive rates. The Buffer Overflow Benchmark contains a
total of 14 benchmarks constructed from real-world applica-
tions including wu-ftpd, Sendmail and BIND. Each bench-
mark contains a “bad” program, where several overflows are
marked, and a corresponding “ok” version, where overflows
in the “bad” program are fixed. Zister et al. evaluated five
static buffer overflow detectors: ARCHER, BOON, UNO,
Splint and PolySpace (a commercial tool), with the Buffer
Overflow Benchmark. The results show that 3 out of the 5
above detectors report less than 5% of the overflows in the
benchmarks, and the other 2 have higher detection rates,
but the false positive rates are unacceptably high at 1 false
alarm in every 12 lines of code and 1 in every 46 lines of
code.

The results of the evaluation have been plotted on the
ROC (Receiver Operating Characteristic) curve shown in
Figure 8 [25]. The y-axis p(d) shows the probability of de-
tection, computed by the formula C(d)/T (d), where C(d)
is the number of marked overflows detected by the tool and
T (d) is the total number of overflows highlighted in the“bad”
program. Similarly, the x-axis p(f) represents the probabil-
ity of false alarms, computed by C(f)/T (f), where C(f)
is the number of “ok” statements identified by the tool as
an overflow, and T (f) is the total number of fixed overflow
statements in the “ok” version of the program. The diago-
nal line in the figure suggests where a static analyzer based
on random guessing would be located. The uppermost and
leftmost corner of the plot represents an ideal detector with
100% detection and 0% false positive rates.

We ran Marple over the Buffer Overflow Benchmark and
rendered our results of p(f) and p(d) on the plot. In Figure 8,
we computed two points for Marple. Marple A is com-
puted using only overflow-input-independent and vulnera-
ble warnings, while Marple B is derived also using don’t-
know messages, i.e., a don’t-know warning is counted both
into C(d) as a detection and into C(f) as a false positive.
Marple A shows that we can detect 49% of overflows with

280

Table 4: Benefit of demand-driven analysis

Benchmark
Size Blocks Procedures WorkList

Time
(LOC) Total Visited Total Visited Max Size

polymorph-0.4.0 1.7 k 323 41 11 4 6 1.3 s
ncompress-4.2.4 2.0 k 473 269 13 4 56 1.3 s
gzip-1.2.4 8.2 k 1,218 482 42 17 110 26.2 s
bc-1.06 17.7 k 3,035 1,489 119 77 677 3.5 min

wu-ftp 0.4 k 84 50 5 5 31 2.1 s
Sendmail 0.7 k 140 81 7 4 12 1.1 s
BIND 1.3 k 226 83 9 3 1 0.9 s

MechCommander2 570.9 k 57,883 25,069 3,259 1,689 944 35.4 min

Figure 8: Comparison of Marple with other five static

detectors on ROC plot

a 4% false positive rate. Marple B achieves better results
both in false positive and negative rates than PolySpace and
Splint. Our results indicate that Marple can more precisely
detect buffer overflows with high detection and low false
positive rates. We discovered that although the don’t-know
warnings should not miss overflows since they are computed
conservatively, we obtained 88% detection rate. The reason
for this is that some overflows in the benchmarks are caused
by integer errors or they are read overflows, and we have not
yet modeled these in our analysis.

4.3 Benefit of Demand-Driven Analysis
To evaluate the scalability of our analysis, we measured

both the time and memory of analyzing 8 programs. Ta-
ble 4 Column Size lists the size of benchmark programs in
terms of lines of code. Columns Blocks and Procedures
compare the number of total blocks and procedures on the
ICFG of the program, listed under Subcolumns Total, to
the number of blocks and procedures Marple visited dur-
ing analysis, displayed in Subcolumns V isited. The results
show that because we direct the analysis only to the code
relevant to buffer overflow, the analysis only visited an av-
erage of 43% nodes and 52% procedures on the ICFG for
8 programs. Column WorkList Size shows the maximum
number of elements in the major worklist in analysis. The
actual memory measurement reports that all 8 benchmark
programs can be analyzed using less than 2.5 GB memory.

Column T ime reports the time that our analysis uses for
each program. The results show that analyses for all bench-
marks can finish within a reasonable time, and we success-
fully analyzed MechCommander2 within 35.4 minutes. We

compared the performance of our analysis with two path-
sensitive tools, ARCHER [24] and IPSSA [15]. ARCHER
uses an exhaustive based search and achieves the speed of
analyzing 121.4 lines of code per second [24]. IPSSA detects
buffer overflows on the SSA annotated with path-sensitive
alias information; its average speed for 10 programs in the
experiments is 155.3 lines per second [15]. Marple reports
the speed of analyzing 254.7 lines per second over our bench-
mark programs.

5. RELATED WORK
Buffer overflow can cause critical consequences in soft-

ware systems. Many static tools have been developed to
detect buffer overflow before software release. The gen-
eral approach is to map memory safety problems to inte-
ger range analysis, abstract interpretation, symbolic exe-
cution or type inference, and apply annotations or heuris-
tics to achieve scalability. Important tools for buffer over-
flows include Prefast [19], Prefix [5], ESPx [11], BOON [23],
Splint [10], ARCHER [24], and PolySpace [2]. Most of these
detectors apply an exhaustive search over the program for
potentially violations of buffer access, and often report high
false positives or require annotations to achieve precision.

Path-sensitive tools for software vulnerability detection
include ARCHER [24], IPSSA [15], and MOPS [7]. ARCH-
ER exhaustively evaluates every path using symbolic exe-
cution and takes infeasible paths into consideration. Al-
though the analysis is path-sensitive, ARCHER does not re-
port the concrete faulty paths as detection results, but only
the statement where the buffer overflow occurs [24]. The
heuristics used to make the analysis scalable and suppress
false positives can potentially cause the low detection rate
as reported in the previous evaluation [25]. IPSSA performs
a hybrid pointer analysis and annotates the results on SSA.
IPSSA based buffer overflow detection uses a forward anal-
ysis starting from where a user input can be introduced into
the system. The detector cannot reason about the dynamic
buffer allocations or bounds checks located before the user
inputs, if any, which could either cause the detection to fail
or produce false positives. The analysis also does not con-
sider any assignment to the buffer through array characters,
resulting in another source of imprecision. The scalability of
this method is not evaluated in the paper [15]. MOPS is tar-
geted to identify vulnerabilities that can be represented in
a finite state machine. It models a program as a push down
automaton and applies the push down model checker to de-
termine the reachability of vulnerable states in the PDA.
However, traces on PDAs are not always feasible paths in
the program. According to the author, MOPS generates
many false positives, e.g., among 1378 warnings for misuse

281

of strncpy(), only 11 are confirmed as real flaws [7].
The demand-driven approach has been used to compute

dataflow problems such as reaching definitions and constant
propagation [9]. There has also been work on demand-driven
pointer analysis, infeasible paths computation, and memory
leak detection [4, 13, 20]. In our previous paper [14], we
used a demand-driven algorithm to identify the five types
of paths for a buffer overflow statement, and experimentally
showed that all categories exist in applications.

6. CONCLUSION AND FUTURE WORK
This paper presents a demand-driven path-sensitive anal-

ysis that leverages the capabilities of the static analysis for
achieving both scalability and precision in buffer overflow
detection. Since the analysis and the reports of detected
bugs are both based on paths, we are able to provide better
explanations for the detection results. We prioritize warn-
ings that contain severe vulnerabilities and are more likely
true errors, and highlight statements that are important in
understanding root causes. We experimentally show that
Marple is scalable and can detect buffer overflows that have
not previously been reported in the benchmarks and also not
found by Splint. We also find in our experiments that 99% of
overflows reported by Marple are real buffer overflows. Our
future work is to develop techniques that can further address
the don’t-know warnings generated from our analysis.

7. ACKNOWLEDGMENTS
This research was supported in part by grants from the

Microsoft External Research & Programs. We especially
thank Yan Xu for the support of this project, and we are
very grateful for the help from Andy Ayers, Chris McKinsey
and Joseph Tremoulet in using Phoenix. We also thank
Manuvir Das for his helpful comments.

8. REFERENCES
[1] Personal communication with John Lin from

Microsoft.

[2] Polyspace. http://www.polyspace.com.

[3] T. Ball and J. R. Larus. Program flow path. Microsoft
Technical Report MSR-TR-99-01, 1999.

[4] R. Bodik, R. Gupta, and M. L. Soffa. Refining data
flow information using infeasible paths. In Proceedings

of the 6th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, 1997.

[5] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static
analyzer for finding dynamic programming errors.
Software: Practice and Experience, 2000.

[6] CERT. http://www.cert.org/.

[7] H. Chen and D. Wagner. MOPS: an infrastructure for
examining security properties of software. In
Proceedings of the 9th ACM Conference on Computer

and Communications Security, 2002.

[8] E. Duesterwald, R. Gupta, and M. L. Soffa. A
demand-driven analyzer for data flow testing at the
integration level. In Proceedings of 18th International

Conference on Software Engineering, 1996.

[9] E. Duesterwald, R. Gupta, and M. L. Soffa. A
practical framework for demand-driven
interprocedural data flow analysis. ACM Transactions

on Programming Languages and Systems, 1997.

[10] D. Evans. Static detection of dynamic memory errors.
In Proceedings of the ACM SIGPLAN 1996

Conference on Programming Language Design and

Implementation, 1996.

[11] B. Hackett, M. Das, D. Wang, and Z. Yang. Modular
checking for buffer overflows in the large. In
Proceeding of the 28th International Conference on

Software Engineering, 2006.

[12] Y. Hamadi. Disolver : A Distributed Constraint
Solver. Technical Report MSR-TR-2003-91, Microsoft
Research.

[13] N. Heintze and O. Tardieu. Demand-driven pointer
analysis. In Proceedings of the ACM SIGPLAN 2002

Conference on Programming Language Design and

Implementation, 2001.

[14] W. Le and M. L. Soffa. Refining buffer overflow
detection via demand-driven path-sensitive analysis.
In Proceedings of the 7th ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools and

Engineering, 2007.

[15] V. B. Livshits and M. S. Lam. Tracking pointers with
path and context sensitivity for bug detection in c
programs. In Proceedings of the 11th ACM SIGSOFT

International Symposium on Foundations of Software

Engineering, 2003.

[16] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou.
Bugbench: Benchmarks for evaluating bug detection
tools. In Proceedings of Workshop on the Evaluation of

Software Defect Detection Tools, 2005.

[17] Microsoft Game Studio MechCommander2.
http://www.microsoft.com/games/mechcommander2/.

[18] Microsoft Phoenix.
http://research.microsoft.com/phoenix/.

[19] Microsoft Prefast. http://www.microsoft.com/whdc/
devtools/tools/prefast.mspx.

[20] M. Orlovich and R. Rugina. Memory leak analysis by
contradiction. In Static Analysis, 13th International

Symposium, 2006.

[21] SecurityTeam. http://www.securiteam.com/.

[22] E. Spafford. A failure to learn from the past. http:
//citeseer.ist.psu.edu/spafford03failure.html.

[23] D. Wagner, J. S. Foster, and E. A. B. hand
Alexander Aiken. A first step towards automated
detection of buffer overrun vulnerabilities. In
Proceedings of Network and Distributed System

Security Symposium, 2000.

[24] Y. Xie, A. Chou, and D. Engler. ARCHER: Using
symbolic, path-sensitive analysis to detect memory
access errors. In Proceedings of 11th ACM SIGSOFT

International Symposium on Foundations of Software

Engineering, 2003.

[25] M. Zitser, R. Lippmann, and T. Leek. Testing static
analysis tools using exploitable buffer overflows from
open source code. In Proceedings of the 12th ACM

SIGSOFT International Symposium on Foundations

of Software Engineering, 2004.

282

